

Submission ID #: 69563

Scriptwriter Name: Poornima G

Project Page Link: <https://review.jove.com/account/file-uploader?src=21216763>

## **Title: Establishment of a Modified Ferric Chloride-Induced Superior Sagittal Sinus Thrombosis**

### **Authors and Affiliations:**

**Shuling Wan<sup>1</sup>, Ran Meng<sup>1</sup>, Xunming Ji<sup>2</sup>, Min Li<sup>1</sup>**

<sup>1</sup>Department of Neurology, Xuanwu Hospital Capital Medical University

<sup>2</sup>Department of Neurosurgery, Xuanwu Hospital Capital Medical University

### **Corresponding Authors:**

Min Li 812879698@qq.com

### **Email Addresses for All Authors:**

Shuling Wan 15901589718@163.com

Ran Meng ranmeng2011@126.com

Xunming Ji jixm@ccmu.edu.cn

Min Li 812879698@qq.com

## Author Questionnaire

- 1. Microscopy:** Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **No**
- 2. Software:** Does the part of your protocol being filmed include step-by-step descriptions of software usage? **Yes**

**Videographer: Please record the computer screen for the shots labeled as SCREEN**

- 3. Filming location:** Will the filming need to take place in multiple locations? **Yes**  
If **Yes**, how far apart are the locations? **About a 5-minute walk.**

- 4. Testimonials (optional):** Would you be open to filming two short testimonial statements **live during your JoVE shoot**? These will **not appear in your JoVE video** but may be used in JoVE's promotional materials. **No**

### Current Protocol Length

Number of Steps: 24

Number of Shots: 53 (17 SC)

# Introduction

---

**Videographer: Obtain headshots for all authors available at the filming location.**

**Authors:** Please note that the questions will not appear on screen. Please answer in stand-alone statements with sufficient context. We have selected 4 best questions and reordered them according to your suggestion.

## INTRODUCTION:

~~What are the most recent developments in your field of research?~~

- 1.1. **Shuling Wan:** In our field, several modeling methods for superior sagittal sinus thrombosis are used. However, the ferric chloride induction method is widely used due to its simplicity and low cost.
  - 1.1.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera

~~What is the scope of your research? What questions are you trying to answer?~~

- 1.2. **Shuling Wan:** We aim to refine the ferric chloride-induced superior sagittal sinus thrombosis model by reducing cortical injury and visualizing sinus thrombus.
  - 1.2.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera

## CONCLUSION:

~~What advantage does your protocol offer compared to other techniques?~~

- 1.3. **Shuling Wan:** Our refined model is less invasive and more compatible with ultrasound imaging, enabling more reliable, direct therapeutic development and evaluation.
  - 1.3.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera

~~What significant findings have you established in your field?~~

- 1.4. **Shuling Wan:** We show that intraoperative laser speckle contrast imaging confirms model success, and postoperative high-resolution ultrasound dynamically monitors thrombus formation/lysis and lumen recanalization.

1.4.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera

***Videographer: Obtain headshots for all authors available at the filming location.***

**Ethics Title Card**

This research has been approved by the Animal Experiments and Experimental Animal Welfare Committee at the Capital Medical University

# Protocol

---

## 2. Establishment of a Modified FeCl<sub>3</sub>-Induced Rat Superior Sagittal Sinus Thrombosis (SSST) Model

**Demonstrator:** Shuling Wan

2.1. To begin, apply ophthalmic ointment to both eyes of the rat after inducing anesthesia [1-TXT] and then, shave the scalp hair carefully [2].

2.1.1. Talent applying ophthalmic ointment to the rat's eyes. **TXT: Anesthesia: 2% Pentobarbital (50 mg/kg, IP)**

2.1.2. Talent shaving the scalp hair.

**Authors:** We do not show the animal being anesthetized in our videos. Hence we just mention 1 line text on screen stating the drug that was used. We start directly from the next step. So please anesthetize the animal before this step and anesthesia induction will **NOT** be filmed

2.2. Then, secure the rat in a prone position on a rodent operating platform using medical tapes [1]. Maintain the body temperature at around 37 degrees Celsius with a heating pad [2-TXT].

