

Submission ID #: 69095

Scriptwriter Name: Pallavi Sharma

Project Page Link: https://review.jove.com/files_upload.php?src=21074023

Title: Tracking Single Proteins in Lipid Bilayers Using Fluorescence Microscopy

Authors and Affiliations:

Eric P. Jacobo¹, Michael J. Martinez¹, Alessia Memeo², Barbara Barile², Grazia Paola Nicchia², James A. Brozik¹

¹Department of Chemistry, Washington State University

²Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro

Corresponding Authors:

James A. Brozik (brozik@wsu.edu)

Email Addresses for All Authors:

Eric P. Jacobo (eric.jacobo@wsu.edu)

Michael J. Martinez (michael.j.martinez@wsu.edu)

Alessia Memeo (alessia.memeo@uniba.it)

Barbara Barile (barbara.barile@uniba.it)

Grazia Paola Nicchia (graziapaola.nicchia@uniba.it)

James A. Brozik (brozik@wsu.edu)

Author Questionnaire

- 1. Microscopy:** Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **NO**
- 2. Software:** Does the part of your protocol being filmed include step-by-step descriptions of software usage? **YES, all done**
- 3. Filming location:** Will the filming need to take place in multiple locations? **YES**
WITHIN THE SAME BUILDING, ROUGHLY 500 FT APART.
- 4. Testimonials (optional):** Would you be open to filming two short testimonial statements **live** during your JoVE shoot? These will **not appear in your JoVE video** but may be used in JoVE's promotional materials. **No**

Current Protocol Length

Number of Steps: 28

Number of Shots: 52

Introduction

Videographer: Obtain headshots for all authors available at the filming location.

Videographer's Note: Audio file *Scene_1.1_1.2_1.3_1.4_1.5_Take1* is to sync with video file *DSC_1564.MOV*.

I had some technical issues with the shotgun picking up some mystery interference so I used a lav connected with my phone.

INTRODUCTION:

~~What is the scope of your research? What questions are you trying to answer?~~

- 1.1. **James A. Brozik:** Proteins operate in a complex state-space, much of which is hidden. We use single-molecule imaging to reveal these states.
 - 1.1.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:6.1.1*

~~What are the current experimental challenges?~~

- 1.2. **James A. Brozik:** When tracking single membrane proteins in lipid layers, the main challenges are sample preparation, photobleaching, and time resolution.
 - 1.2.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera.

CONCLUSION:

~~What significant findings have you established in your field?~~

- 1.3. **James A Brozik:** In this video, we have identified key states important to AQP4 regulation and their associated thermodynamic forces.
 - 1.3.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:6.1.2*

~~What research gap are you addressing with your protocol?~~

- 1.4. **James A. Bozik:** This protocol eliminates guesswork in creating biomimetic membranes with purified transmembrane proteins that are suitable for time-lapse single-molecule fluorescence experiments.
 - 1.4.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera.

~~What advantage does your protocol offer compared to other techniques?~~

1.5. **James A Brozik**: Protein machines operate at inflection points. Time-lapse single-protein tracking enables direct observation of stochastic pathways, branches, and dead ends.

1.5.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:5.3*

Videographer: Obtain headshots for all authors available at the filming location.

