

Submission ID #: 68941

Scriptwriter Name: Sulakshana Karkala

Project Page Link: <https://review.jove.com/account/file-uploader?src=21027053>

Title: Functional Cardiac Imaging in Zebrafish Embryos Using Standard Microscopy and Video Analysis: Applications in Environmental and Biomedical Research

Authors and Affiliations:

**Nikola Mitovic¹, Sanjin Kovacevic¹, Jelena Nesovic Ostojic¹, Darko Puflovic²,
Marija S. Stankovic¹**

¹Department of Pathophysiology, Medical Faculty, University of Belgrade

²Faculty of Electronic Engineering, University of Nis

Corresponding Authors:

Nikola Mitovic [\(nikola.mitovic@med.bg.ac.rs\)](mailto:nikola.mitovic@med.bg.ac.rs) ; [\(nikolamitovic@gmail.com\)](mailto:nikolamitovic@gmail.com)

Email Addresses for All Authors:

Nikola Mitovic [\(nikola.mitovic@med.bg.ac.rs\)](mailto:nikola.mitovic@med.bg.ac.rs) ; [\(nikolamitovic@gmail.com\)](mailto:nikolamitovic@gmail.com)

Sanjin Kovacevic [\(sanjin.kovacevic@med.bg.ac.rs\)](mailto:sanjin.kovacevic@med.bg.ac.rs)

Jelena Nesovic Ostojic [\(jelena.nesovic-ostojic@med.bg.ac.rs\)](mailto:jelena.nesovic-ostojic@med.bg.ac.rs)

Darko Puflovic [\(darko.puflovic@elfak.ni.ac.rs\)](mailto:darko.puflovic@elfak.ni.ac.rs)

Marija S. Stankovic [\(marija.stankovic.med@gmail.com\)](mailto:marija.stankovic.med@gmail.com)

Author Questionnaire

1. We have marked your project as author-provided footage, meaning you film the video yourself and provide JoVE with the footage to edit. JoVE will not send the videographer. Please confirm that this is correct.

✓ Correct

2. Microscopy: Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **No**

3. Software: Does the part of your protocol being filmed include step-by-step descriptions of software usage? **No**

4. Proposed filming date: To help JoVE process and publish your video in a timely manner, please indicate the proposed date that your group will film here: **MM/DD/YYYY**

When you are ready to submit your video files, please contact our Content Manager, [Utkarsh Khare](#).

Current Protocol Length

Number of Steps: 07

Number of Shots: 11

Introduction

NOTE TO VO: Please record this section

INTRODUCTION:

~~What technologies are currently used to advance research in your field?~~

- 1.1. **Nikola Mitovic:** High-resolution microscopy, fluorescent reporters, and digital image analysis are some technologies that enable detailed assessment of embryonic cardiac function in zebrafish.
 - 1.1.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:2.1*

~~What are the current experimental challenges?~~

- 1.2. **Nikola Mitovic:** Maintaining consistent imaging conditions and minimizing embryo movement remain major challenges for accurate cardiac function measurements.
 - 1.2.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:3.5*

CONCLUSION:

~~What research gap are you addressing with your protocol?~~

- 1.3. **Nikola Mitovic:** The protocol addresses the lack of standardized, accessible methods for quantifying zebrafish embryonic cardiac function with reproducible workflows.
 - 1.3.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:2.7*

~~What advantage does your protocol offer compared to other techniques?~~

- 1.4. **Nikola Mitovic:** This protocol uses standard microscopy and open-source analysis, making high-quality cardiac assessment feasible without specialized equipment.
 - 1.4.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:2.3*

~~How will your findings advance research in your field?~~

- 1.5. **Nikola Mitovic:** The findings provide a reliable protocol that improves comparability between studies and enables more precise evaluation of cardiac phenotypes.

1.5.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:3.2*

Ethics Title Card

The study was approved by the Animal Care and Use Committee of the Faculty of Medicine, University of Belgrade

Protocol

NOTE: Scripted from author provided footage

2. Assessment of Zebrafish Embryo Heart Dynamics via Image-Based Motion Analysis

Demonstrator: Nikola Mitovic

2.1. To begin, record videos of zebrafish embryos at 96 hours post in uncompressed formats to allow accurate analysis of cardiac motion dynamics **[1-TXT]**.

2.1.1. LAB MEDIA: 1st.mp4 00:00-00:16

TXT: Frame rate: 30 fps

2.2. Sequentially click on **File, Open** then choose the AVI (**A-V-I**) file in ImageJ (**Image-J**) to import the videos **[1-TXT]**. Use **Analyze** then click on **Set Scale**, input the known field diameter and enable the **Global** option to apply the scale across all measurements **[2]**.

