

Submission ID #: 68834

Scriptwriter Name: Poornima G

Project Page Link: <a href="https://review.jove.com/account/file-uploader?src=20994418">https://review.jove.com/account/file-uploader?src=20994418</a>

Title: Field-Deployable Lens-Free Imaging Platform for Rapid Label-Free Analysis of Natural Killer Cell Activation

#### **Authors and Affiliations:**

Samir Kumar<sup>1\*</sup>, Sanghoon Shin<sup>1\*</sup>, Hojin Cheon<sup>1</sup>, Inha Lee<sup>2,3</sup>, Young-Sun Lee<sup>4</sup>, Myung-Hyun Nam<sup>5</sup>, Sunmi Han<sup>1,3</sup>, Hyun Sik Jun<sup>2,3</sup>, Sungkyu Seo<sup>1,3</sup>

#### **Corresponding Authors:**

Sungkyu Seo sseo@korea.ac.kr

#### **Email Addresses for All Authors:**

Samir Kumar skumar@korea.ac.kr
Sanghoon Shin ghost10s@korea.ac.kr
Hojin Cheon cheon\_hj@korea.ac.kr
Inha Lee dlsgk1017@korea.ac.kr
Young-Sun Lee lys810@korea.ac.kr
Myung-Hyun Nam yuret@korea.ac.kr

Sunmi Han sunmi.han@metaimmunetech.kr

Hyun Sik Jun toddjun@korea.ac.kr Sungkyu Seo sseo@korea.ac.kr

<sup>&</sup>lt;sup>1</sup>Department of Electronics and Information Engineering, Korea University

<sup>&</sup>lt;sup>2</sup>Department of Biotechnology and Bioinformatics, Korea University

<sup>&</sup>lt;sup>3</sup>Metaimmunetech Inc.

<sup>&</sup>lt;sup>4</sup>Department of Gastroenterology and Hepatology, Guro Hospital, Korea University College of Medicine

<sup>&</sup>lt;sup>5</sup>Department of Laboratory Medicine, Anam Hospital, Korea University College of Medicine

<sup>\*</sup>These authors contributed equally



# **Author Questionnaire**

- **1. Microscopy**: Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **No**
- **2. Software:** Does the part of your protocol being filmed include step-by-step descriptions of software usage? **Yes, all done**
- **3. Filming location:** Will the filming need to take place in multiple locations? **Yes**If **Yes**, how far apart are the locations? less than 100 m

## **Current Protocol Length**

Number of Steps: 25

Number of Shots: 55 (15 SC)



# Introduction

Videographer: Obtain headshots for all authors available at the filming location.

- 1.1. <u>Samir Kumar:</u> Our goal is to rapidly assess immune function by quantifying NK cell activation in real time using label-free, lens-free imaging to improve immune monitoring.
  - 1.1.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: 2.3.1*

What significant findings have you established in your field?

- 1.2. <u>Samir Kumar:</u> We have shown that the innate immunity index or I<sup>3</sup> reliably distinguishes between the NK activity of healthy and immunocompromised donors and correlates strongly with cytokine and flow cytometry markers.
  - 1.2.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: 2.5.1*

What research gap are you addressing with your protocol?

- 1.3. <u>Samir Kumar:</u> The existing NK cell assays require labels, bulky instruments, and long incubation times. Our LSIT platform fills this gap by enabling fast, affordable, label-free profiling using simple optoelectronics.
  - 1.3.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: 3.4.1*

What advantage does your protocol offer compared to other techniques?

- 1.4. <u>Samir Kumar:</u> Our label-free LSIT platform differentiates NK cell activation at the single cell level within thirty seconds using shadow parameters, eliminating the need for staining and costly flow cytometry.
  - 1.4.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: 4.2.1*

What research questions will your laboratory focus on in the future?



- 1.5. **Samir Kumar:** We will extend LSIT to monitor T and B cell activation and integrate deep learning algorithms for high-throughput classification of different immune cell states.
  - 1.5.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. Suggested B-roll: 5.3.1

Videographer: Obtain headshots for all authors available at the filming location.