Protocol

2. Preparation of Small Unilamellar Vesicles

Demonstrator: Eric Jacobo

- 2.1. To begin, remove the lipid stock solutions from the freezer and allow them to reach room temperature **[1]**.
 - 2.1.1. Talent removing vials of lipid stock solutions from the freezer and placing them on the benchtop.
- 2.2. Take a clean 10-milliliter flask out of the oven and let it cool to room temperature **[1]**.
 - 2.2.1. Talent retrieving a 10 milliliter round-bottom flask from the oven using protective gloves and setting it on the benchtop.
- 2.3. Add 900 microliters of spectroscopic-grade chloroform and 100 microliters of spectroscopic-grade methanol to the cooled round-bottom flask **[1]**. Then, add the appropriate amounts of each lipid to the flask and swirl to mix thoroughly **[2]**.
 - 2.3.1. Talent using a micropipette to dispense chloroform and methanol into the round-bottom flask.
 - 2.3.2. Talent adding lipid stock solutions one by one into the solvent-filled flask and swirling the flask gently.
- 2.4. Now, place a vacuum distillation connector on top of the round-bottom flask and attach it to the nitrogen drying line **[1]**. Then, turn on the nitrogen gas and adjust the pressure until the flow is just barely felt on the back of the hand **[2-TXT]**.
 - 2.4.1. Talent fitting a vacuum distillation connector onto the flask and connecting it to a nitrogen gas line.
 - 2.4.2. Talent opening the nitrogen gas valve and adjusting the flow while placing the back of the hand near the outlet to feel the gas. **TXT: Allow the sample to dry for 3 h to fully remove residual solvent**
- 2.5. Pipette 1 milliliter of buffer for every 5 micromoles of total lipid into the round-bottom flask **[1]**. Place a glass stopper on the flask and seal it with paraffin film **[2]**.
 - 2.5.1. Talent pipetting the buffer into the round-bottom flask according to the lipid concentration.

- 2.5.2. Talent inserting a glass stopper into the flask opening and wrapping the neck of the flask with paraffin film.
- 2.6. Position the flask in a clamp on a ring stand and submerge its bottom in a 60-degree Celsius sonicator bath **[1-TXT]**. Confirm that the solution becomes opaque and that no lipids remain attached to the inner wall of the flask **[2]**.
 - 2.6.1. Talent setting the flask in a clamp and lowering it into a warm sonicator bath.
TXT: Incubate 1 h, swirl every 15 min to form multilamellar liposomes
 - 2.6.2. Talent inspecting the flask and confirming an opaque solution with no visible lipid residue on the glass.
- 2.7. After the 1-hour incubation, turn on the sonicator and set the amplitude to its highest level **[1]**. Move the flask around within the bath to locate the spot with the strongest agitation where the solution visibly bumps and sprays inside the flask **[2]**. Sonicate the solution for 30 minutes, observing the transition from opaque to transparent and slightly opalescent **[3]**.
 - 2.7.1. Talent switching on the sonicator and adjusting the amplitude setting.
 - 2.7.2. Talent shifting the flask within the bath to find the point of maximum agitation.
 - 2.7.3. Talent observing the change in solution appearance as sonication progresses.
- 2.8. Remove the lipid solution from the flask and transfer it to a microcentrifuge tube **[1]**. Centrifuge the tube at 100,000 *g* for 1 hour at 4 degrees Celsius **[2]**. After centrifugation, remove and discard the supernatant from the tube **[3-TXT]**.
 - 2.8.1. Talent pouring the lipid solution into a labeled microcentrifuge tube.
 - 2.8.2. Talent placing the tube into a centrifuge and initiating the run at specified settings.
 - 2.8.3. Talent carefully removing and discarding the supernatant from the centrifuged tube. **TXT: Use SUVs fresh or store at 4 °C (1 week) / -80 °C with trehalose**

3. Preparation of Quartz Coverslips

Demonstrator: Michael Martinez

- 3.1. Place the 25-millimeter quartz coverslips into a beaker **[1]** and add equal volumes of nanopure water, 30 percent hydrogen peroxide, and concentrated nitric acid **[2]**.
 - 3.1.1. **WIDE:** Talent placing multiple coverslips into a clean beaker.
 - 3.1.2. Talent pouring in measured amounts of nanopure water, hydrogen peroxide,

and nitric acid.

