

Submission ID #: 69506

Scriptwriter Name: Pallavi Sharma

Project Page Link: https://review.jove.com/files_upload.php?src=21199378

Title: Utilizing vmTracking to Improve the Accuracy of Multi-Animal Pose Estimation in Rodent Social Behavior Studies

Authors and Affiliations:

Hirotsugu Azechi, Susumu Takahashi

Laboratory of Cognitive and Behavioral Neuroscience, Graduate School of Brain Science, Doshisha University

Corresponding Authors:

Hirotsugu Azechi (hazechi@mail.doshisha.ac.jp)

Email Addresses for All Authors:

Susumu Takahashi (stakahas@mail.doshisha.ac.jp)

Hirotsugu Azechi (hazechi@mail.doshisha.ac.jp)

Author Questionnaire

- 1. Microscopy:** Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **No**
- 2. Software:** Does the part of your protocol being filmed include step-by-step descriptions of software usage? **Yes, all done**
- 3. Filming location:** Will the filming need to take place in multiple locations? **No**
- 4. Testimonials (optional):** Would you be open to filming two short testimonial statements **live during your JoVE shoot?** These will **not appear in your JoVE video** but may be used in JoVE's promotional materials. **No**

Current Protocol Length

Number of Steps: 20

Number of Shots: 34

Introduction

Videographer: Obtain headshots for all authors available at the filming location.

INTRODUCTION:

What is the scope of your research? What questions are you trying to answer?

- 1.1. **Hirotsugu Azechi:** We aim to understand social interactions in freely moving mice by developing accurate multi-animal tracking methods.
 - 1.1.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera **Videographer's NOTE: Take 2**

What are the current experimental challenges?

- 1.2. **Hirotsugu Azechi:** Achieving accurate pose tracking with reliable individual identification in multi-animal conditions remains difficult.
 - 1.2.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera **Videographer's NOTE: Take 2**

CONCLUSION:

What research gap are you addressing with your protocol?

- 1.3. **Hirotsugu Azechi:** Our protocol addresses the lack of reliable identity maintenance in multi-animal pose tracking.
 - 1.3.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera **Videographer's NOTE: Take 1**

What advantage does your protocol offer compared to other techniques?

- 1.4. **Hirotsugu Azechi:** It improves pose-tracking accuracy by combining virtual markers with existing markerless tools.
 - 1.4.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera **Videographer's NOTE: Take 2**

What questions will future research focus on?

- 1.5. **Hirotsugu Azechi:** Our future research will use these data to address how group dynamics shape social behaviors in mice. **Videographer's NOTE: Take 2**

1.5.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera

Ethics Title Card

This research has been approved by the Animal Care and Use Committee at the Doshisha University

Protocol

2. Creation of a Virtual Marker Video

Demonstrator: Hirotugu Azechi

- 2.1. To begin, create a new multi-animal project by selecting **Manage Project** for markerless video tracking [1]. Modify the **individuals** and **body parts** fields in the config.yaml (*Config-Y-A-M-L*) file according to the analysis requirements [2-TXT].
 - 2.1.1. WIDE: Talent selecting the Manage Project option on the main menu of DLC software. **Videographer's NOTE:** I shot this scene twice. The first one is a wide shot, including the talent. The second is a closer up version focusing only on the screen.
 - 2.1.2. SCREEN: 2_1_2.mp4 **TXT:** Use **individual1** to **individual3** and **bodypart1** to **bodypart6**. **Adjust the settings as desired throughout the procedure.**
- 2.2. Select **Extract Frames** to extract frames from the video for labeling and training [1-TXT].
 - 2.2.1. SCREEN: 2_2_1. **TXT:** ~~Adjust the settings are desired throughout the procedure~~
NOTE: The text is moved to step 2.1.2 as per the author's request
- 2.3. Next, label each extracted frame by selecting **Label Data** [1]. Assign the appropriate body parts to each visible individual, without necessarily maintaining consistent IDs between frames [2].
 - 2.3.1. SCREEN: 2_3_1-2_3_2 00:00-00:16.
 - 2.3.2. SCREEN: 2_3_1-2_3_2 00:17-00:25.
- 2.4. To create a training dataset from the extracted frames, select **Create Training Dataset** [1]. Set the network to **dlcrnet_ms5 (D-L-C-R-net M-S-five)** in the configuration [2].
 - 2.4.1. SCREEN: 2_4_1-2_4_2.mp4 00:20-00:35
 - 2.4.2. SCREEN: 2_4_1-2_4_2.mp4 00:36-00:45.
- 2.5. Select **Train** to start training the network [1]. Set the **Maximum iterations** parameter to **200000** for this training session. All other training parameters can remain at their default values [2].
 - 2.5.1. SCREEN: 2_5_1-2_5_2.mp4 00:00-00:05.