2.2.1. Talent positioning the rat prone and securing it with medical tapes on the operating platform.

2.2.2. Talent placing the animal over a heating pad. **TXT: Continuously monitor the core temperature**

2.3. Disinfect the shaved scalp thoroughly using 5 percent povidone-iodine [1].

2.3.1. Talent applying povidone-iodine to the scalp with sterile technique.

2.4. Now, make a 15-millimeter paramedian skin incision on the scalp [1]. Using blunt dissection, separate the underlying fascia and periosteum to expose the skull fully [2].

2.4.1. Talent creating a paramedian scalp incision with a surgical instrument.

2.4.2. Talent bluntly dissecting fascia and periosteum to expose the skull.

2.5. Thin the skull using a cranial drill until the superior sagittal sinus is clearly exposed [1], starting from the lambda and extending 10 millimeters anteriorly along the sagittal

suture [2]. Employ an intermittent drilling technique to avoid damage to the underlying dura mater and superior sagittal sinus [3], and repeatedly irrigate the drill bit with normal saline to prevent thermal injury to the cortex [4-TXT].

- 2.5.1. Talent drilling the skull to thin the bone over the superior sagittal sinus.
- 2.5.2. Close-up showing fully drilled area.
- 2.5.3. Talent pointing to the preserved dura mater and superior sagittal sinus.
- 2.5.4. Talent irrigating the drill bit and skull surface with normal saline. **TXT: Perform laser speckle contrast imaging; Record the baseline superior sagittal sinus condition**

**Authors:** I have added a text on the shot 2.5.4 and also given some context in the next line at 2.6 to record the baseline

- 2.6. After imaging the baseline conditions, apply a 10-millimeter segment of 2-0 (*2-oh*) silk suture soaked with 40 percent ferric chloride solution onto the exposed superior sagittal sinus surface for 5 minutes [1]. Replace the suture with a newly soaked segment and apply for another 5 minutes [2].
  - 2.6.1. Talent placing the ferric chloride-soaked silk suture onto the exposed superior sagittal sinus.
  - 2.6.2. Talent removing the suture and placing a newly soaked segment onto the same site.
- 2.7. Then, rinse the surgical field with 0.5 milliliters of normal saline three times to remove residual ferric chloride [1].
  - 2.7.1. Talent irrigating the surgical field with measured volumes of normal saline.
- 2.8. Close the skin using interrupted sutures with 4-0 (*4-oh*) silk suture [1] and disinfect the area with povidone-iodine [2].
  - 2.8.1. Talent suturing the skin incision with interrupted stitches.
  - 2.8.2. Talent applying povidone-iodine over the closed incision.
- 2.9. Observe the rat until it is fully awake [1], then return it to its cage [2].
  - 2.9.1. Shot of the rat during recovery from anesthesia.
  - 2.9.2. Talent placing the recovered rat back into its cage.

### **3. Assessment of Successful Model Establishment**

- 3.1. Turn on the laser speckle contrast imaging system and the corresponding software RFLSI version 5 [1]. Press the **Online mode** button to activate live imaging [2].
  - 3.1.1. Talent powering on the laser speckle contrast imaging system and launching the RFLSI software on the computer.
  - 3.1.2. SCREEN: Show the RFLSI version 5.0 software interface as the talent clicks the **Online mode** button to enable live imaging. *Videographer: Please record the computer screen for the shots labeled as SCREEN*
- 3.2. Adjust the height and position of the instrument [1] until the indicator laser is centered within the field of view [2].
  - 3.2.1. Talent adjusting the vertical height and lateral position of the imaging instrument.
  - 3.2.2. Close-up showing the indicator laser becoming centered in the field of view.
- 3.3. Place the rat on a foam platform [1] and adjust its position until the superior sagittal sinus aligns with the indicator laser [2].
  - 3.3.1. Talent placing the rat onto the foam platform beneath the imaging system.
  - 3.3.2. Talent carefully repositioning the rat so the superior sagittal sinus aligns with the indicator laser.
- 3.4. Adjust the magnification and focus until the image is displayed clearly [1]. Set the lower and upper limits of the pseudocolor threshold to 10 and 200 to optimize the visual appearance of the pseudocolor image [2].
  - 3.4.1. Talent adjusting the magnification and focus controls on the imaging system.
  - 3.4.2. SCREEN: set the pseudocolor threshold lower limit and upper limits appropriately.
- 3.5. Now, press the **Set ROI** button [1], select the circular tool [2], and delineate the superior sagittal sinus region [3].
  - 3.5.1. SCREEN: Show the cursor clicking the **Set ROI** button in the software interface.
  - 3.5.2. SCREEN: Show the selection of the circular region of interest tool.

