

Submission ID #: 69495

Scriptwriter Name: Sulakshana Karkala

Project Page Link: <https://review.jove.com/account/file-uploader?src=21196023>

**Title: Live-Cell Imaging of Lysosomal Membrane Permeabilization During Necroptosis**

**Authors and Affiliations:**

**Katia S.G. Andrade, John Mably, Da-Zhi Wang, Zhigao Wang**

**Center for Regenerative Medicine, Heart Institute, Department of Internal Medicine, Morsani College of Medicine, University of South Florida**

**Corresponding Authors:**

Katia S.G. Andrade [kgomesandrade@usf.edu](mailto:kgomesandrade@usf.edu)

**Email Addresses for All Authors:**

Katia S.G. Andrade [kgomesandrade@usf.edu](mailto:kgomesandrade@usf.edu)

John Mably [jmably@usf.edu](mailto:jmably@usf.edu)

Da-Zhi Wang [dazhiw@usf.edu](mailto:dazhiw@usf.edu)

Zhigao Wang [zhigao@usf.edu](mailto:zhigao@usf.edu)

## Author Questionnaire

**1.** We have marked your project as author-provided footage, meaning you film the video yourself and provide JoVE with the footage to edit. JoVE will not send the videographer. Please confirm that this is correct.

✓ Correct

**2. Microscopy:** Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **NO**

**3. Software:** Does the part of your protocol being filmed include step-by-step descriptions of software usage? **YES, all done**

**4. Proposed filming date:** To help JoVE process and publish your video in a timely manner, please indicate the proposed date that your group will film here: 12/08/2025

When you are ready to submit your video files, please contact our Content Manager, [Utkarsh Khare](#).

### Current Protocol Length

Number of Steps: 14

Number of Shots: 26

## Introduction

---

### INTRODUCTION:

~~What is the scope of your research? What questions are you trying to answer?~~

- 1.1. **Katia Andrade:** This protocol outlines a live-cell imaging method to monitor lysosomal membrane permeabilization during necroptosis using fluorescent probes detecting integrity and acidification changes.
  - 1.1.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera.

**NOTE: Use IMG\_1445.mov**

~~What are the most recent developments in your field of research?~~

- 1.2. **Katia Andrade:** Recent advances include real-time imaging approaches revealing dynamic organelles changes during regulated cell death pathways.
  - 1.2.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera.

~~What are the current experimental challenges?~~

- 1.3. **Katia Andrade:** **NOTE: This statement was added post-filming. Use IMG\_1446.mov**

### CONCLUSION:

~~What significant findings have you established in your field?~~

- 1.4. **Katia Andrade:** We demonstrated that lysosomal membrane permeabilization can be directly visualized in living cell undergoing necroptosis induction.
  - 1.4.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. **NOTE: Use IMG\_1449.mov**

~~What research gap are you addressing with your protocol?~~

- 1.5. **Katia Andrade:** This protocol shows that combining LysoTracker with fluorescein-labeled dextran beads allows real-time monitoring of lysosomal pH and cargo release dynamics.  
INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. **NOTE: Use IMG\_1450.mov**

~~What advantage does your protocol offer compared to other techniques?~~

1.6. ~~Katia Andrade: My protocol provides a unique, dual readout on both lysosomal functionality and structural integrity in live cells.~~

**NOTE: This statement not filmed.**

~~How will your findings advance research in your field?~~

1.7. ~~Katia Andrade: **NOTE: This statement was added post-filming. Use IMG\_1456.mov**~~

1.7.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera

# Protocol

---

**NOTE: Protocol scripted from Footage**

## 2. Live-Cell Confocal Imaging for Monitoring Lysosomal Membrane Permeabilization

**Demonstrator:** Katia Andrade

- 2.1. To begin, plate 5,000 cells in 2 milliliters of antibiotic supplemented DMEM media into a sterile glass-bottom dish [1-TXT]. Place the dish in an incubator set to 37 degrees Celsius with 5 percent carbon dioxide and incubate the cells overnight [2].
  - 2.1.1. LAB MEDIA: GX011140 01:27-01:45  
**TXT: Media supplementation: 10% FBS, 1% Penicillin and Streptomycin**
  - 2.1.2. LAB MEDIA: GX011141 00:12 – 00:22  
**AND** GX011142 00:00 – 00:04
- 2.2. Add 20 microliters of dextran green beads to 25 micrograms per milliliter in fresh antibiotic-supplemented DMEM media to dilute it [1].
  - 2.2.1. LAB MEDIA: GX011145 00:21 – 01:04
- 2.3. Remove the old medium from the dish [1] and replace it with 2 milliliters of the bead-containing supplemented DMEM media [2]. Place the dish in an incubator set to 37 degrees Celsius with 5 percent carbon dioxide and incubate for 24 hours to allow internalization of beads into lysosomes [3].
  - 2.3.1. LAB MEDIA: GX011147 00:05 – 00:10
  - 2.3.2. LAB MEDIA: GX011147 00:19 – 00:30
  - 2.3.3. LAB MEDIA: GX011147 00:46 – 00:50  
**AND** GX011148 00:00 - 00:05
- 2.4. Now, add 2 microliters of 1 millimolar Lysotracker stock solution to 2 milliliters of fresh DMEM media [1-TXT]. Replace the old medium with this staining solution [2].
  - 2.4.1. LAB MEDIA: GX011150 00:00 – 00:16  
**TXT: Final concentration: 1  $\mu$ M**
  - 2.4.2. LAB MEDIA: GX011151 00:05-00:09, 00:19 – 00:32
- 2.5. Incubate the cells at 37 degrees Celsius with 5 percent carbon dioxide for 2 hours [1].
  - 2.5.1. LAB MEDIA: GX011152 00:05 – 00:10
- 2.6. Turn on the confocal system components by switching on the personal computer,