2.5.2. SCREEN: 2_5_1-2_5_2.mp4 00:06-00:20 .

2.6. Evaluate the trained network by selecting **Evaluate [1]**.

2.6.1. SCREEN: 2_6_1.mp4 00:06-00:20.

2.7. To run pose estimation on the selected videos, choose **Analyze videos** generating .h5 coordinate data and other output files in the videos folder inside the project folder **[1-TXT]**.

2.7.1. SCREEN: 2_7_1.mp4 00:06-00:20.

2.8. To perform manual verification of the tracking results, create a labeled tracking video by selecting **Create videos [1]**. Enable the **Create video with animal ID colored?** option in the **DLC (D-L-C) GUI (G-U-I)** to include individual IDs in the video **[2]**.

2.8.1. SCREEN: 2_8_1-2_8_2.mp4 00:04-00:14.

2.8.2. SCREEN: 2_8_1-2_8_2.mp4 00:15-00:20.

2.9. Then, inspect the generated labeled videos to check for identity switches or missing predictions. If major errors are present, prepare for retraining **[1]**.

2.9.1. SCREEN: 2_9_1.mp4 00:06-00:20.

2.10. To retrain, extract, and annotate outlier frames, select **Extract/Refine Outliers (Extract-Or-Refine-Outliers) [1]**. Once annotation is complete, click **Merge dataset** to proceed automatically to training dataset creation, and then repeat the training pipeline **[2]**.

2.10.1. SCREEN: 2_10_1.mp4 00:06-00:20.

2.10.2. SCREEN: 2_10_2.mp4 00:12-00:25.

2.11. To correct the multi-animal DLC results, open the custom GUI and retain only the required keypoints for virtual markers **[1]** .

2.11.1. SCREEN: 2_11_1-2_11_2.mp4 00:50-01:10.

2.12. Select **Refine tracklets** to correct the .h5 file containing only the selected keypoints **[1]**. Adjust the keypoints so everyone retains a consistent ID across the video **[2]**. Save the file, and the .h5 file in the videos folder will be updated automatically **[3]**.

2.12.1. SCREEN: 2_12_1-2_12_2.mp4 00:03-00:14.

2.12.2. SCREEN: 2_12_1-2_12_2.mp4 00:16-00:25.

2.12.3. SCREEN: 2_12_3.mp4 00:08-00:20.

2.13. Next create a new labeled video from the corrected data by selecting **Create videos [1]**. In DeepLabCut 2.2, if a labeled video already exists in the videos folder, a new video will not be created. Remove, rename, or move the existing file before proceeding **[2]**. **NOTE: The VO for 2.13.2 is revised**

2.13.1. SCREEN: 2_13_1. **TXT: Remove, rename, or move any labeled video to prevent overwrite errors**

2.13.2. SCREEN: 2_13_2.mp4 00:30-00:40. **NOTE: Screen capture video 2_13_2.mp4 to be used.**

2.14. Rename the labeled virtual marker video to a short filename to prevent errors during downstream DeepLabCut processing **[1]**.

2.14.1. SCREEN: 2_14_1.mp4.

3. Perform Pose Tracking of Virtual Marker Video using Single Animal DLC (saDLC)

3.1. Create a new saDLC (*S-A-D-L-C*) project by selecting **Manage Project** for tracking the virtual marker video **[1]**. In the **config.yaml** file, list all combinations of individuals and body parts in the **bodyparts** field **[2]**.

3.1.1. SCREEN: 3_1_1.mp4 00:05-00:20.

3.1.2. SCREEN: 3_1_2-3_1_3.mp4 00:40-00:50

3.2. To extract frames from the renamed virtual marker video, select **Extract Frames [1]**.

3.2.1. SCREEN: 3_2_1.mp4

3.3. Now, label each extracted frame in **Label Data**, using the virtual markers to assign consistent individual IDs and ensure both IDs and body parts match across frames **[1]**. When a body part is partially hidden but the individual's ID is known, estimate its position and apply the label accordingly **[2]**.

