

Submission ID #: 69673

Scriptwriter Name: Sulakshana Karkala

Project Page Link: <https://review.jove.com/account/LAB MEDIA-uploader?src=21250313>

## **Title: Enhanced Spatial Mapping of Mouse Gastric Muscle Layers Using a Modified Swiss Roll Technique**

### **Authors and Affiliations:**

**Nick M. Huynh<sup>1,2</sup>, Srinidhi R. Babu<sup>1,2</sup>, Egan L. Choi<sup>1,2</sup>, Tamas Ordog<sup>1,2,3</sup>, Yujiro Hayashi<sup>1,2</sup>**

**<sup>1</sup>Enteric Neuroscience Program and Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science**

**<sup>2</sup>Gastroenterology Research Unit, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science**

**<sup>3</sup>Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic College of Medicine and Science**

### **Corresponding Authors:**

Tamas Ordog ([ordog.tamas@mayo.edu](mailto:ordog.tamas@mayo.edu))  
Yujiro Hayashi ([hayashi.yujiro@mayo.edu](mailto:hayashi.yujiro@mayo.edu))

### **Email Addresses for All Authors:**

Nick M. Huynh ([huynh.nick@mayo.edu](mailto:huynh.nick@mayo.edu))  
Srinidhi R. Babu ([babu.srinidhi@mayo.edu](mailto:babu.srinidhi@mayo.edu))  
Egan L. Choi ([choiegan00@gmail.com](mailto:choiegan00@gmail.com))  
Tamas Ordog ([ordog.tamas@mayo.edu](mailto:ordog.tamas@mayo.edu))  
Yujiro Hayashi ([hayashi.yujiro@mayo.edu](mailto:hayashi.yujiro@mayo.edu))

## Author Questionnaire

**1.** We have marked your project as author-provided footage, meaning you film the video yourself and provide JoVE with the footage to edit. JoVE will not send the videographer. Please confirm that this is correct.

✓ Correct

**2. Microscopy:** Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **NO**

**3. Software:** Does the part of your protocol being filmed include step-by-step descriptions of software usage? **NO**

**4. Proposed filming date:** To help JoVE process and publish your video in a timely manner, please indicate the proposed date that your group will film here: **N/A**

When you are ready to submit your video LAB MEDIAs, please contact our Content Manager, [Utkarsh Khare](#).

### Current Protocol Length

Number of Steps: 11

Number of Shots: 23

# Introduction

---

**NOTE: Authors provided pre-recorded interviews**

## INTRODUCTION:

~~What is the scope of your research? What questions are you trying to answer?~~

- 1.1. **Srinidhi Babu:** Our research focuses on improving how we prepare and analyze the mouse stomach for imaging. We've adapted the "Swiss roll" technique, originally developed for the murine intestine, so that all major gastric regions including the fundus, corpus, and antrum can be embedded together in a single cryosection. This allows us to visualize the stomach's structure and cellular composition side by side, while maintaining accurate spatial orientation and high image quality.

1.1.1. LAB MEDIA: Intro-1-27s 00:00 – 00:27

~~What advantage does your protocol offer compared to other techniques?~~

- 1.2. **Srinidhi Babu:** The stomach is a complex organ with delicate tissues. Small mistakes can damage cells or distort their arrangement, which makes high-resolution imaging and immunostaining inconsistent. Our Swiss roll technique solves this by keeping all regions including duodenum and esophagus intact in a single cryoblock, making experiments more reliable and reproducible.

1.2.1. LAB MEDIA: Intro-2-22s 00:00-00:22

**NOTE: This was moved here to facilitate a longer introduction section**

## CONCLUSION:

~~How will your findings advance research in your field?~~

- 1.3. **Srinidhi Babu:** The Swiss roll technique can advance research on region-specific changes in gastric tissue. Unlike traditional approaches that embed regions separately, the Swiss roll technique processes all gastric regions under identical conditions, saving both time and reagents. This makes it a practical and scalable platform for comprehensive analysis of gastric tissue in both health and disease.