microscope, scanner power, laser power, laser emission, and Leica power [1].

2.6.1. LAB MEDIA: GX011153 00:00 – 00:10

2.7. Turn on the environmental controls including the temperature controller called The Cube and the carbon dioxide gas mixer controller called The Brick [1]. Open the carbon dioxide and oxygen supply [2].

2.7.1. LAB MEDIA: GX011153 00:11 – 00:16

2.7.2. LAB MEDIA: GX011154 00:00 – 00:10

2.8. Set the temperature controller to 37 degrees Celsius [1]. Set the gas and humidity controller to 5 percent carbon dioxide and 95 percent humidity [2].

2.8.1. LAB MEDIA: GX011155 00:00 – 00:03

2.8.2. LAB MEDIA: GX011155 00:17 – 00:33  
**AND**  
GX011184 00:04-00:06

2.9. Assemble the imaging chamber [1-TXT].

2.9.1. LAB MEDIA: GX011157 00:30 – 00:35  
**AND**  
TEXT ON PLAIN BACKGROUND:  
Use 63X or 1.4 NA oil immersion for confocal imaging  
Excitation : 488 nm (green), 555 nm (red)  
Detector: Hybrid (488 nm), PMT (555nm)

2.10. After staining, wash the cells three times with 2 milliliters of PBS [1]. Then add 2 milliliters of fresh supplemented DMEM media [2]. Apply immersion oil onto the objective lens before imaging [3]. Mount the dish on the microscope stage [4].

2.10.1. LAB MEDIA: GX011170 00:49 – 00:56, 01:13-01:15, 01:21-01:25

2.10.2. LAB MEDIA: GX011170 02:50 – 03:10

2.10.3. LAB MEDIA: GX011163 00:00 – 00:05

2.10.4. LAB MEDIA: GX011165 00:09 – 00:20

2.11. Adjust the laser intensity up to 3 percent, but not more than 5 percent [1]. Then adjust the detector gain in the microscope software to optimize the signal [2]. Minimize the background by adjusting the contrast bar [3].

2.11.1. LAB MEDIA: LAS X 12\_3\_2025 10\_31\_39 AM 00:00 – 00:08

2.11.2. LAB MEDIA: LAS X 12\_3\_2025 1\_54\_21 PM 00:04 – 00:15

2.11.3. LAB MEDIA: LAS-X-12\_3\_2025-10\_59\_23-AM 00:00 – 00:12

2.12. Acquire baseline images of untreated cells, which serve as the control condition [1].

2.12.1. LAB MEDIA: LAS X 12\_3\_2025 11\_02\_12 AM **Timestamps:** 01:19 – 01:25

2.13. Return the plate to the laminar flow hood and add 1 milliliter antibiotic-DMEM supplemented with growth factors [1-TXT].

2.13.1. LAB MEDIA: GX011183 00:54 – 01:12

**TXT: Media supplementation: 100 ng/mL of TNF- $\alpha$  (T), 500 nM of SMAC mimetic (S), 100  $\mu$ M of Z-VAD-FMK (Z)**

2.14. In the acquisition software, set the **mode** to **xyt**, **format** to **512 x 512 (Five-twelve-by-Five-twelve)**, **speed** to **400**, **zoom** to **3**, **line average** to **1**, **line accumulation** to **3**, **frame accumulation** to **1**, **time interval** to **3 min (minutes)**, **duration** to **8h (hours)**, and enable **autofocus** [1]. Click **Start** to begin the time-lapse acquisition [2].