- 3.2. Heat the coverslips in the prepared solution for 30 minutes until bubbling begins [1].
 - 3.2.1. Talent placing the beaker on a hot plate and heat until bubbles form in the solution.
- 3.3. Check the solution every 10 minutes and swirl gently to prevent the coverslips from sticking together [1]. Observe the coverslips sliding apart and separating during swirling [2]. Once separated, gradually reduce the swirling speed to maintain their separation and allow the bubbling solution to coat the coverslips evenly [3].
 - 3.3.1. Talent swirling the beaker gently at regular intervals while monitoring the coverslips.
 - 3.3.2. Shot of coverslips shifting and sliding apart during swirling.
 - 3.3.3. Talent slowing the swirling motion and letting the bubbles rise around the separated coverslips. **TXT: After 30 min, allow the solution to cool**
- 3.4. Then, rinse the coverslips thoroughly with purified water while gently swirling to remove all chemical residue [1].
 - 3.4.1. Talent pouring out the used solution and rinsing the coverslips multiple times with purified water using a swirling motion.
- 3.5. Alternatively, clean the quartz coverslips using n-hexane followed by methanol, wiping with lens tissue for each solvent [1]. Place the coverslips inside a UV ozone cleaner with the surface to be treated facing the lamp [2].
 - 3.5.1. Talent folding lens tissue, applying n-hexane to it, and cleaning the coverslips.
 - 3.5.2. Talent positioning the coverslips into the UV ozone cleaner with treated surfaces oriented toward the light source.
- 3.6. Allow oxygen to flow into the chamber at 5 pounds per square inch for 5 minutes [1], then turn off the oxygen flow [2].
 - 3.6.1. Shot of the gas control system with oxygen flow set to 5 psi and the timer set for 5 minutes.
 - 3.6.2. Talent turning off the oxygen supply.
- 3.7. Now, turn on the ultraviolet lights for 15 minutes, then allow the coverslips to rest for at least 10 minutes to permit the ozone to dissipate [1-TXT].

3.7.1. Shot of the UV ozone cleaner interface as the lamp is turned on with a visible 15-minute countdown. **TXT: Use freshly cleaned coverslips immediately**

4. Bilayer Formation and Incorporation of AQP4 into a Bilayer Membrane

Demonstrator: Eric Jacobo

- 4.1. Place a freshly cleaned coverslip into a 25-millimeter sample holder using a one-quarter inch SM1 (*S-M-One*) lens tube **[1]**. Cut an 8-millimeter diameter, double-layered parafilm gasket **[2]** and position it in the center of the sample holder **[3]**.
 - 4.1.1. Talent mounting the coverslip into the sample holder using a lens tube.
 - 4.1.2. Talent trimming a parafilm gasket to size.
 - 4.1.3. Talent placing it precisely in the sample holder's center.
- 4.2. Apply a 50-microliter droplet of the small unilamellar vesicles to the center of the 8-millimeter gasket **[1]**. After sealing the chamber, incubate at 37 degrees Celsius for 1 hour **[2]**.
 - 4.2.1. Talent pipetting the vesicle droplet onto the gasket.
 - 4.2.2. Talent placing the setup it in a 37 degree Celsius incubator.
- 4.3. Post incubation, use a pipette to rinse away the solution **[1]**. Add 50 microliters of fresh buffer to the bilayer and repeat this process a total of 10 times **[2]**.
 - 4.3.1. Talent pipetting out the solution from the sample holder.
 - 4.3.2. Talent pipetting in fresh buffer to the same spot.
- 4.4. After the final rinse, remove the buffer from the sample holder **[1]**. Add a 50-microliter aliquot of the desired protein in detergent, ensuring the concentration is at or below the critical micellar concentration **[2]**. Incubate the sample at 37 degrees Celsius for at least 1 hour to allow protein incorporation **[3]**.
 - 4.4.1. Talent using a pipette to remove the last buffer wash.
 - 4.4.2. Talent adding the protein-detergent mixture carefully to the bilayer.
 - 4.4.3. Talent placing the sample back into the 37 degree Celsius incubator.
- 4.5. Rinse the sample with buffer to remove any unincorporated protein and detergent **[1-TXT]**.