1.3.1. LAB MEDIA: Intro-3-22s 00:00 – 00:22

**DRAFT: DO NOT USE FOR FILMING**



**Ethics Title Card**

This research has been approved by the Institutional Animal Care and Use Committee (IACUC) at the Mayo Clinic

# Protocol

---

**NOTE: Scripted from footage**

## 2. Preparation, Rolling, and Confocal Imaging of Mouse Gastric Tissue Using the Swiss Roll Technique

**Demonstrator: Srinidhi R. Babu**

- 2.1. To begin, use scissors to cut along the ventral mesentery of the duodenum and stomach up to the pin at the corpus **[1]**. Using a transfer pipette filled with PBS, flush out any residual food from the gastric lumen **[2]**.
  - 2.1.1. LAB MEDIA: Surgery-1 00:00-00:22
  - 2.1.2. LAB MEDIA: Surgery-1 01:44-01:2:04
- 2.2. Gently stretch the opened stomach to achieve a flat orientation **[1-TXT]**. Pin the tissue flat again after the brief fixation **[2]**.
  - 2.2.1. LAB MEDIA: Surgery-1 02:45-02:50, 03:21-03:28  
**TXT: Fix in cold 4% PFA for 2 min**
  - 2.2.2. LAB MEDIA: Surgery-1 04:06-04:28
- 2.3. Using scissors, trim the stomach along the dashed outline to create a uniform shape suitable for rolling **[1]**. Place the trimmed gastric tissue on PBS-moistened filter paper **[2]**.
  - 2.3.1. LAB MEDIA: Surgery-2 00:00-00:18
  - 2.3.2. LAB MEDIA: Surgery-3 00:02-00:13
- 2.4. Roll the tissue into a Swiss roll configuration and secure it by inserting a toothpick through the center **[1]**.
  - 2.4.1. LAB MEDIA: Surgery-4 00:08-00:22
- 2.5. Once rolled, insert a 30-gauge needle to secure its shape **[1]**. Then, bend the needle at a 90-degree angle to stabilize the rolled stomach **[2]**. Fix the rolled tissue in 4 percent paraformaldehyde at 4 degrees Celsius for 6 hours **[3]**. Then gently remove the stabilizing needle **[4]**.
  - 2.5.1. LAB MEDIA: Surgery-5 00:27-00:39
  - 2.5.2. LAB MEDIA: Surgery-6 00:02-00:11
  - 2.5.3. LAB MEDIA: Surgery-6 00:21-00:28
  - 2.5.4. LAB MEDIA: Surgery-7 01:05-01:10

2.6. Embed the tissue in optimal cutting temperature compound using disposable base molds **[1]**. Then, freeze the mold on dry ice **[2]**. Once fully frozen, store the mold at minus 80 degrees Celsius **[3]**.

2.6.1. LAB MEDIA: Surgery-7 01:10-01:16, 01:35-01:42

2.6.2. LAB MEDIA: Surgery-7 02:05-02:11

2.6.3. LAB MEDIA: Surgery-8 00:00-00:03

**NOTE:** 2.7 to 2.11 were deleted at author's request

2.7. ~~To acquire a stitched image, center the Swiss roll on the confocal microscope at 10X magnification [1].~~

2.7.1. ~~LAB MEDIA: Confocal 1min48s~~

2.8. ~~Ensure proper laser power and gain to avoid pixel saturation [1]. Confirm that the sample is clearly in focus [2]. On the Ti2 Eclipse confocal microscope, use the AI autosignal feature to optimize the signal [3].~~

2.8.1. ~~LAB MEDIA: Confocal 1min48s~~

2.8.2. ~~LAB MEDIA: Confocal 1min48s~~

2.8.3. ~~LAB MEDIA: Confocal 1min48s~~

2.9. ~~To define the acquisition parameters, open Applications, and select Define/Run ND Acquisition [1]. Use the given settings in the Large Image tab [2].~~

