

Submission ID #: 67729

Scriptwriter Name: Sulakshana Karkala

Project Page Link: https://review.jove.com/account/file-uploader?src=20657393

Title: Optimized Method for Cultivation and Microbial Bioaugmentation of *Typha latifolia* (Cattail)

Authors and Affiliations: Ann Zymela, Douglas Muench

Department of Biological Sciences, University of Calgary

Corresponding Authors:

Douglas Muench (dmuench@ucalgary.ca)

Email Addresses for All Authors:

Ann Zymela (ann.zymela@ucalgary.ca)
Douglas Muench (dmuench@ucalgary.ca)

Author Questionnaire

- **1. Microscopy**: Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **No**
- **2. Software:** Does the part of your protocol being filmed include step-by-step descriptions of software usage? **No**
- **3. Filming location:** Will the filming need to take place in multiple locations? **Yes, Maybe 10 to 15 min drive**

Current Protocol Length

Number of Steps: 24 Number of Shots: 55

Introduction

Videographer: Obtain headshots for all authors available at the filming location. Videographer's Note: Clip0002 – Grey Card/White Card for interview space

- 1.1. <u>Annie Zymela:</u> Our work addresses the lack of protocols for growing cattail from seed. We developed reproducible methods for seed germination, early growth, and microbial bioaugmentation to support future plant-microbe research.
 - 1.1.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:6.1*

Videographer's Note: Clip0005 – WS of 1.1.1 and 1.5.1, Clip0006 – MS of 1.1.1 and 1.5.1, Clip0007 – Head Shot of Annie Zymela

What are the most recent developments in your field of research?

- 1.2. <u>Annie Zymela:</u> Few studies grow cattail from seed or track them to maturity, yet cattails are commonly used in wetland remediation research.
 - 1.2.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:5.4*

What technologies are currently used to advance research in your field?

- 1.3. <u>Annie Zymela:</u> Most cattail research involves purchasing rhizomes for propagation of cattails in laboratory studies.
 - 1.3.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera.

What are the current experimental challenges?

- 1.4. <u>Annie Zymela:</u> Few studies grow cattail from seed, leaving no standardized methods. Achieving consistent germination and persistent colonization of introduced microbes has been a major challenge.
 - 1.4.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:6.3*

What significant findings have you established in your field?

1.5. <u>Annie Zymela:</u> We've developed reproducible methods for seed germination and microbial bioaugmentation, demonstrating how early inoculation helps support long term colonization.

1.5.1. INTERVIEW: Named Talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B.roll:6.2*

Videographer: Obtain headshots for all authors available at the filming location.

Protocol

2. Scarification of Typha latifolia Seeds

Demonstrator: Annie Zymela

- 2.1. To begin, use garden shears to cut the stem of a *Typha latifolia* plant approximately 2 centimeters from the base of the inflorescence [1]. Pull the seeds off the inflorescence [2]. Transfer the seed into a laboratory blender until the blender is approximately one-fourth full corresponding to about 250 milliliters of uncompacted seeds [3].
 - 2.1.1. WIDE: Talent using garden shears to cut the stem of the plant just below the inflorescence.

Videographer's Note: Clip0010 – 2.1.1a – Optional additional shot of talent walking into lab,

Clip0072 – NO SLATE – 2.1.1

Clip0073 - NO SLATE - 2.1.1 alternative

- 2.1.2. Talent pulling seeds from the inflorescence.
- 2.1.3. Shot of the seeds being transferred into a laboratory blender up to the one-fourth mark.
- 2.2. Now, fill the blender with 500 milliliters of tap water, ensuring a 10-centimeter headspace is maintained [1]. Blend the mixture at medium-low speed for 20 seconds and immediately transfer the viscous contents into a 1-liter beaker [2].
 - 2.2.1. Talent filling the blender with tap water and leaving space at the top.
 - 2.2.2. Talent operating the blender and pouring the viscous solution into a 1-liter beaker.
- 2.3. Transfer approximately 100 milliliters of the seed-water mixture back into the blender [1]. Then add 400 to 600 milliliters of fresh tap water and blend on medium-high speed for 20 seconds [2]. Pour the contents into a fresh 1-liter beaker [3].
 - 2.3.1. Talent pouring 100 milliliters of the previous blend into the blender.
 - 2.3.2. Shot of 400 600 mL water being added to the blender and the blender is being turned on.
 - 2.3.3. Shot of the blended mix being poured into another beaker.

- 2.4. Now fill the beaker with tap water up to 800 milliliters [1]. After letting it sit for 60 seconds, scoop off the floating sludge from the top without disturbing the seeds settled at the bottom [2]. Slowly pour out the remaining water and transfer the seeds into a 100-milliliter beaker [3].
 - 2.4.1. Talent filling beaker with water and allowing the mixture to settle.
 - 2.4.2. Talent carefully scooping off the top layer of sludge.

