

Video Article

Erratum: Controlled Microfluidic Environment for Dynamic Investigation of Red Blood Cell Aggregation

URL: http://www.jove.com/video/5762

DOI: doi:10.3791/5762

Keywords: Errata, Issue 105, Date Published: 11/30/2015

Citation: Erratum: Controlled Microfluidic Environment for Dynamic Investigation of Red Blood Cell Aggregation. J. Vis. Exp. (105), e5762,

doi:10.3791/5762 (2015).

Abstract

An erratum was issue for Controlled Microfluidic Environment for Dynamic Investigation of Red Blood Cell Aggregation. The introduction section was updated.

Protocol

An erratum was issue for Controlled Microfluidic Environment for Dynamic Investigation of Red Blood Cell Aggregation. The introduction section was updated.

The introduction was updated from:

Few studies have attempted to study RBC aggregation and determine the degree of aggregation in controlled flow conditions¹⁵⁻¹⁷. However, these studies indirectly investigate RBC aggregate sizes by determining the ratio of the occupied space in a shearing system measured based on microscopic blood images providing information on the degree of aggregation as well as the local viscosity.

We therefore present a new procedure to directly quantify RBC aggregates in microcirculation, dynamically, under controlled and constant shear rates. RBC-suspensions are entrained, in a double Y-microchannel (as illustrated in **Figure 1**), with a Phosphate Buffered Saline (PBS) solution hence creating a shear flow in the blood layer. Within this blood layer a constant shear rate can be obtained. The RBC-suspensions are tested at different hematocrit (H) levels (5%, 10% and 15%) and under different shear rates (2-11 sec⁻¹). The blood velocity and shear rate are determined using a micro Particle Image Velocimetry (µPIV) system while the flow is visualized using a high speed camera. The results obtained are then processed with a MATLAB code based on the image intensities in order to detect the RBCs and determine aggregate sizes.

to:

Few studies have attempted to study RBC aggregation and determine the degree of aggregation in controlled flow conditions ¹⁵⁻¹⁷. However, these studies indirectly investigate RBC aggregate sizes by determining the ratio of the occupied space in a shearing system measured based on microscopic blood images providing information on the degree of aggregation as well as the local viscosity. Chen *et al.*¹⁸ presented a direct measurement technique for RBC aggregate sizes and provided RBC aggregate size distribution for different shear stresses by varying the flowrate of the suspensions while monitoring the pressure drop across a flow chamber. The shear stresses are calculated based on the monitored pressure using Stokes equation ¹⁸.

We therefore present a new procedure to directly quantify RBC aggregates in a controlled microfluidic environment, dynamically, under specific, constant and measurable shear rates. The blood flow in the shear system is directly observed (perpendicularly to the flow direction), providing a different angle on flow investigation compared to previous studies ^{15,18} and a visualization of the full domain of interest. RBC-suspensions are entrained, in a double Y-microchannel (as illustrated in **Figure 1**), with a Phosphate Buffered Saline (PBS) solution hence creating a shear flow in the blood layer. Within this blood layer a constant shear rate can be obtained. The RBC-suspensions are tested at different hematocrit (H) levels (5%, 10% and 15%) and under different shear rates (2-11 sec⁻¹). The blood velocity and shear rate are determined using a micro Particle Image Velocimetry (μPIV) system while the flow is visualized using a high speed camera. The results obtained are then processed with a MATLAB code based on the image intensities in order to detect the RBCs and determine aggregate sizes.

Reference 18 was updated to:

18. Chen, S., Barshtein, G., Gavish, B., Mahler, Y., Yedgar, S. Monitoring of red blood cell aggregability in a flow chamber by computerized image analysis. *Clin. Hemorhol. Microcirc.* **14**, (4), 497-508 (1994).

All subsequent citations were also updated.

Disclosures

No conflicts of interest declared