

Submission ID #: 68323

Scriptwriter Name: Debopriya Sadhukhan

Project Page Link: https://review.jove.com/account/file-uploader?src=20838563

Title: A Concoction Pipeline for Generating Molecular Operational Taxonomic Units (MOTUs) Among Riparian and Aquatic Beetles

Authors and Affiliations:

Emmanuel D. Delocado^{1,2}, Voltaire Rafael H. Banzon, Jr.¹, Enrico Gerard S. Sanchez^{1,3}

¹Ateneo Biodiversity Research Laboratory, Department of Biology, School of Science and Engineering, Higher Education Cluster, Ateneo de Manila University

Corresponding Authors:

Emmanuel D. Delocado (edelocado@ateneo.edu)

Email Addresses for All Authors:

Emmanuel D. Delocado (<u>edelocado@ateneo.edu</u>)

Voltaire Rafael H. Banzon, Jr. (<u>voltaire.banzon@student.ateneo.edu</u>)
Enrico Gerard S. Sanchez (<u>enrico.sanchez@student.ateneo.edu</u>)

²Ateneo Institute of Sustainability, Ateneo de Manila University

³Ateneo School of Medicine and Public Health, Higher Education Cluster, Ateneo de Manila University, Don Eugenio Lopez Sr. Medical Complex

Author Questionnaire

1. We have marked your project as author-provided footage, meaning you film the video yourself and provide JoVE with the footage to edit. JoVE will not send the videographer. Please confirm that this is correct.

√ Correct

- **2. Microscopy**: Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **No**
- **3. Software:** Does the part of your protocol being filmed include step-by-step descriptions of software usage? **Yes**
- **4. Proposed filming date:** To help JoVE process and publish your video in a timely manner, please indicate the <u>proposed date that your group will film</u> here: **06/30/2025**

When you are ready to submit your video files, please contact our Content Manager, <u>Utkarsh</u> <u>Khare</u>.

Current Protocol Length

Number of Steps: 30 Number of Shots: 49

Introduction

REQUIRED:

- 1.1. <u>Emmanuel D. Delocado:</u> Seeking to speed up species discovery in the megadiverse tropics, this protocol aims to generate species clustering hypotheses in aquatic and riparian beetles using a concoction of computer-based analyses.
 - 1.1.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: 2.6.1.*

What significant findings have you established in your field?

- 1.2. <u>Enrico Gerard S. Sanchez:</u> This concoction pipeline, which utilized COI DNA sequence, has led to greater evidence for species delimitation for the hydrophilid beetle from the genus *Anacaena*, which was previously erected only using morphological data.
 - 1.2.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: LAB MEDIA: Figure 10.*

What research gap are you addressing with your protocol?

- 1.3. <u>Voltaire Rafael H. Banzon, Jr.:</u> This protocol seeks to address the taxonomic impediment that species discovery through morphology-based taxonomy, which is considered the gold standard in insect systematics, is often time-consuming and confusing for understudied yet megadiverse and highly inconspicuous aquatic beetles.
 - 1.3.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera.

What advantage does your protocol offer compared to other techniques?

1.4. <u>Enrico Gerard S. Sanchez:</u> This pipeline generates molecular clustering hypotheses called MOTUs, regardless of whether the sequences correspond to known species with reference sequences or whether the species are undiscovered and undescribed.

1.4.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: 5.7.2, 5.8.1., 5.8.2.*

How will your findings advance research in your field?

- 1.5. Voltaire Rafael H. Banzon, Jr.: With this, rather than dissecting and comparing hundreds of beetle genital structures all at once, the pipeline provides preliminary clustering on which specimens can be scrutinized for conspecificity.
 - 1.5.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera.

Protocol

2. Sequence Alignment as a Preparatory Step for Threshold-Based Approaches

Demonstrator: Enrico Gerard S. Sanchez

- 2.1. To begin, launch MEGA X (Mega Ex) and load the DNA sequences for alignment [1]. Open the alignment interface by selecting Align, then clicking on Edit/Build Alignment (Edit or Build Alignment), and choosing Create a new alignment. Click OK to confirm the selection, and select DNA as the datatype [2].
 - 2.1.1. WIDE: Talent seated at a computer desktop launching MEGA X software and loading the DNA sequences.
 - 2.1.2. SCREEN: 68323 screenshot 1.mp4 00:09-00:25.
- 2.2. Hover the mouse over the **Edit** tab, click on **Insert Sequence from File**, navigate to the appropriate directory, and select the sequence files to load into MEGA [1].
 - 2.2.1. SCREEN: 68323 screenshot 2.mp4 00:05-00:20.
- 2.3. Now, click on **Alignment**, then select **Align by ClustalW** (*Clustal-W*) to align the sequences using default settings, and click **OK** to proceed [1].
 - 2.3.1. SCREEN: 68323_screenshot_3.mp4 00:02-00:24.
- 2.4. For manual editing of the sequences, delete any insertions by clicking on the inserted bases or positions and pressing the **Delete** key on the keyboard [1]. Next, correct deletions by clicking on the dash that represents a missing base, removing it, and typing the intended base [2]. Then, find the earliest position where all sequences contain a character, click on the blank box in the row header immediately to the left of this position, and drag to select all excess starting positions. Press **Delete** to trim them [3].
 - 2.4.1. SCREEN: 68323 screenshot 4.mp4 00:03-00:10.
 - 2.4.2. SCREEN: 68323_screenshot_4.mp4 00:11-00:23.
 - 2.4.3. SCREEN: 68323 screenshot 4.mp4 00:24-00:41.
- 2.5. Then, find the last aligned position and click on the box to the right of this point. Press **Delete** again to trim the end [1].
 - 2.5.1. SCREEN: 68323 screenshot 5.mp4 00:02-00:16.
- 2.6. Now, select all sequences, and click on the Translated Protein Sequences tab. When prompted, verify the genetic code as Invertebrate Mitochondrial [1]. If the genetic code is different, click No, and a menu will appear allowing one to tick the box for Invertebrate Mitochondrial genetic code [2].

- 2.6.1. SCREEN: 68323 screenshot 6.mp4 00:02-00:09.
- 2.6.2. SCREEN: 68323 screenshot 6.mp4 00:10-00:23.
- 2.7. If stop codons, marked by asterisks in the alignment, appear across an entire column, click on **DNA Sequences** and delete the first position for all sequences [1].
 - 2.7.1. SCREEN: 68323 screenshot 7.mp4 00:02-00:26.
- 2.8. Again, click on **DNA Sequences**, then save the alignment in .mas/x (dot mas or dot masex) format [1-TXT].
 - 2.8.1. SCREEN: 68323_screenshot_8.mp4 00:02-00:22. **TXT: Export the sequence into** other pertinent file types, such as .meg file and .fasta file
- 3. Delimitation by TaxonDNA (Species Identifier 1.8) and Kimura 2-Parameter (K2P) in MEGA X

Demonstrator: Voltaire Rafael H. Banzon, Jr.

- 3.1. To start delimitation using the TaxonDNA (*Taxon-D-N-A*) module, open the TaxonDNA software. Click on *Import*, then select *FASTA* (*Fasta*), and upload the alignment file in FASTA format [1].
 - 3.1.1. SCREEN: 68323 screenshot 9.mp4 00:06-00:28.
- 3.2. Now, click on **Modules**, then select **Cluster**. Set the threshold value to 3 percent and check the box labeled **Generate individual information on every cluster [1]**.
 - 3.2.1. SCREEN: 68323_screenshot_10.mp4 00:02-00:12.
- 3.3. Click on **Make clusters now!** to start clustering [1] and save the results by taking a screenshot [2].
 - 3.3.1. SCREEN: 68323 screenshot 11.mp4 00:02-00:08.
 - 3.3.2. SCREEN: 68323 screenshot 11.mp4 00:09-00:18.
- 3.4. For delimitation using the Kimura 2-parameter method, open MEGA and click on **File**, then select **Open A File/Session** (*Open a File or Session*) [1]. Click on **Distance**, select **Compute Pairwise Distances**, and confirm the .meg (*Meg*) file for delimitation [2].
 - 3.4.1. SCREEN: 68323 screenshot 12.mp4 00:04-00:18.
 - 3.4.2. SCREEN: 68323_screenshot_12.mp4 00:19-00:27.
- 3.5. Hover over the box next to **Model/Method** (*Model or Method*), and click the arrow to expand the dropdown menu. Select the **Kimura 2-parameter** model and click **OK** to run the program [1]. Open the data output window to view the results [2].
 - 3.5.1. SCREEN: 68323 screenshot 13.mp4 00:02-00:11.

- 3.5.2. SCREEN: 68323 screenshot 13.mp4 00:12-00:24.
- 3.6. Click on File, then select Export/Print Distances (Export and print distances) to save the result [1].
 - 3.6.1. SCREEN: 68323 screenshot 14.mp4 00:02-00:17.
- 4. Delimitation by ASAP and the Tree Estimation Step for Coalescent-Based Approaches

Demonstrator: Enrico Gerard S. Sanchez

- 4.1. Open the Assemble Species by Automatic Partitioning or ASAP (asap) web server [1]. Click on the orange box labeled **Choose a file**, and upload the .fasta (Fasta) file [2]. Scroll down and click Go [3].
 - 4.1.1. SCREEN: 68323 screenshot 15.mp4 00:01-00:03.
 - 4.1.2. SCREEN: 68323 screenshot 15.mp4 00:04-00:15.
 - 4.1.3. SCREEN: 68323_screenshot_15.mp4 00:16-00:24.
- 4.2. To download the clustering result, click on **list** for the row with the lowest ASAP score and the highest p-value rank [1].
 - 4.2.1. SCREEN: 68323 screenshot 16.mp4 00:02-00:16.
- 4.3. Next, to start the tree estimation, open MEGA and click on Data, then select Open A File/Session to load the .meg file [1]. Click on Models, then select Find Best DNA/Protein Models (ML) (Best DNA and Protein Models) to determine the best-fit substitution model [2].
 - 4.3.1. SCREEN: 68323_screenshot_17.mp4 00:02-00:15.
 - 4.3.2. SCREEN: 68323 screenshot 17.mp4 00:16-00:26.
- 4.4. Click **OK** on the **Analysis Preferences** menu [1].
 - 4.4.1. SCREEN: 68323 screenshot 18.mp4 00:02-00:11.
- 4.5. Now, to generate the tree, click on Phylogeny, then select Construct/Test Maximum **Likelihood Tree** (Construct and Test Maximum Likelihood Tree) [1].
 - 4.5.1. SCREEN: 68323 screenshot 19.mp4 00:03-00:10.
- 4.6. Use the best-fit substitution model by clicking on the box beside Model/Method, and selecting the appropriate model from the dropdown menu [1].
 - 4.6.1. SCREEN: 68323 screenshot 20.mp4 00:02-00:17.
- 4.7. Under Phylogeny Test, click on the box beside Test of Phylogeny, then choose Bootstrap method from the dropdown menu [1]. Click on the box beside No. of

Bootstrap Replications (Number of Bootstrap Replications), type 1000, and click **OK** to run the analysis [2].

- 4.7.1. SCREEN: 68323_screenshot_21.mp4 00:02-00:12.
- 4.7.2. SCREEN: 68323 screenshot 21.mp4 00:14-00:27.
- 4.8. Once the window containing the resulting tree opens, save the session as an .mts/x (dot M-T-S or dot M-T-S-X) file [1]. Also, save the output as a .nwk (newick) file and export the tree as a .png (P-N-G) image [2].
 - 4.8.1. SCREEN: 68323 screenshot 22.mp4 00:02-00:12.
 - 4.8.2. SCREEN: 68323 screenshot 22.mp4 00:13-00:47.
- 5. Delimitation by Poisson Tree Processes (PTP) and Multi-Rate Poisson Tree Processes (mPTP)

 Demonstrator: Voltaire Rafael H. Banzon, Jr.
 - 5.1. For the PTP-based delimitation, visit the PTP web server [1]. Click on **Choose file**, and upload the tree in Newick format [2]. Under **My tree is**, select **Rooted**. In the box under **Outgroup taxa names**, input the outgroup by typing the name of the taxon tip [3].
 - 5.1.1. SCREEN: 68323 screenshot 23.mp4 00:02-00:04.
 - 5.1.2. SCREEN: 68323_screenshot_23.mp4 00:05-00:09.
 - 5.1.3. SCREEN: 68323_screenshot_23.mp4 00:10-00:34. *Video Editor: Blur the email id or remove the part where the talent is entering the email id.*
 - 5.2. Next, under **Maximum likelihood solution**, click on **Download delimitation results** to save the PTP-ML (*P-T-P-M-L*) output [1].
 - 5.2.1. SCREEN: 68323 screenshot 24.mp4 00:01-00:08.
 - 5.3. Similarly, under **Highest Bayesian-supported solution**, click on **Download delimitation** results to save the PTP-BI (*P-T-P-B-I*) output [1].
 - 5.3.1. SCREEN: 68323_screenshot_25.mp4 00:03-00:08.
 - 5.4. For the mPTP (M-P-T-P)-based delimitation by mPTP, visit the mPTP web server [1].
 - 5.4.1. SCREEN: 68323 screenshot 26.mp4 00:02-00:04.
 - 5.5. Upload the Newick file by dragging it onto the gray square or by clicking on the square [1]. Once the data is loaded, click on **Proceed to outgroup selection** [2]. On the Outgroup specification page, select the outgroup by clicking the checkbox next to the taxa labels of outgroup specimens [3]. Then, click on **Model selection**, select **MPTP**, and click on **Visualization Options**. On the **Visualization options** page, accept the default settings [4].

- 5.5.1. SCREEN: 68323 screenshot 27.mp4 00:01-00:07.
- 5.5.2. SCREEN: 68323_screenshot_27.mp4 00:08-00:10.
- 5.5.3. SCREEN: 68323 screenshot 27.mp4 00:11-00:16.
- 5.5.4. SCREEN: 68323 screenshot 27.mp4 00:17-00:28.
- 5.6. Click on **Submit**. Right-click the files under **Downloadable Files** and choose **Save as** to save the results [1].
 - 5.6.1. SCREEN: 68323_screenshot_28.mp4 00:06-00:37.
- 5.7. Now, to generate the Molecular Operational Taxonomic Units or MOTU (mow-tu), open the tree using a photo editing program or PowerPoint [1]. Create a bar to represent the results of each molecular species delimitation approach [2].
 - 5.7.1. SCREEN: 68323 screenshot 29.mp4 00:02-00:15.
 - 5.7.2. SCREEN: 68323 screenshot 29.mp4 00:55-01:26, 02:13-02:16.
- 5.8. If all the approaches yield identical results for a given molecular cluster, designate the cluster as a MOTU by consensus [1-TXT]. NOTE: The VO has been edited
 - 5.8.1. SCREEN: 68323_screenshot_30.mp4 00:02-00:22. **TXT: Designate a cluster as a MOTU if the majority of methods yield the same result NOTE:** The information of 5.8.2 has been added here concisely as onscreen text as the authors didn't provide any video for this.
 - 5.8.2. SCREEN: To be provided by authors: Highlighting a cluster with mostly matching results and labeling it as a MOTU (majority).

Results

6. Results

- 6.1. This figure presents the maximum likelihood gene tree and molecular clustering results for *Byrrhinus* beetles based on COI-3' *(C-O-I three-prime)* sequences and six delimitation methods [1].
 - 6.1.1. LAB MEDIA: Figure 9. Video editor: Highlight the left image (tree-like structure) when the VO says "COI-3' sequences" and the colored bars (**expect** the black bars) on the right image when the VO says "and six delimitation methods".
- 6.2. All methods consistently identified four MOTUs (mow-tus): Byrrhinus negrosensis, Byrrhinus villarini, Byrrhinus A, and Byrrhinus B [1], with identical clustering across methods [2].
 - 6.2.1. LAB MEDIA: Figure 9. Video editor: Highlight the four uniform black bars under the "MOTU" label.
 - 6.2.2. LAB MEDIA: Figure 9. Video editor: Highlight all the Byrrhinus negrosensis, Byrrhinus villarini, Byrrhinus sp A, and Byrrhinus sp B labels on the tree-like structure.
- 6.3. *Byrrhinus negrosensis* and *Byrrhinus villarini* were clearly separated despite originating from the same locations [1].
 - 6.3.1. LAB MEDIA: Figure 9. Video editor: Highlight all the Byrrhinus negrosensis and Byrrhinus villarini labels in the lower portion of the tree and the colored bars (except black) in the 3rd and 4th rows from the top in the right image.
- 6.4. Sequences from four provinces were grouped into *Byrrhinus* A, showing no strong geographic structuring [1].
 - 6.4.1. LAB MEDIA: Figure 9. Video editor: *Highlight all the Byrrhinus sp A labels at the top portion of the tree.*
- 6.5. This figure shows clustering of *Anacaena* beetles into four MOTUs, including *Anacaena* angatbuhay, *Anacaena* auxilium, *Anacaena* A, and *Anacaena* B, with full agreement across methods [1].
 - 6.5.1. LAB MEDIA: Figure 10.
- 6.6. Anacaena auxilium overlapped geographically with Anacaena A and Anacaena B, indicating that geography alone did not explain molecular divergence [1].
 - 6.6.1. LAB MEDIA: Figure 10. Video editor: Highlight the Anacaena auxilium, Anacaena sp A, and Anacaena sp B labels.