2.9.1. ~~LAB MEDIA: Confocal 1min48s~~

2.9.2. ~~LAB MEDIA: Confocal 1min48s~~

2.10. ~~In the Z tab, set the top and bottom coordinates of the sample [1]. Select 8 steps for image acquisition [2].~~

2.10.1. ~~LAB MEDIA: Confocal 1min48s~~

2.10.2. ~~LAB MEDIA: Confocal 1min48s~~

2.11. ~~Once done, switch the laser scanner to the Galvano setting, and click Run now to begin acquisition [1].~~

2.11.1. ~~LAB MEDIA: Confocal 1min48s~~

# Results

---

## 3. Results

- 3.1. The new method enabled inclusion of the fundus, corpus, antrum, a portion of the esophagus, and duodenum within a single murine gastric Swiss roll section [1].
  - 3.1.1. LAB MEDIA: Figure 1C and D. *Video editor: Highlight the labeled areas "Fundus," "Corpus," "Antrum," "Esophagus," and "Duodenum" in panel C and D.*
- 3.2. Hematoxylin and eosin staining of the gastric Swiss roll revealed well-preserved architecture in the fundus, corpus, antrum, esophagus, and duodenum [1], with clearly visible mucosal, submucosal, and muscularis layers [2].
  - 3.2.1. LAB MEDIA: Figure 3. *Video editor: Highlight the labeled regions "Fundus," "Corpus," "Antrum," "Esophagus," and "Duodenum" in the stained cross-section.*
  - 3.2.2. LAB MEDIA: Figure 3.
- 3.3. Immunofluorescent staining showed expression of KIT (*Kit*) and ANO1 (*An-oh-one*) in interstitial cells of Cajal (*ka-HAHL*) [1], and expression of TUBB3 (*beta-TOO-buh-lin three*) in enteric neurons, confirming cellular preservation in the gastric Swiss roll [2].
  - 3.3.1. LAB MEDIA: Figure 4. *Video editor: Highlight the bottom image in KIT and ANO1 panels*
  - 3.3.2. LAB MEDIA: Figure 4. *Video editor: Highlight the bottom image in red-stained TUBB3 panels*
- 3.4. KIT expression was also detected in Paneth and goblet cells in the gastric mucosa [1], while ANO1 was highly expressed in fundic columnar epithelial cells [2].
  - 3.4.1. LAB MEDIA: Figure 4. *Video editor: Highlight the white arrows in the bottom image of KIT panel*
  - 3.4.2. LAB MEDIA: Figure 4. *Video editor: Highlight the white arrows in the bottom image of ANO1 panel*
- 3.5. TUBB3 expression was observed in gastric endocrine and mucus-secreting cells, in addition to enteric neurons [1].
  - 3.5.1. LAB MEDIA: Figure 4. *Video editor: Highlight the red arrows in the bottom image of the TUBB3 panel*
- 3.6. MYH11(*myosin HEH-vee chain eleven*) staining confirmed the presence of smooth muscle cells and myofibroblasts in the gastric mucosa [1], while E-cadherin (*ee-kad-HEER-in*) staining showed epithelial cells [2], and KIT staining again marked interstitial cells of Cajal [3].