- 3.5.3. SCREEN: Show the circular region of interest being drawn around the superior sagittal sinus.
  
- 3.6. Then, press the **Record** button to obtain the venous blood flow **[1]** and capture both the original and pseudocolor images **[2]**.
  - 3.6.1. SCREEN: Show the talent clicking the **Record** button in the software interface to begin data acquisition.
  - 3.6.2. SCREEN: Display the recorded original image alongside the pseudocolor image representing venous blood flow.

#### **4. Assessment of Thrombus Area/Volume and Hemodynamic Changes**

- 4.1. Prepare isoflurane, ultrasound gel, disposable razor blades, medical tapes and check all the instruments required **[1]**.
  - 4.1.1. Talent arranging drugs, consumables, instruments, and imaging equipment on the preparation bench.
  
- 4.2. Install the three-dimensional acquisition motor onto the imaging system **[1]**. Then, install the UHF57x transducer **[2]** and initialize the motor **[3]**.
  - 4.2.1. Talent mounting the three-dimensional acquisition motor on the imaging system.
  - 4.2.2. Talent attaching the UHF57x transducer to the motor.
  - 4.2.3. SCREEN: Show the system interface as the motor initialization process is started and completed.
  
- 4.3. After anesthetizing the rat, place it in a prone position on the thermostatic imaging plate tempered at 37 degrees Celsius **[1-TXT]** and gently secure the head and limbs using medical tapes **[2]**.
  - 4.3.1. Talent positioning the rat prone on the heated imaging plate. **TXT: Anesthesia: Induction: 3% Isoflurane with 1 L/min O<sub>2</sub>**  
**Maintenance: 1.5 - 2% Isoflurane via nose cone**
  - 4.3.2. Talent securing the rat's head and limbs with medical tapes.

- 4.4. Apply ultrasound gel evenly over the exposed scalp **[1]**.
  - 4.4.1. Talent applying ultrasound gel to the exposed scalp area.
- 4.5. Adjust the position and orientation of the rat relative to the transducer **[1]** until the superior sagittal sinus and intraluminal thrombus are clearly visualized **[2]**.
  - 4.5.1. Talent adjusting the rat and transducer alignment.
  - 4.5.2. SCREEN: Show the ultrasound image as the superior sagittal sinus and thrombus come into clear view.
- 4.6. Acquire sequential tomographic images of the superior sagittal sinus in the sagittal plane using three-dimensional imaging in B-mode **[1-TXT]**, followed by tomographic images in the coronal plane using the same settings **[2]**.
  - 4.6.1. SCREEN: Show B-mode three-dimensional imaging as sagittal tomographic images are acquired. **TXT: Step size: 0.04 mm**
  - 4.6.2. SCREEN: Show B-mode three-dimensional imaging as coronal tomographic images are acquired.
- 4.7. Now, use **Color Doppler** mode to observe blood flow in the superior sagittal sinus **[1]** and apply **Pulsed-Wave Doppler** mode to measure blood flow velocity **[2]**.
  - 4.7.1. SCREEN: Show the Color Doppler mode displaying blood flow within the superior sagittal sinus.
  - 4.7.2. SCREEN: Show the Pulsed-Wave Doppler mode measuring blood flow velocity.
- 4.8. Discontinue anesthesia and observe the rat until it is fully awake **[1]**. Then, return the rat to its cage **[2]**.
  - 4.8.1. Talent monitoring the rat during recovery from anesthesia.
  - 4.8.2. Talent placing the fully awake rat back into its cage.
- 4.9. Finally, export the acquired images **[1]** and analyze them using Vevo LAB software **[2]**. Record the maximum sagittal and coronal cross-sectional areas and the volume of the thrombus in the superior sagittal sinus **[3]**, along with the maximum blood flow velocity of the sinus **[4]**.
  - 4.9.1. SCREEN: Show the image export process from the imaging system.
  - 4.9.2. SCREEN: Show Vevo LAB software opening and loading the acquired datasets.

- 4.9.3. SCREEN: Show measurement of sagittal and coronal cross-sectional areas and thrombus volume.
- 4.9.4. SCREEN: cursor hovering over the maximum blood flow velocity.