2.2.1. LAB MEDIA: 2nd.mp4 00:00-00:14

TXT: If needed, convert to image stack

2.2.2. LAB MEDIA: 2nd.mp4 00:23-00:35

2.3. Use the ROI (**R-O-I**) tools to mark the long and short ventricular axes during end-systole and end-diastole **[1]**.

2.3.1. LAB MEDIA: 2nd.mp4 00:45-00:51, 00:58-01:02, 01:13-01:16

2.4. Then determine the ventricular surface area using the ellipse approximation formula **[1]**. Estimate the ventricular volume at end-diastole and end-systole using the ellipsoid volume formula **[2]**.

2.4.1. LAB MEDIA: 3rd.mp4 00:00-00:15

Video Editor: Please Highlight the top formula $VA = ((D_L - D_S)/2) \times \pi$ and the values of VAS and VAD

2.4.2. LAB MEDIA: 3rd.mp4 00:00-00:15

Video Editor: Please Highlight the middle formula $VV = (1/6) \times \pi \times D_L \times D_S^2$ and the values of VVS and VVD

2.5. Now, calculate the fractional area change and fractional shortening **[1]**. Then determine the stroke volume SV (**S-V**) and Ejection Fraction EF (**E-F**) **[2]**.

2.5.1. LAB MEDIA: 3rd.mp4 00:00-00:15

Video Editor: Please Highlight the formulae

$FPP (\%) = ((VAD - VAS) / VAD) \times 100$ and

$FS (\%) = ((D_L - D_S) / D_L) \times 100$

2.5.2. LAB MEDIA: 3rd.mp4 00:00-00:15

Video Editor: Please Highlight the formulae

SV= VVD=VVS= 367039 μ L and

*EF (%) = (SV / VVD) * 100*

2.6. For automated analysis, launch the **ZembryoAnalyzer (Z-Embryo-Analyzer)** software and click on **File** then **Open Video** to import the desired video **[1]**. Click on the **Detect Heart** button to allow the software to automatically locate the region of interest based on brightness fluctuations across video frames **[2-TXT]**.

2.6.1. LAB MEDIA: 4th.mp4 00:00-00:02

2.6.2. LAB MEDIA: 4th.mp4 00:02-00:30

TXT: Adjust region manually if needed

2.7. Let the software analyze brightness changes within the detected region of interest to estimate heart rate then calculate cardiac output **[1-TXT]**.

2.7.1. LAB MEDIA: 4th.mp4 00:31-00:55 **TXT: Export heart rate and corresponding intensity plots**

Results

3. Results

- 3.1. The average ventricular area in zebrafish embryos at 96 hours post fertilization was significantly higher at end-diastole compared to end-systole [1]. The average ventricular volume in zebrafish embryos at 96 hours post fertilization was significantly higher at end-diastole compared to end-systole [2].
 - 3.1.1. LAB MEDIA: Figure 2A and C. *Video editor: Highlight the red violin plot labelled "EDA" in 2A*
 - 3.1.2. LAB MEDIA: Figure 2B and B . *Video editor: Highlight the red violin plot labelled "EDA" in 2 B*
- 3.2. In healthy zebrafish embryos, the average stroke volume was 0.213 nanoliters [1], cardiac output was 27.8 nanoliters per minute [2], and ejection fraction was 41.99 percent [3].
 - 3.2.1. LAB MEDIA: Figure 3 *Video Editor: Please highlight 3D*
 - 3.2.2. LAB MEDIA: Figure 3 *Video Editor: Please highlight 3A*
 - 3.2.3. LAB MEDIA: Figure 3 *Video Editor: Please highlight 3C*
- 3.3. In healthy zebrafish embryos, the average fractional area change was 61.2 percent [1], and fractional shortening was 44.5 percent [2].
 - 3.3.1. LAB MEDIA: Figure 4 *Video Editor: Please highlight A*
 - 3.3.2. LAB MEDIA: Figure 4 *Video Editor: Please highlight B*
- 3.4. Cadmium-exposed embryos exhibited abnormal cardiac morphology with enlarged ventricles and pericardial edema [1].
 - 3.4.1. LAB MEDIA: Figure 5 *Video Editor: Please highlight A*
- 3.5. In cadmium-exposed embryos, stroke volume was significantly lower than in controls [1], cardiac output was diminished [2], and heart rate was reduced [3].
 - 3.5.1. LAB MEDIA: Figure 5B. *Video editor: Highlight the yellow violin plot labelled "Cd²⁺"*
 - 3.5.2. LAB MEDIA: Figure 5C. *Video editor: Highlight the yellow violin plot labelled "Cd²⁺"*

3.5.3. LAB MEDIA: Figure 5D. *Video editor: Highlight the yellow violin plot labelled "Cd²⁺"*

Pronunciation Guide:

1. Zebrafish
Pronunciation link: <https://www.merriam-webster.com/dictionary/zebrafish>
IPA: /'zɛbrə,fiʃ/
Phonetic Spelling: ZEB·ruh·fish
2. Embryos
Pronunciation link: <https://www.merriam-webster.com/dictionary/embryo>
IPA: /'ɛmbriəʊ/
Phonetic Spelling: EM·bree·oh
3. Functional
Pronunciation link: <https://www.merriam-webster.com/dictionary/functional>
IPA: /'fʌŋkjənəl/
Phonetic Spelling: FUNK·shuh·nuhl
4. Cardiac
Pronunciation link: <https://www.merriam-webster.com/dictionary/cardiac>
IPA: /'ka:rdi:æk/
Phonetic Spelling: KAR·dee·ak
5. Microscopy
Pronunciation link: <https://www.merriam-webster.com/dictionary/microscopy>
IPA: /maɪ'kra:skəpi/
Phonetic Spelling: my·KRAH·skuh·pee
6. Fluorescent
Pronunciation link: <https://www.merriam-webster.com/dictionary/fluorescent>
IPA: /flɔ'rəsənt/
Phonetic Spelling: floor·EH·suhnt
7. Phenotypes
Pronunciation link: <https://www.merriam-webster.com/dictionary/phenotype>
IPA: /'fi:nə,taip/
Phonetic Spelling: FEE·nuh·type
8. Ventricular
Pronunciation link: <https://www.merriam-webster.com/dictionary/ventricular>
IPA: /vən'trɪkjələr/
Phonetic Spelling: ven·TRIK·yuh·ler
9. End-diastole
Pronunciation link: <https://www.merriam-webster.com/dictionary/diastole>
IPA: /dāt'æstəli/
Phonetic Spelling: dye·AS·tuh·lee
10. End-systole
Pronunciation link: <https://www.merriam-webster.com/dictionary/systole>
IPA: /'sɪstəli/
Phonetic Spelling: SIS·tuh·lee

11. Ellipsoid

Pronunciation link: <https://www.merriam-webster.com/dictionary/ellipsoid>

IPA: /'ɛlpsoɪd/

Phonetic Spelling: ih-LIP-soyd

12. Fractional

Pronunciation link: <https://www.merriam-webster.com/dictionary/fractional>

IPA: /'frækʃənəl/

Phonetic Spelling: FRAK-shuh-nuhl

13. Stroke Volume

Pronunciation link: <https://www.merriam-webster.com/dictionary/stroke%20volume>

IPA: /'stroʊk ,və:lju:m/

Phonetic Spelling: strohk VOL-yoom

14. Ejection Fraction

Pronunciation link: <https://www.merriam-webster.com/dictionary/ejection%20fraction>

IPA: /ɪ'dʒekʃən 'frækʃən/

Phonetic Spelling: ih-JEK-shuhn FRAK-shuhn

15. Cardiac Output

Pronunciation link: <https://www.merriam-webster.com/dictionary/cardiac%20output>

IPA: /'ka:rdi:æk 'aʊtpʊt/

Phonetic Spelling: KAR-dee-ak OUT-poot

16. ImageJ

Pronunciation link: <https://www.howtopronounce.com/imagej>

IPA: /'ɪmɪdʒ dʒeɪ/

Phonetic Spelling: IM-ij jay

17. Region of Interest

Pronunciation link: <https://www.merriam-webster.com/dictionary/region%20of%20interest>

IPA: /'ri:dʒən əv 'ɪntrəst/

Phonetic Spelling: REE-juhn uhv IN-truhst

18. Pericardial

Pronunciation link: <https://www.merriam-webster.com/dictionary/periocardial>

IPA: /,pɛrɪ'ka:rdiəl/

Phonetic Spelling: pair-ih-KAR-dee-uhl

19. Edema

Pronunciation link: <https://www.merriam-webster.com/dictionary/edema>

IPA: /ɪ'di:mə/

Phonetic Spelling: ih-DEE-muh

20. Cadmium

Pronunciation link: <https://www.merriam-webster.com/dictionary/cadmium>

IPA: /'kædmiəm/

Phonetic Spelling: KAD-mee-uhm