- 3.6.1. LAB MEDIA: Figure 5. *Video editor: Highlight the green MYH11 staining in the lower left panel indicating smooth muscle and mucosal regions.*
- 3.6.2. LAB MEDIA: Figure 5. *Video editor: Highlight yellow E-cadherin signal marking epithelial cells in the lower middle-right panel.*
- 3.6.3. LAB MEDIA: Figure 5. *Video editor: Highlight KIT staining with white arrows in the middle-lower panel labeled "KIT."*

**Pronunciation Guide:**

¶ Laparoscopic

Pronunciation link: <https://www.merriam-webster.com/dictionary/laparoscopic>

IPA: /læp.ə.rə'skɔ:pɪk/

Phonetic Spelling: lap-uh-ruh-SKAH-pik

¶ Gastrectomy

Pronunciation link: <https://www.merriam-webster.com/dictionary/gastrectomy>

IPA: /gæ'strek.tə.mi/

Phonetic Spelling: gas-TREK-tuh-mee

¶ Mesentery

Pronunciation link: <https://www.merriam-webster.com/dictionary/mesentery>

IPA: /'mɛz.ən.tər.i/

Phonetic Spelling: MEZ-uhn-ter-ee

¶ Duodenum

Pronunciation link: <https://www.merriam-webster.com/dictionary/duodenum>

IPA: /du:.ə'di:.nəm/

Phonetic Spelling: doo-uh-DEE-nuhm

¶ Paraformaldehyde

Pronunciation link: <https://www.merriam-webster.com/dictionary/paraformaldehyde>

IPA: /pær.ə.fɔ:r'mæl.də.haɪd/

Phonetic Spelling: pair-uh-for-MAL-duh-hide

¶ Cryosection

Pronunciation link: <https://www.merriam-webster.com/dictionary/cryosection>

IPA: /kraɪ.oʊ'se:k.ʃən/

Phonetic Spelling: kry-oh-SEK-shuhn

¶ Confocal

Pronunciation link: <https://www.merriam-webster.com/dictionary/confocal>

IPA: /kən'fəʊ.kəl/

Phonetic Spelling: kon-FOH-kuhl

¶ Immunofluorescent

Pronunciation link: <https://www.merriam-webster.com/dictionary/immunofluorescent>

IPA: /ɪm.jə.noʊ.flʊ'res.ənt/

Phonetic Spelling: im-yuh-noh-floor-ESS-uhnt

¶ Hematoxylin

Pronunciation link: <https://www.merriam-webster.com/dictionary/hematoxylin>

IPA: /hi:.mə'ta:k.sɪ.lɪn/

Phonetic Spelling: hee-muh-TAHK-suh-lin

¶ Eosin

Pronunciation link: <https://www.merriam-webster.com/dictionary/eosin>

IPA: /'i:.oʊ.sɪn/

Phonetic Spelling: EE-oh-sin

¶ Muscularis

Pronunciation link: <https://www.merriam-webster.com/dictionary/muscularis>

IPA: /mʌs.kjə'lər.ɪs/

Phonetic Spelling: mus-kyuh-LAIR-iss

¶ Submucosal

Pronunciation link: <https://www.merriam-webster.com/dictionary/submucosal>

IPA: /sʌb.mju:'kʊə.səl/

Phonetic Spelling: sub-myoo-KOH-suhl

¶ Interstitial

Pronunciation link: <https://www.merriam-webster.com/dictionary/interstitial>

IPA: /ɪn.tə'stɪʃ.əl/

Phonetic Spelling: in-ter-STISH-uhl

¶ Cajal

Pronunciation link: <https://www.merriam-webster.com/dictionary/Cajal>

IPA: /kə'ha:l/

Phonetic Spelling: kuh-HAHL

¶ Myosin

Pronunciation link: <https://www.merriam-webster.com/dictionary/myosin>

IPA: /'maɪ.oʊ.sɪn/

Phonetic Spelling: MY-oh-sin

¶ Myofibroblast

Pronunciation link: <https://www.merriam-webster.com/dictionary/myofibroblast>

IPA: /'maɪ.oʊ'fɪə.b्रə.blæst/

Phonetic Spelling: my-oh-FY-broh-blast

¶ E-cadherin

Pronunciation link: <https://www.merriam-webster.com/dictionary/E-cadherin>

IPA: /i:'kæd.hɪr.in/

Phonetic Spelling: ee-KAD-hair-in