2.14.1. LAB MEDIA: LAS X 12\_3\_2025 11\_02\_12 AM 00:00 – 01:10:

2.14.2. LAB MEDIA: LAS X 12\_3\_2025 11\_02\_12 AM 01:30 – 01:34

## Results

---

### 3. Results

- 3.1. Initial imaging confirmed the presence of stable puncta of Lysotracker [1] and fluorescein-labeled dextran, indicating intact lysosomes before treatment [2].
  - 3.1.1. LAB MEDIA: Figure 3. *Video editor: Highlight the red fluorescent spots labeled "Lysotracker" in the "Before" column.*
  - 3.1.2. LAB MEDIA: Figure 3. *Video editor: Highlight the green fluorescent spots labeled "Dextran" in the "Before" column.*
- 3.2. Four hours after treatment with T/S/Z (**T-S-Z**), Lysotracker fluorescence was noticeably reduced [1-TXT], while dextran began to show diffuse cytosolic distribution, indicating initial lysosomal membrane permeabilization [2].
  - 3.2.1. LAB MEDIA: Figure 3.  
**TXT: T: Tumor Necrosis Factor Alpha;**  
**S: SMAC mimetic;**  
**Z: Z-VAD-FMK**  
*Video editor: Highlight the visibly dimmer red fluorescence in the "4 hr after" column under "Lysotracker".*
  - 3.2.2. LAB MEDIA: Figure 3. *Video editor: Highlight the partial spread of green fluorescence in the "4 hr after" column under "Dextran".*
- 3.3. By 8 hours after treatment, Lysotracker signal had almost completely disappeared [1], while many cells retained green dextran puncta with diffuse green cytosolic signal [2].
  - 3.3.1. LAB MEDIA: Figure 3. *Video editor: Highlight the absence of red signal in the "8 hr after" column under "Lysotracker".*
  - 3.3.2. LAB MEDIA: Figure 3. *Video editor: Highlight the green puncta and surrounding diffuse green fluorescence in the "8 hr after" column under "Dextran".*

## Pronunciation Guide:

### ② Lysosomal

Pronunciation link: <https://www.merriam-webster.com/dictionary/lysosomal>

IPA: No confirmed IPA found

Phonetic Spelling: ly-suh-SOH-muhl

### ② Lysosome

Pronunciation link: <https://en.wiktionary.org/wiki/lysosome>

IPA: /'laɪsəm/

Phonetic Spelling: LY-suh-sohm

### ② Permeabilization

Pronunciation link: No confirmed link found

IPA: No confirmed IPA found

Phonetic Spelling: pur-mee-uh-buh-luh-ZAY-shuhn

### ② Necroptosis

Pronunciation link: <https://www.howtopronounce.com/necroptosis>

IPA: No confirmed IPA found

Phonetic Spelling: neh-KRAH(p)-TOH-suhs

### ② Confocal

Pronunciation link: <https://www.merriam-webster.com/dictionary/confocal>

IPA: /kən'fōkəl/

Phonetic Spelling: kuhn-FOH-kuhl

### ② Fluorescein

Pronunciation link: <https://www.howtopronounce.com/fluorescein>

IPA: No confirmed IPA found

Phonetic Spelling: floor-EH-seen

### ② Dextran

Pronunciation link: No confirmed link found

IPA: No confirmed IPA found

Phonetic Spelling: DEKS-tran

### ② LysoTracker

Pronunciation link: No confirmed link found

IPA: No confirmed IPA found

Phonetic Spelling: LY-zoh-TRAK-er

### ② Internalization

Pronunciation link: <https://www.merriam-webster.com/dictionary/internalization>

IPA: No confirmed IPA found

Phonetic Spelling: in-tur-nuhl-uh-ZAY-shuhn

### ② Acidification

Pronunciation link: <https://www.merriam-webster.com/dictionary/acidification>

IPA: No confirmed IPA found

Phonetic Spelling: uh-sid-uh-fih-KAY-shuhn

### ¶ Organelles

Pronunciation link: <https://www.merriam-webster.com/dictionary/organelle>

IPA: No confirmed IPA found

Phonetic Spelling: or·guh·NELS

### ¶ Antibiotic

Pronunciation link: <https://www.merriam-webster.com/dictionary/antibiotic>

IPA: No confirmed IPA found

Phonetic Spelling: an·tye·bye·AH·tik

### ¶ Supplemented

Pronunciation link: <https://www.merriam-webster.com/dictionary/supplemented>

IPA: No confirmed IPA found

Phonetic Spelling: SUP·luh·men·tid

### ¶ Incubator

Pronunciation link: <https://www.merriam-webster.com/dictionary/incubator>

IPA: No confirmed IPA found

Phonetic Spelling: IN·kyuh·bay·ter

### ¶ Confocal Imaging

Pronunciation link: No confirmed link found

IPA: No confirmed IPA found

Phonetic Spelling: kuhn·FOH·kuhl IM·uh·jing

### ¶ Hybrid

Pronunciation link: <https://www.merriam-webster.com/dictionary/hybrid>

IPA: No confirmed IPA found

Phonetic Spelling: HY·brid

### ¶ Autofocus

Pronunciation link: <https://www.merriam-webster.com/dictionary/autofocus>

IPA: No confirmed IPA found

Phonetic Spelling: AW·toh·FOH·kuhs

### ¶ Time-lapse

Pronunciation link: <https://www.merriam-webster.com/dictionary/time-lapse>

IPA: No confirmed IPA found

Phonetic Spelling: TYME·laps

### ¶ Laminar

Pronunciation link: <https://www.merriam-webster.com/dictionary/laminar>

IPA: No confirmed IPA found

Phonetic Spelling: LAM·uh·ner

### ¶ Cytosolic

Pronunciation link: No confirmed link found

IPA: No confirmed IPA found

Phonetic Spelling: SYE·tuh·SAH·lik