3.3.1. SCREEN: 3_3_1-3_3_2.mp4 00:04-00:20.

3.3.2. SCREEN: 3_3_1-3_3_2.mp4 00:55-01:10.

3.4. Create a training dataset from the extracted frames by selecting **Create Training Dataset**. Set the network to **efficientnet-b0** (*Efficient-Net-b-Zero*) for this training

session [1].

3.4.1. SCREEN: 3_4_1.mp4 00:27-00:40

3.5. Begin training the network by selecting **Train [1]**. Set the **Maximum iterations** parameter to **200000** for this session and all other settings can remain at their default values **[2]**.

3.5.1. SCREEN: 3_5_1-3_5_2.mp4 00:01-00:08.

3.5.2. SCREEN: 3_5_1-3_5_2.mp4 00:09-00:15.

3.6. After evaluating the trained network, perform manual verification as demonstrated earlier **[1-TXT]**.

3.6.1. SCREEN: 3_6_1.mp4 00:20-00:35 TXT: Perform retraining with outlier extraction, if necessary, based on the results. **NOTE: The text has been rephrased**

Results

4. Results

- 4.1. In crowded scenes, vmTracking achieved a significantly higher match percentage than maDLC [1].
 - 4.1.1. LAB MEDIA: Figure 6A. *Video editor: Highlight the taller cyan bar labeled “vmTracking” and the shorter yellow bar labeled “maDLC” in the crowded scenes match graph.*
- 4.2. The number of false negatives was significantly lower with vmTracking than with maDLC [1]. However, there was no difference between vmTracking and maDLC in false positive [2] and ID switch counts [3].
 - 4.2.1. LAB MEDIA: Figure 6B. *Video editor: Highlight the much shorter cyan bar for “vmTracking” compared to the taller yellow bar for “maDLC” in the false negative graph.*
 - 4.2.2. LAB MEDIA: Figure 6C
 - 4.2.3. LAB MEDIA: Figure 6D.
- 4.3. In non-crowded scenes, vmTracking achieved a significantly higher match percentage than maDLC [1]. The number of false negatives was significantly lower with vmTracking than with maDLC [2]. There was no difference in false positive and ID switch counts between vmTracking and maDLC [3].
 - 4.3.1. LAB MEDIA: Figure 6E. *Video editor: Highlight the taller magenta “vmTracking” bar*
 - 4.3.2. LAB MEDIA: Figure 6F. *Video editor: Highlight the much shorter magenta “vmTracking” bar*
 - 4.3.3. LAB MEDIA: Figure 6G.
 - 4.3.4. LAB MEDIA: Figure 6H.
- 4.4. In crowded scenes, the match percentage in maDLC plateaued at approximately 85% after around 400 annotated frames, with no further improvement [1], while vmTracking showed a steady increase up to about 95% at around 1,000 frames [2].
 - 4.4.1. LAB MEDIA: Figure 6I. *Video editor: In the upper plot, highlight the flat dark blue curve labeled “Match in maDLC” after the 400-frame mark.*
 - 4.4.2. LAB MEDIA: Figure 6I. *Video editor: In the upper plot, highlight the upward light blue curve labeled “Match in vmTracking” increasing toward 1,000 frames.*

- 4.5. In maDLC, increasing the number of annotated frames did not reduce the number of false negatives [1]. Scenes with a higher proportion of correctly assigned virtual markers tended to show higher match percentages [2].
 - 4.5.1. LAB MEDIA: Figure 6I. *Video editor: In the lower plot, highlight the flat red curve labeled "False negatives in maDLC" across the x-axis range.*
 - 4.5.2. LAB MEDIA: Figure 6J. *Video editor: Highlight the blue bars labeled "Both match" across scenes 1 to 20*
- 4.6. Some scenes with low proportions of correctly assigned virtual markers still showed high match percentages, including crowded scenes 3 and 11 [1].
 - 4.6.1. LAB MEDIA: Figure 6J. *Video editor: Highlight the bars for crowded scenes 3 and 11 where the blue segments are high*

- DeepLabCut

Pronunciation link: <https://www.merriam-webster.com/dictionary/DeepLabCut>

IPA: /'di:p læb kʌt/

Phonetic Spelling: deep·lab·kut

- markerless

Pronunciation link: <https://www.merriam-webster.com/dictionary/markerless>

IPA: /'ma:rker.ləs/

Phonetic Spelling: mar·ker·luhs

- config.yaml

Pronunciation link: <https://www.merriam-webster.com/dictionary/YAML>

IPA: /'jæməl/

Phonetic Spelling: yam·uhl

- Extract Frames

Pronunciation link: <https://www.merriam-webster.com/dictionary/extract>

IPA: /ɪk'strækt/

Phonetic Spelling: ik·strakt

- Label Data

Pronunciation link: <https://www.merriam-webster.com/dictionary/label>

IPA: /'leɪbəl/

Phonetic Spelling: lay·buhl

- dlcnet_ms5

Pronunciation link: No confirmed link found

IPA: /ˌdiːˈel ˈsiː ər ˈnɛt ˈɛm ˈɛs ˈfaɪv/

Phonetic Spelling: dee·el·see·ar·net·em·es·five

- Train

Pronunciation link: <https://www.merriam-webster.com/dictionary/train>

IPA: /treɪn/

Phonetic Spelling: trayn

- Evaluate

Pronunciation link: <https://www.merriam-webster.com/dictionary/evaluate>

IPA: /ɪˈvæljʊˌeɪt/

Phonetic Spelling: ih·val·yoo·ayt

- Analyze

Pronunciation link: <https://www.merriam-webster.com/dictionary/analyze>

IPA: /ˈænəˌlaɪz/

Phonetic Spelling: a·nuh·lyze

- GUI

Pronunciation link: <https://www.merriam-webster.com/dictionary/GUI>

IPA: /ˈɡuːi/

Phonetic Spelling: goo·ee

- .h5

Pronunciation link: <https://www.merriam-webster.com/dictionary/HDF5>

IPA: /eɪtʃ ˈdiː ɛf ˈfaɪv/

Phonetic Spelling: aych·dee·ef·five

- Extract/Refine Outliers

Pronunciation link: <https://www.merriam-webster.com/dictionary/outlier>

IPA: /ˈaʊtˌlaɪər/

Phonetic Spelling: out·lyer

- tracklets

Pronunciation link: <https://www.merriam-webster.com/dictionary/tracklet>

IPA: /ˈtræk.let/

Phonetic Spelling: trak·let

- saDLC

Pronunciation link: No confirmed link found

IPA: /ˌɛs eɪ ˈdiː ˌel ˈsiː/

Phonetic Spelling: ess·ay·dee·el·see

- efficientnet-b0

Pronunciation link: No confirmed link found

IPA: /ɪ'fɪʃənt net bi: zɪroʊ/

Phonetic Spelling: ih·fish·uhnt·net·bee·zee·roh

- iterations

Pronunciation link: <https://www.merriam-webster.com/dictionary/iteration>

IPA: /ɪ'te'reɪʃən/

Phonetic Spelling: ih·tuh·ray·shuhn

- virtual markers

Pronunciation link: <https://www.merriam-webster.com/dictionary/virtual>

IPA: /'vɜ:tʃuəl/

Phonetic Spelling: ver·choo·uhl

- vmTracking

Pronunciation link: No confirmed link found

IPA: /vɪ: əm 'trækɪŋ/

Phonetic Spelling: vee·em·trak·ing

- maDLC

Pronunciation link: No confirmed link found

IPA: /əm ei di: el si:/

Phonetic Spelling: em·ay·dee·el·see

- false negatives

Pronunciation link: <https://www.merriam-webster.com/dictionary/false%20negative>

IPA: /fɔ:ls 'nɛgətɪv/

Phonetic Spelling: fawls·neg·uh·tiv

- false positives

Pronunciation link: <https://www.merriam-webster.com/dictionary/false%20positive>

IPA: /fɔ:ls 'pa:zətɪv/

Phonetic Spelling: fawls·poz·uh·tiv

- ID switch

Pronunciation link: <https://www.merriam-webster.com/dictionary/ID>

IPA: /aɪ'dɪ:/

Phonetic Spelling: eye·dee

- annotated

Pronunciation link: <https://www.merriam-webster.com/dictionary/annotated>

IPA: /'ænə'teɪtɪd/

Phonetic Spelling: a·nuh·tay·tid

- plateaued

Pronunciation link: <https://www.merriam-webster.com/dictionary/plateaued>

IPA: /plæˈtoud/

Phonetic Spelling: pla·tohd

- retraining

Pronunciation link: <https://www.merriam-webster.com/dictionary/retraining>

IPA: /ˌri:ˈtreɪnɪŋ/

Phonetic Spelling: ree·tray·ning