 Videographer's Note: Clip0017 2.4.2 Take 1 NG, Clip0018 2.4.2 Take 2 Good
 - 2.4.3. Talent pouring off excess water and transferring seeds into a smaller beaker.

 Videographer's Note: Clip0019 2.4.3 Only the talent pouring out excess water, Clip0020 2.4.3a Transferring seeds into small beaker
- 2.5. Repeat the blending process for the remaining seed-water sludge [1].
 - 2.5.1. Talent repeating the blending and separation process on the remaining mixture.
- 2.6. Next, place the beaker containing the separated seeds onto a stir plate [1-TXT]. After stirring, scoop off any floating plant material from the surface of the beaker [2].
 - 2.6.1. Talent setting the beaker on a stir plate and starting the stir function.**TXT: Stir for 1 h at medium speed**
 - 2.6.2. Talent using a scoop to remove floating debris from the top.
- 2.7. Pour the seeds into a Büchner funnel with filter paper attached to a vacuum and allow them to dry overnight [1]. Store the dried seeds at minus 20 degrees Celsius in 15-milliliter conical polypropylene tubes [2].
 - 2.7.1. Talent transferring seeds to a Büchner funnel setup under vacuum.
 - 2.7.2. Talent placing dried seeds into labeled polypropylene tubes and storing them in a freezer.

3. Typha latifolia Seed Germination Using Sterile Technique

- 3.1. Prepare half-strength Murashige and Skoog media plates with 1% phytoagar [1]. Transfer approximately 1 milligram of the dried seeds into a 15-milliliter conical polypropylene tube [2]. Then add 10 milliliters of sterile double-distilled water to the tube [3]. Place the tube on an orbital shaker at medium-high speed for 10 minutes [3].
 - 3.1.1. Shot of prepared MS media plates.
 - 3.1.2. Talent pipetting seeds into a conical tube.

Videographer's Note: Clip0027 – 3.1.2 – *Note from author:* Action is not with pipette but with a scoop

- 3.1.3. Talent adding sterile water to the tube.
- 3.1.4. Talent placing the tube on an orbital shaker and turning it on.
- 3.2. Now, remove the water from the tube [1] and add 5 milliliters of 0.1% Polysorbate 20 solution prepared in sterile double-distilled water [2]. Shake the tube at medium-high speed for 10 minutes [3].
 - 3.2.1. Talent decanting or aspirating water from the conical tube.

 Videographer's Note: Clip0030 3.2.1 Only decanting in this show, Clip0031 3.2.1a Aspirating water from conical tube
 - 3.2.2. Talent adding 5 milliliters of Polysorbate 20 solution.
 - 3.2.3. Talent placing the tube on a shaker.
- 3.3. Remove the Polysorbate 20 solution [1]. Perform all further steps in front of a flame or laminar flow hood [2]. Replace the solution with 5 milliliters of 30% commercial bleach [3] and 0.025% Polysorbate 20 solution prepared in sterile double-distilled water [4-TXT].

NOTE: VO has been edited as per author's request. The shot numbers have been changed to accommodate the added shot

3.3.1. Talent removing the previous solution from the tube.

Added shot: 3.3.1a

Videographer's Note: Clip0036 – 3.3.1a – NEW ADDED SHOT: Happens before 3.3.2

3.3.2. Talent adding the bleach to the tube.

Videographer's Note: Clip0035 – 3.3.2 – Take 1 – NG, Clip0037 – 3.3.2 – Take 2 – Good

- 3.3.3. Shot of 0.025% Polysorbate 20 solution being added to the tube. **TXT: Shake** tube at medium high speed for 30 min
- 3.4. Replace the supernatant with sterile double-distilled water [1]. Then shake the tube at medium-high speed for 5 minutes [2-TXT].
 - 3.4.1. Talent decanting the bleach mixture and adding fresh sterile water.
 - 3.4.2. Shot of the tube in a shaker. TXT: Repeat water rinse 2 more times
- 3.5. Next, fill the 15-milliliter conical tube with sterile double-distilled water [1]. After the

third rinse, rotate the tube at low speed for 24 hours to induce germination [2]. The next day, remove the excess water and ensure 3 milliliters of liquid remain in the tube [3].

- 3.5.1. Shot of sterile double distilled water being added to the tube.

 NOTE: Shot deleted at author's request
- 3.5.2. Talent placing the tube on a low-speed rotator and starting the incubation.
- 3.5.3. Talent removing excess water from the tube, leaving only 3 milliliters.
- 3.6. Now, aseptically cut the tip of a 1000-microliter plastic pipette tip [1]. Use the cut pipette tip to vigorously pipette and suspend the seeds within the tip [2].
 - 3.6.1. Talent using a sterile blade to cut the pipette tip.
 - 3.6.2. Talent using the modified pipette tip to mix and suspend the seeds.
- 3.7. Plate the seeds and liquid onto one-half strength Murashige and Skoog agar plates [1]. