

Submission ID #: 68921

Scriptwriter Name: Poornima G

Project Page Link: <https://review.jove.com/account/file-uploader?src=21020953>

Title: Detection of Aggregation-Prone Behavior in Mutant p53 V157F Breast Cancer Cells Using Multipoint Thioflavin T Fluorescence

Authors and Affiliations:

Shao-I Chin^{1,*}, Zi-Min Zeng^{2,*}, Sih-Tong Chen^{3,*}, Kuan-Yu Lin³, Jing-Yan Chen³, Yi-Ting Cheng³, Hsiao-Hsuan Wang³, Kuan-Yo Wu⁴, Chia-Chi Chen^{1,5,6,7}, Bi-He Cai¹

¹School of Medicine, I-Shou University

²School of Chinese Medicine for Post Baccalaureate, I-Shou University

³Department of Medical Science and Biotechnology, I-Shou University

⁴Department of Biomedical Engineering, I-Shou University

⁵Department of Pathology, E-Da Hospital

⁶Department of Physical Therapy, I-Shou University

⁷Department of Occupational Therapy, I-Shou University

*These authors contributed equally

Corresponding Authors:

Chia-Chi Chen sasabelievemydream@gmail.com

Bi-He Cai bigbiha@isu.edu.tw

Email Addresses for All Authors:

Shao-I Chin chin080911@gmail.com

Zi-Min Zeng zmn7109@gmail.com

Sih-Tong Chen 0613armychen@gmail.com

Kuan-Yu Lin tommy100088@gmail.com

Jing-Yan Chen g0910880975@gmail.com

Yi-Ting Cheng yiting.cheng711@gmail.com

Hsiao-Hsuan Wang lindawang1216@gmail.com

Kuan-Yo Wu a0932359630@gmail.com

FINAL SCRIPT: APPROVED FOR FILMING

Chia-Chi Chen
Bi-He Cai

sasabelievemydream@gmail.com
bigbiha@isu.edu.tw

Author Questionnaire

1. We have marked your project as author-provided footage, meaning you film the video yourself and provide JoVE with the footage to edit. JoVE will not send the videographer. Please confirm that this is correct.

✓ Correct

Authors: All the protocol videos are already provided by you and are approved to be used

2. Interview statements: Which interview statement filming option is the most appropriate for your group? **Please select one.**

Interview Statements are read by JoVE's voiceover talent.

Authors: We will internally generate the voice-over for the interview answers.

Current Protocol Length

Number of Steps: 14

Number of Shots: 28

Introduction

NOTE to VO producer: Please generate the VO for the interview answers

INTRODUCTION:

What is the scope of this research?

- 1.1. This study examines the aggregation propensity of mutant p53 V157F in breast cancer cells and evaluates multipoint plate-reading for detection.
 - 1.1.1. *B: Roll: 2.1.3*

What are the current experimental challenges?

- 1.2. Current experimental challenges include accurately detecting p53 aggregation, quantifying amyloid-like structures, and ensuring consistent measurement across cell-based assay surfaces.
 - 1.2.1. *B: Roll: 3.4.1*

CONCLUSION:

What advantage does this protocol offer compared to other techniques?

- 1.3. This protocol enables accurate protein aggregation detection in cellular contexts using Thioflavin T staining combined with reliable multipoint fluorescence plate-reading methods.
 - 1.3.1. *B: Roll: 4.2.1*

Protocol

2. Seeding the Cells before Staining

Demonstrators: Shao Chin, Zi Zeng and Sih Chen

- 2.1. To begin, take 10 microliters of Trypan Blue in a microcentrifuge tube **[1]**. Add 10 microliters of resuspended cells in DPBS to the same tube **[2-TXT]**, and mix the contents thoroughly to ensure homogeneity **[3]**.
 - 2.1.1. LAB MEDIA: 1.2. 00:22-00:30 (taking trypan blue) and 00:45-00:48 (adding to a tube).
 - 2.1.2. LAB MEDIA: 1.2. 01:55-02:20. **TXT: DPBS: Dulbecco's Phosphate-Buffered Saline**
 - 2.1.3. LAB MEDIA: 1.3. 00:40-00:45.
- 2.2. Load 10 microliters of the prepared mixture onto a counter slide **[1]** to count the live cells using an automated cell counter **[2]**.
 - 2.2.1. LAB MEDIA: 1.3. 00:55-01:10.
 - 2.2.2. LAB MEDIA: 1.4. 00-00:05 and 00:15-00:23.
- 2.3. Based on the viability count, seed 30,000 viable cells per well into a 96-well culture plate **[1]**. Designate 1 well as a non-stained control, and designate the remaining 3 wells for staining **[2-TXT]**.
 - 2.3.1. LAB MEDIA: 1.5. 00:25-00:35.
 - 2.3.2. LAB MEDIA: 1.5. 00:40-00:50. **TXT: Incubation: 37 °C; 12 h**

3. Thioflavin T Staining and Nuclear Counterstaining

- 3.1. Weigh 0.02 grams of Thioflavin T or ThT powder using a balance **[1]**. Add the powder to 5 milliliters of deionized water **[2]**, and mix thoroughly until the powder is completely dissolved **[3]**.
 - 3.1.1. LAB MEDIA: 3-1. 00:20-00:30.
 - 3.1.2. LAB MEDIA: 3-2. 00:25-00:32.
 - 3.1.3. LAB MEDIA: 3-2. 00:33-00:41.
- 3.2. Then, add the staining components to 1 milliliter of DPBS **[1]**. Add ThT and Hoechst stock

solutions to the tube and mix gently to ensure homogeneity [2-TXT].

3.2.1. LAB MEDIA: 4-1. 00:20-00:32.

3.2.2. LAB MEDIA: 4-1. 01:20-01:30 and 4-3.

TXT: ThT: Add 1 μ L of 1,000x ThT stock (Final concentration: 12.5 μ M)

Hoechst 33342: Add 1 μ L of 1 mg/mL stock (Final concentration: ~1 μ g/mL = 1.6 μ M)

3.3. Now, remove the culture medium from each well of the 96-well culture plate [1]. Add 100 microliters of the prepared ThT and Hoechst staining buffer to each staining well [2], followed by 100 microliters of DPBS to the non-stained control well [3].

3.3.1. LAB MEDIA: 5. 00:10-00:20.

3.3.2. LAB MEDIA: 5. 02:39-02:50.

3.3.3. LAB MEDIA: 5. 01:58-02:10.

3.4. Place the culture plate in a dark place at room temperature for 30 minutes [1].

3.4.1. LAB MEDIA: 6.

3.5. Carefully aspirate or discard the staining solution from each well without disturbing the cell monolayer [1].

3.5.1. LAB MEDIA: 7. 00:05-00:20.

3.6. Then, add 100 microliters of DPBS to each well and leave it for 30 seconds [1]. Then, discard the DPBS [2].

3.6.1. LAB MEDIA: 7. 00:30-00:40.

3.6.2. LAB MEDIA: 7. 01:10-01:20.

3.7. After repeating the washing step, add 100 microliters of fresh DPBS to each well [1].

3.7.1. LAB MEDIA: 7. 01:55-02:00 and 02:14-02:17.

4. Fluorescence Measurement and Data Analysis

Demonstrators: Sih Chen and Bi Cai

- 4.1. Remove the cap from the 96-well culture plate before reading the fluorescence signal [1-TXT].
 - 4.1.1. LAB MEDIA: 8. 00:24-00:29. **TXT: Select either a single- or four-point reading method**
- 4.2. Place the 96-well culture plate into the microplate reader [1]. Measure ThT fluorescence with excitation at 450 nanometers and emission at 490 nanometers [2], and measure Hoechst 33342 fluorescence with excitation at 360 nanometers and emission at 460 nanometers [3]. Select the desired read area [4] and then set the reader parameters, including shaking for 5 seconds before reading, top read direction and an integration time of 140 milliseconds [5-TXT].
 - 4.2.1. LAB MEDIA: 8. 00:29-00:34.
 - 4.2.2. LAB MEDIA: 8. 00:08-00:12 (Freeze frame at 00:12). *Video editor: Highlight the numbers 450 and 490 in the boxes*
 - 4.2.3. LAB MEDIA: 8. 00:12 (Freeze frame at 00:12). *Video editor: Highlight the numbers 360 and 460 in the boxes.*
 - 4.2.4. LAB MEDIA: 8. 00:14-00:17.
 - 4.2.5. LAB MEDIA: 8. 00:18-00:22. **TXT: Acquire the fluorescence data**
- 4.3. After acquiring the fluorescence data, perform calculations to obtain the protein aggregation values [1].
 - 4.3.1. **TEXT ON PLAIN BACKGROUND:**
$$\text{Aggregation Signal} = \frac{\text{ThT OD}_{\text{staining well}} - \text{ThT OD}_{\text{non-staining well}}}{\text{Hoechst OD}_{\text{staining well}} - \text{Hoechst OD}_{\text{non-staining well}}}$$
- 4.4. Finally, normalize the ThT fluorescence intensity by setting the ratio in MCF7 cells as 1 to serve as the baseline control [1].
 - 4.4.1. LAB MEDIA: 8. 00:50-00:58. **Authors:** A representative shot will be used here as the actual shot is not available **NOTE:** The authors have approved to use this clip