#### **Ethics Title Card**

This research has been approved by the Institutional Review Board of Korea University Anam Hospital



# Protocol

#### 2. Natural Killer Cell Isolation and Activation

**Demonstrator:** Inha Lee

- 2.1. To begin, remove the kits for natural killer or NK cell isolation from the refrigerator [1] and allow them to come to room temperature between 15 and 28 degrees Celsius [2].
  - 2.1.1. WIDE: Talent opening a refrigerator and taking out the kits.
  - 2.1.2. Talent placing the kits on a bench.
- 2.2. Prepare the required equipment by placing a magnetic separator, pipettes with sterile tips, [1] and set an incubator or heating block to 37 degrees Celsius [2].
  - 2.2.1. Talent arranging the magnetic separator, pipettes with sterile tips on the workbench.
  - 2.2.2. Talent setting the temperature to 37 degrees Celius on the heatblock or incubator.
- 2.3. Using a pipette, add 0.5 milliliters of whole blood to the green-capped reaction tube containing the antibody cocktail [1]. Gently mix the contents by pipetting up and down the tube 5 to 6 times [2], then incubate the tube for 5 minutes [3].
  - 2.3.1. Talent pipetting whole blood into a green-capped tube.
  - 2.3.2. Talent gently pipetting the green-capped tube.
  - 2.3.3. Talent placing the green-capped tube in a rack and starting a 5-minute timer.
- 2.4. Transfer the entire contents of the green-capped tube into the red-capped separation tube 1 using a pipette [1] and gently mix by pipetting the tube 5 to 6 times [2].
  - 2.4.1. Talent transferring the contents into a red-capped tube.
  - 2.4.2. Talent pipetting the red-capped tube.
- 2.5. Place the red-capped tube on the magnetic separator and incubate at room temperature for 10 minutes [1].
  - 2.5.1. Talent placing the red-capped tube on the magnetic separator and starting a 10-



minute timer.

- 2.6. While keeping the magnet in place, use a pipette to transfer approximately 1.5 milliliters of the supernatant into the purple-capped separation tube 2 [1]. Gently mix the contents by pipetting the tube 5 to 6 times [2].
  - 2.6.1. Talent transferring the supernatant into a purple-capped tube while the redcapped tube remains on the magnet.
  - 2.6.2. Talent gently pipetting the purple-capped tube.
- 2.7. Now, place the purple-capped tube on the magnetic separator and incubate for 10 minutes [1].
  - 2.7.1. Talent placing the purple-capped tube on the magnetic separator and starting a 10-minute timer.
- 2.8. While the magnet is still in place, transfer approximately 1 milliliter of the supernatant into a recovery tube with a gray lid using a pipette [1] and carefully mix the contents by pipetting the tube [2].
  - 2.8.1. Talent transferring the supernatant into a gray-lidded tube while keeping the purple-capped tube on the magnet.
  - 2.8.2. Talent gently pipetting the gray-lidded tube.
- 2.9. Next, add 100 microliters of the isolated natural killer cell suspension into the Vehicle tube [1] and another 100 microliters into the activation stimulator cocktail or ASC tube [2].
  - 2.9.1. Talent pipetting 100 microliters of NK cell suspension into the labelled "Vehicle tube".
  - 2.9.2. Talent pipetting 100 microliters of NK cell suspension into the labelled "ASC tube".
- 2.10. Gently mix the contents of both tubes using a vortex mixer to ensure even distribution [1]. Incubate the tubes in the heating block or incubator set at 37 degrees Celsius for 1 hour [2].
  - 2.10.1. Talent gently mixing both the Vehicle and ASC tubes by vortex mixing.
  - 2.10.2. Talent placing the tubes into a 37-degree Celsius incubator and setting a 1-hour timer.



#### 3. Imaging the Cells with the LSIT Platform for NK Cell Activity Assessment

**Demonstrator:** Hojin Cheon

- 3.1. Switch on the LSIT (L-S-I-T) platform [1-TXT].
  - 3.1.1. Talent reaching to power on the LSIT platform. TXT: LSIT: Lens-free Shadow **Imaging Technology**
- 3.2. Launch the LSIT Capture software [1], log in by entering your ID and password [2]. Then, select Calibrate to initiate calibration mode [3].
  - 3.2.1. SCREEN: 68834-Screenshot.mp4 00:00–00:10
  - 3.2.2. SCREEN: 68834-Screenshot.mp4 00:11-00:20 and 00:23-00:24
  - 3.2.3. SCREEN: 68834-Screenshot.mp4 00:25–00:30
- 3.3. Press the **Open** button on the touchscreen or use the physical sliding door button to open the drawer [1]. When the drawer opens, remove the calibration slide and store it [2].
  - 3.3.1. Talent pressing **Open** on the screen or using physical button; drawer slides open.
  - 3.3.2. Talent removing the calibration slide and placing it in a storage box.
- 3.4. Now, click **Set background** to calibrate the optical intensity [1].
  - 3.4.1. SCREEN: 68834-Screenshot.mp4 00:35–00:40
- 3.5. Replace the calibration slide in the drawer [1] and close the drawer [2].
  - 3.5.1. Talent placing the calibration slide back into the drawer.
  - 3.5.2. Talent pressing **Close** or sliding the door shut.
- 3.6. Then, click **Start calibration** to complete the process [1].
  - 3.6.1. SCREEN: 68834-Screenshot.mp4 02:32–02:35 and 02:59-03:00



- 3.7. Remove an assay slide from its pouch, label it with the sample data before placing it on a clean, flat surface [1]. Pipette 10 microliters of the vehicle sample into channels A and B [2] and then pipette 10 microliters of the ASC-stimulated sample into channels C and D [3].
  - 3.7.1. Talent unsealing an assay slide pouch, labeling the slide with a marker.
  - 3.7.2. Talent pipetting the vehicle sample into channels A and B of the assay slide.
  - 3.7.3. Talent pipetting the ASC-stimulated sample into channels C and D of the assay slide.
- 3.8. Now, press **Open** to eject the drawer [1], remove the calibration slide [2], and place it in a storage box [3].
  - 3.8.1. Talent pressing **Open** on the touchscreen or using physical button.
  - 3.8.2. Talent lifting the calibration slide from the drawer.
  - 3.8.3. Talent placing the slide in the storage box.
- 3.9. Insert the prepared assay slide into the drawer [1] and press Close to secure it [2].
  - 3.9.1. Talent inserting the assay slide into the drawer.
  - 3.9.2. Talent pressing **Close** or sliding the drawer shut.
- 3.10. Go back to the **Main Menu** and select the **NK Cell Activity** and **Test** from the main screen [1]. Enter the sample ID or scan the barcode to load the sample profile [2]. Then, press **Capture** to begin image recording [3].
  - 3.10.1. SCREEN: 68834-Screenshot.mp4 03:05-03:19
  - 3.10.2. SCREEN: 68834-Screenshot.mp4 03:19-03:29
  - 3.10.3. SCREEN: 68834-Screenshot.mp4 03:48-04:00
- **3.11.** After capturing the image, click on **Analyze** to begin processing [1]. Review the NK cell activity percentage and cell count displayed on the screen [2]. Download the results to a USB drive or print them using the touchscreen menu [3].
  - 3.11.1. SCREEN: 68834-Screenshot.mp4 04:00-04:08
  - 3.11.2. SCREEN: 68834-Screenshot.mp4 04:49-05:00
  - 3.11.3. SCREEN: 68834-Screenshot.mp4 05:25-05:30