4.5.1. Talent using a pipette to wash the sample gently with buffer. **TXT: The sample is ready for imaging**

5. Data Collection and Tracking Analysis

Demonstrator: Michael Martinez

5.1. Set the vertical pixel shift speed to approximately 600 nanoseconds and increase the vertical clock voltage using overclock mode [1]. Then, configure the horizontal pixel readout to its maximum speed [2]. Adjust the pre-amplifier gain to 2, set the amplifier output for electron multiplication, and set the electron multiplier gain to its highest level [3].

5.1.1. SCREEN: 69095_screenshot_2.mp4 00:03-00:13
5.1.2. SCREEN: 69095_screenshot_2.mp4 00:13-00:20
5.1.3. SCREEN: 69095_screenshot_2.mp4 00:20-00:40

5.2. Then, set the exposure time to 25 milliseconds. Confirm that the actual frame rate exceeds the exposure time slightly [1].

5.2.1. SCREEN: 69095_screenshot_2.mp4 00:47-01:04

5.3. Now adjust the laser power until the signal clearly stands out from the background noise [1]. Collect enough imaging data to yield a minimum of 1,000 tracks per sample [2].

5.3.1. SCREEN: 69095_screenshot_2.mp4 01:10-01:20
5.3.2. SCREEN: 69095_screenshot_2.mp4 01:22-01:33

5.4. For tracking analysis, crop all data sets to a consistent size and perform background correction using ImageJ [1].

5.4.1. SCREEN: 69095_screenshot_3.mov 00:17-00:30, 01:10-01:21

5.5. In FIJI (*Fiji*), drag and drop the movie or stacked TIFF file that needs to be analyzed into the interface [1]. To enter the pixel calibration details, go to the **Analyze** tab, select **Set Scale**, and apply the pixel-to-distance calibration specific to the instrument [2].

5.5.1. SCREEN: 69095_screenshot_1.mov 00:00-00:13
5.5.2. SCREEN: 69095_screenshot_1.mov 00:30-00:56

5.6. Then, save a copy of the dataset to preserve the original and track any changes made

[1].

5.6.1. SCREEN: 69095_screenshot_1.mov 00:59-01:10

5.7. Subtract the background from a selected region of interest and apply it to the saved copy of the original data. Go to the **Process** tab and choose **Subtract Background** [1].

5.7.1. SCREEN: 69095_screenshot_1.mov 01:28-01:50

5.8. In the **Plugins** tab, select **Tracking** followed by **TrackMate** to launch the TrackMate dialog window for tracking analysis [1].

5.8.1. SCREEN: 69095_screenshot_1.mov 02:09-02:34

Results

6. Results

- 6.1. The degree of labeling for AQP4 (*A-Q-P-Four*) tetramers was calculated to be 4.12 using UV-Visible spectrometry [1], and the Poisson distribution analysis indicated that 98% of tetramers carried at least one fluorescent dye molecule [2].
 - 6.1.1. LAB MEDIA: Figure 2. *Video editor: Highlight the central bar in the histogram at "4" on the x-axis labeled "Number of Fluorescent Labels"*
 - 6.1.2. LAB MEDIA: Figure 2. *Video editor: Zoom in on the height of the bars between 1 and 8 fluorescent labels*
- 6.2. The histogram shows a wide distribution of step sizes, consistent with diffusion of differently sized orthogonal arrays of particles [1], and the calculated average diffusion coefficient was 0.0143 square micrometers per second [2].
 - 6.2.1. LAB MEDIA: Figure 5.
 - 6.2.2. LAB MEDIA: Figure 5. *Video editor: Zoom in on the diffusion coefficient value "0.0143 $\mu\text{m}^2/\text{s}$ " displayed prominently in the upper center of the plot*

Pronunciation Guide:

Fluorescence

Pronunciation link: <https://www.merriam-webster.com/dictionary/fluorescence>

IPA: /flə'rsəns/

Phonetic Spelling: floor·eh·suhns

Microscopy

Pronunciation link: <https://www.merriam-webster.com/dictionary/microscopy>

IPA: /məs'kra:skəpi/

Phonetic Spelling: my·krah·skuh·pee

Lipid

Pronunciation link: <https://www.merriam-webster.com/dictionary/lipid>

IPA: /'lɪpɪd/

Phonetic Spelling: lih·pid

Bilayers

Pronunciation link: <https://www.merriam-webster.com/dictionary/bilayer>

IPA: /'baɪ,leɪər/

Phonetic Spelling: by·lay·er

Unilamellar

Pronunciation link: <https://www.merriam-webster.com/dictionary/unilamellar>

IPA: /,ju:nɪlə'mɛlər/

Phonetic Spelling: yoo·nih·luh·meh·ler

Vesicles

Pronunciation link: <https://www.merriam-webster.com/dictionary/vesicle>

IPA: /'vɛsɪkəl/

Phonetic Spelling: veh·sih·kuhl

Chloroform

Pronunciation link: <https://www.merriam-webster.com/dictionary/chloroform>

IPA: /'klɔ:rə,fɔ:rm/

Phonetic Spelling: klor·uh·form

Methanol

Pronunciation link: <https://www.merriam-webster.com/dictionary/methanol>

IPA: /'mɛθə,nɔ:l/

Phonetic Spelling: meh·thuh·nawl

Sonicator

Pronunciation link: <https://www.merriam-webster.com/dictionary/sonicator>

IPA: /'sə:nɪ,keɪtər/

Phonetic Spelling: sah·nih·kay·ter

Centrifuge

Pronunciation link: <https://www.merriam-webster.com/dictionary/centrifuge>

IPA: /'sɛntrə,fju:dʒ/

Phonetic Spelling: sen·truh·fyooj

¶ Ozone

Pronunciation link: <https://www.merriam-webster.com/dictionary/ozone>

IPA: /'oʊzən/

Phonetic Spelling: oh-zohn

¶ Aquaporin

Pronunciation link: <https://www.merriam-webster.com/dictionary/aquaporin>

IPA: /,a:kwə'pɔ:rɪn/

Phonetic Spelling: ah-kwuh-por-in

¶ AQP4

Pronunciation link: No confirmed link found

IPA: /,eɪ.kju:'pi:fɔ:r/

Phonetic Spelling: ay-kyoo-pee-for

¶ Tetramers

Pronunciation link: <https://www.merriam-webster.com/dictionary/tetramer>

IPA: /'tɛtrə,mər/

Phonetic Spelling: teh-truh-mer

¶ Photobleaching

Pronunciation link: <https://www.merriam-webster.com/dictionary/photobleaching>

IPA: /,fəʊtəʊ'bli:tʃɪŋ/

Phonetic Spelling: foh-toh-blee-ching

¶ Thermodynamic

Pronunciation link: <https://www.merriam-webster.com/dictionary/thermodynamic>

IPA: /θə:moʊdæɪ'næmɪk/

Phonetic Spelling: thur-moh-dy-na-mik

¶ Spectrometry

Pronunciation link: <https://www.merriam-webster.com/dictionary/spectrometry>

IPA: /spɛk'tra:mətri/

Phonetic Spelling: spek-trah-muh-tree

¶ Poisson

Pronunciation link: <https://www.merriam-webster.com/dictionary/Poisson>

IPA: /'pwa:sə:n/

Phonetic Spelling: pwah-sahn

¶ Diffusion

Pronunciation link: <https://www.merriam-webster.com/dictionary/diffusion>

IPA: /dɪ'fju:ʒən/

Phonetic Spelling: dih-fyoo-zhuhn

¶ Micrometers

Pronunciation link: <https://www.merriam-webster.com/dictionary/micrometer>

IPA: /maɪ'kra:mɪtər/

Phonetic Spelling: my-krah-mih-ter