Results

5. Results

- 5.1. Measurements were performed using both a single-point [1] and a four-point method across stained and non-stained wells in MCF7 and Hs578T cells (*H-S-578-T*) [2].
 - 5.1.1. LAB MEDIA: Figure 1. *Video editor: Show the well diagram marked "1-point" to show the red dot in the center.*
 - 5.1.2. LAB MEDIA: Figure 1. *Video editor: Show the well diagram marked "4-point" to show the four color-coded dots*
- 5.2. Hs578T breast cancer cells showed a 3.2-fold increase in Thioflavin T fluorescence intensity compared to MCF7 cells using the single-point reading method [1].
 - 5.2.1. LAB MEDIA: Figure 2. *Video editor: Highlight the single bar labeled "Hs578T" under the "1 point" group*
- 5.3. When using the four-point average reading method, Hs578T cells exhibited a 3.86-fold increase in Thioflavin T fluorescence compared to MCF7 cells [1].
 - 5.3.1. LAB MEDIA: Figure 2. *Video editor: Highlight the bar labeled "Hs578T" under the "4 points (average)" group*
- 5.4. Thioflavin T fluorescence in Hs578T cells was consistently elevated at all four measurement points compared to MCF7 cells [1].
 - 5.4.1. LAB MEDIA: Figure 3. *Video editor: Highlight the 4 bars for "Hs578T"*

1. Microliter
Pronunciation link: <https://www.merriam-webster.com/dictionary/microliter>
IPA: /'mai.krou.li:.tər/
Phonetic Spelling: my·kroh·lee·ter
2. Trypan Blue
Pronunciation link: <https://www.merriam-webster.com/dictionary/trypan%20blue>
IPA: /'trɪp,_æn blu:/
Phonetic Spelling: trip·an bloo
3. Microcentrifuge
Pronunciation link: <https://www.merriam-webster.com/dictionary/microcentrifuge>

IPA: /maɪ.kruː'sen.t्रə,fju:dʒ/
Phonetic Spelling: my·kroh·sen·truh·fyooj

4. Homogeneity
Pronunciation link: <https://www.merriam-webster.com/dictionary/homogeneity>
IPA: /hoo.mə.dʒə'ni:.ə.ti/
Phonetic Spelling: hoh·muh·juh·nee·uh·tee

5. DPBS
Pronunciation link: No confirmed link found
IPA: /di: pi: bi: 'es/
Phonetic Spelling: dee·pee·bee·ess

6. Dulbecco's Phosphate-Buffered Saline
Pronunciation link: <https://www.howtopronounce.com/dulbecco>
IPA: /dʌl'bɛkəʊz 'fas.fεɪt 'bʌf.ərd sə'li:n/
Phonetic Spelling: dull·BECK·ohz foss·fayt buf·erd suh·leen

7. Automated
Pronunciation link: <https://www.merriam-webster.com/dictionary/automated>
IPA: /'ɔ:.tə,meɪ.tid/
Phonetic Spelling: aw·tuh·may·tid

8. Thioflavin T
Pronunciation link: <https://www.howtopronounce.com/thioflavin>
IPA: /θai.ou'fleɪ.vɪn tɪ:/
Phonetic Spelling: thigh·oh·flay·vin tee

9. Deionized
Pronunciation link: <https://www.merriam-webster.com/dictionary/deionized>
IPA: /di:'aɪ.ə.naɪzd/
Phonetic Spelling: dee·eye·uh·nyzd

10. Hoechst
Pronunciation link: <https://www.howtopronounce.com/hoechst>
IPA: /'hɛkst/
Phonetic Spelling: hekست

11. Fluorescence
Pronunciation link: <https://www.merriam-webster.com/dictionary/fluorescence>
IPA: /flo'res.əns/
Phonetic Spelling: floor·ESS·uhns

12. Microplate
Pronunciation link: <https://www.merriam-webster.com/dictionary/microplate>
IPA: /'maɪ.kruː,pleɪt/
Phonetic Spelling: my·kroh·playt

13. Nanometer
Pronunciation link: <https://www.merriam-webster.com/dictionary/nanometer>
IPA: /'næn.əʊ.mi:.tər/
Phonetic Spelling: nan·oh·mee·ter

14. Integration
Pronunciation link: <https://www.merriam-webster.com/dictionary/integration>

IPA: /ɪn.tə'greɪ.ʃən/

Phonetic Spelling: in·tuh·GRAY·shuhn

15. Millisecond

Pronunciation link: <https://www.merriam-webster.com/dictionary/millisecond>

IPA: /'mil.i sek.ənd/

Phonetic Spelling: mil·ih·sek·uhnd

16. Aggregation

Pronunciation link: <https://www.merriam-webster.com/dictionary/aggregation>

IPA: /æg.rə'geɪ.ʃən/

Phonetic Spelling: ag·ruh·GAY·shuhn

17. Normalize

Pronunciation link: <https://www.merriam-webster.com/dictionary/normalize>

IPA: /'nɔ:r.mə laɪz/

Phonetic Spelling: NOR·muh·lyze