# Results

---

## 5. Results

- 5.1. After local application of ferric chloride, laser speckle contrast imaging detected a significant reduction in local blood flow in the superior sagittal sinus compared with baseline [1].
  - 5.1.1. LAB MEDIA: Figure 2. *Video editor: Highlight the bottom panel images “Post-FeCl3” and emphasize the area indicated by the black arrows.*
- 5.2. On postoperative day 7, small-animal ultrasound confirmed thrombus formation in the superior sagittal sinus [1] with partial luminal recanalization [2].
  - 5.2.1. LAB MEDIA: Figure 3A. *Video editor: Highlight the region marked by the red arrow .*
  - 5.2.2. LAB MEDIA: Figure 3A. *Video editor: Highlight the region marked by the light blue arrow for the remaining open lumen.*
- 5.3. Pulsed-wave Doppler ultrasound demonstrated measurable blood flow velocity within the residual lumen of the superior sagittal sinus [1].
  - 5.3.1. LAB MEDIA: Figure 3C. *Video editor: Highlight the colored flow region indicated by the yellow arrow and the velocity waveform at the bottom of the image.*
- 5.4. Three-dimensional ultrasound imaging enabled volumetric measurement of the superior sagittal sinus thrombus using serial image slices with a thickness of 0.04 millimeters [1].
  - 5.4.1. LAB MEDIA: Figure 4.

- **Povidone-iodine**

**Pronunciation guide:** *pah-vih-dohn EYE-uh-dyne*

**IPA:** /'pə.vɪ.dən ə'ɪ.dɪn/

© <https://www.merriam-webster.com/medical/povidone-iodine>

- **Paramedian**

**Pronunciation guide:** *pair-uh-MEE-dee-uhn*

**IPA:** /'per.ə'mi:.di.ən/

© <https://www.merriam-webster.com/medical/paramedian>

- **Periosteum**

**Pronunciation guide:** *pair-ee-OSS-tee-um*

**IPA:** /pər.i'əs.ti.əm/

🔗 <https://www.merriam-webster.com/medical/periosteum>

- **Superior sagittal sinus**

**Pronunciation guide:** *soo-PEER-ee-or SAJ-ih-tuhl SIGH-nuhs*

**IPA:**

- Superior: /su:ˈpɪr.i.ə/
- Sagittal: /'sædʒ.i.təl/
- Sinus: /'sai.nəs/

🔗 <https://www.merriam-webster.com/medical/sagittal>

🔗 <https://www.merriam-webster.com/medical/sinus>

- **Ferric chloride**

**Pronunciation guide:** *FAIR-ik KLOR-ide*

**IPA:** /'fer.ik 'klɔ:r.aid/

🔗 <https://www.merriam-webster.com/medical/ferric>

🔗 <https://www.merriam-webster.com/medical/chloride>

- **Isoflurane**

**Pronunciation guide:** *EYE-so-FLOOR-ane*

**IPA:** /aɪ.sou'flor.eɪn/

🔗 <https://www.merriam-webster.com/medical/isoflurane>

- **Pseudocolor**

**Pronunciation guide:** *SOO-doh-kuh-ler*

**IPA:** /su:.dəʊ.kəl.ə/

🔗 <https://www.merriam-webster.com/dictionary/pseudocolor>

- **Tomographic**

**Pronunciation guide:** *toh-muh-GRAF-ik*

**IPA:** /təʊ.mə'græf.ɪk/

🔗 <https://www.merriam-webster.com/medical/tomographic>

- **Coronal**

**Pronunciation guide:** *kuh-ROH-nuhl*

**IPA:** /kə'rou.nəl/

🔗 <https://www.merriam-webster.com/medical/coronal>

- **Sagittal**

**Pronunciation guide:** *SAJ-ih-tuhl*

**IPA:** /'sædʒ.i.təl/

🔗 <https://www.merriam-webster.com/medical/sagittal>

- **Ischemia**

**Pronunciation guide:** *iss-KEE-mee-uh*

**IPA:** /ɪs'ki:.mi.ə/

🔗 <https://www.merriam-webster.com/medical/ischemia>

- **Recanalization**

**Pronunciation guide:** *ree-kan-uh-luh-ZAY-shun*

**IPA:** /rɪˈkæn.ə.lə'zeɪ.ʃən/

© <https://www.merriam-webster.com/medical/recanalization>