#### 4. Cell Counting and Post-Analysis Clean-Up

**Demonstrator:** Hojin Cheon

- 4.1. Select **Cell counting** and **Test** on the LSIT main interface [1]. Load 10 microliters of the new sample onto a fresh assay slide channel using a pipette [2]. Insert the slide into the drawer, close the drawer using the touchscreen or button [3], and enter the sample ID on the system [4].
  - 4.1.1. SCREEN: 68834-Screenshot.mp4 05:45–05:53
  - 4.1.2. Talent pipetting 10 microliters of the sample into a new channel on a clean assay slide.
  - 4.1.3. Talent inserting the assay slide into the drawer, pressing **Close.**
  - 4.1.4. Talent entering the sample ID.
- 4.2. Enter the dilution factor on the touchscreen if applicable [1] and press **Counting** to begin cell quantification [2]. View the results displayed as cells per microliter on the screen [3].
  - 4.2.1. Show the dilution factor input field and talent entering the value.
  - 4.2.2. SCREEN: 68834-Screenshot.mp4 06:02–06:05 and 06:28-06:30
  - 4.2.3. SCREEN: 68834-Screenshot.mp4 06:40-06:47
- 4.3. After analysis, open the drawer by pressing the **Open** button or toggling the physical switch [1]. Remove the used slide from the drawer using gloved hands [2].
  - 4.3.1. Talent pressing **Open** or using the switch; drawer slides open.
  - 4.3.2. Talent carefully lifting out the used assay slide and discarding it in the designated waste container.
- 4.4. Finally, place the calibration slide back into the drawer to protect the sensor [1] and close the drawer using the touchscreen or the physical toggle switch [2].
  - 4.4.1. Talent retrieving the calibration slide from the storage box and placing it in the drawer.
  - 4.4.2. Talent pressing **Close** or sliding the drawer shut.



# Results

#### 5. Results

- 5.1. The LSIT platform, with integrated software, quantitatively assessed NK cell activation by comparing the CSP values of activated and unstimulated control cells [1]. It provided the immunity report with a summarized statistical table [2].
  - 5.1.1. LAB MEDIA: Figure 5A and B
  - 5.1.2. LAB MEDIA: Figure 5C
- 5.2. ASC stimulation induced clear morphological changes in NK cells, including increased size and cytoplasmic complexity, as seen in Hema-3–stained cytospins after 30 minutes and 2 hours [1].
  - 5.2.1. LAB MEDIA: Figure 2A. Video editor: Highlight the "ASC"-stimulated cells.
- 5.3. Shadow images showed ASC-stimulated cells had visibly more complex diffraction patterns compared to vehicle controls [1], with extracted parameters indicating increased peak-to-peak distance, cytoplasmic granularity and combined shadow parameter [2].
  - 5.3.1. LAB MEDIA: Figure 2B. Video editor: Focus on the "ASC"-stimulated shadow images in the lower row. These have a blue background.
  - 5.3.2. LAB MEDIA: Figure 2C. *Video editor: Highlight the bars for "ASC" in all 3 graphs of 2C.*
- 5.4. Combined shadow parameter values allowed clear classification between Healthy donors [1] and Cancer patients [2], with minimal overlap in single-cell distributions of activated and non-activated NK cells [3].
  - 5.4.1. LAB MEDIA: Figure 2D. Video editor: Highlight the box plot for "HD".
  - 5.4.2. LAB MEDIA: Figure 2D. Video editor: Highlight the box plot for "CP".
  - 5.4.3. LAB MEDIA: Figure 2E. Video editor: Highlight red points (activated).
- 5.5. Healthy donors showed significantly higher Innate Immunity Index values [1] than cancer patients following ASC stimulation [2].



- 5.5.1. LAB MEDIA: Figure 3A. Video editor: Highlight the scatter plot for HD group.
- 5.5.2. LAB MEDIA: Figure 3A. Video editor: Highlight the scatter plot for CP group.



#### **Pronunciation Guide:**

#### 1. Immunocompromised

Pronunciation link:

https://www.merriam-webster.com/dictionary/immunocompromised

IPA: / im.jə.noʊˈkɑːm.prə maizd/

Phonetic Spelling: im-yuh-noh-KOM-pruh-myzd

#### 2. Cytokine

Pronunciation link:

https://www.merriam-webster.com/dictionary/cytokine

IPA: /ˈsaɪ.ţoʊˌkaɪn/

Phonetic Spelling: SYE-toh-kine

#### 3. Flow Cytometry

Pronunciation link:

https://www.merriam-webster.com/dictionary/cytometry

IPA: /floʊ saɪˈtɑː.mə.tri/

Phonetic Spelling: floh sy-TAH-muh-tree

#### 4. Optoelectronics

Pronunciation link:

https://www.merriam-webster.com/dictionary/optoelectronics

IPA: /ˌaːp.toʊ.ɪˌlɛkˈtraː.nɪks/

Phonetic Spelling: op-toh-ee-lek-TRAH-niks

#### 5. Incubator

Pronunciation link:

https://www.merriam-webster.com/dictionary/incubator

IPA: /ˈɪŋ.kjəˌbeɪ.tə/

Phonetic Spelling: IN-kyuh-bay-ter

#### 6. Microliter

Pronunciation link:

https://www.merriam-webster.com/dictionary/microliter

IPA: /ˈmaɪ.krəˌliː.t̪ə/

Phonetic Spelling: MY-kroh-lee-ter



## 7. Vehicle (scientific usage: "control vehicle")

Pronunciation link:

https://www.merriam-webster.com/dictionary/vehicle

IPA: /ˈviː.ɪ.kəl/

Phonetic Spelling: VEE-ih-kul

#### 8. Vortex (as in vortex mixer)

Pronunciation link:

https://www.merriam-webster.com/dictionary/vortex

IPA: /ˈvɔːrˌtɛks/

Phonetic Spelling: VOR-teks

#### 9. Assay

Pronunciation link:

https://www.merriam-webster.com/dictionary/assay

IPA: /ˈæˌseɪ/

Phonetic Spelling: A-say

#### 10. Cytoplasmic

Pronunciation link:

https://www.merriam-webster.com/dictionary/cytoplasmic

IPA: /ˌsaɪ.toʊˈplæz.mɪk/

Phonetic Spelling: SYE-toh-plaz-mik

#### 11. Morphological

Pronunciation link:

https://www.merriam-webster.com/dictionary/morphological

IPA: /ˌmɔːr.fəˈlaː.dʒɪ.kəl/

Phonetic Spelling: mor-fuh-LAH-jih-kul

#### 12. Cytospin

Pronunciation link:

https://www.howtopronounce.com/cytospin

IPA: /ˈsaɪ.toʊˌspɪn/

Phonetic Spelling: SYE-toh-spin



#### 13. Granularity

Pronunciation link:

https://www.merriam-webster.com/dictionary/granularity

IPA: / grænjʊˈlɛrəti/

Phonetic Spelling: gran-yoo-LAIR-uh-tee

#### 14. Anam (as in Korea University Anam Hospital)

Pronunciation link:

https://www.howtopronounce.com/anam

IPA: /ˈaː.naːm/

Phonetic Spelling: AH-nahm

#### 15. Metaimmunetech

Pronunciation link:

No confirmed link found

IPA (constructed): /ˌmɛt.ə.ɪˈmjuːn.tɛk/ Phonetic Spelling: MET-uh-ih-MYUN-tek

#### 16. Gastroenterology

Pronunciation link:

https://www.merriam-webster.com/dictionary/gastroenterology

IPA: / gæs.troʊˌɛn.təˈrɑː.lə.dʒi/

Phonetic Spelling: gas-troh-en-tuh-RAH-luh-jee

#### 17. Hepatology

Pronunciation link:

https://www.merriam-webster.com/dictionary/hepatology

IPA: /ˌhεp.əˈtaː.lə.dʒi/

Phonetic Spelling: hep-uh-TAH-luh-jee

#### 18. Immunity

Pronunciation link:

https://www.merriam-webster.com/dictionary/immunity

IPA: /ɪˈmjuː.nə.ţi/

Phonetic Spelling: ih-MYOO-nuh-tee



#### 19. Diffraction

Pronunciation link:

https://www.merriam-webster.com/dictionary/diffraction

IPA: /dɪˈfræk.ʃən/

Phonetic Spelling: dih-FRAK-shun

#### 20. Calibration

Pronunciation link:

https://www.merriam-webster.com/dictionary/calibration

IPA: /ˌkæl.əˈbreɪ.ʃən/

Phonetic Spelling: kal-uh-BRAY-shun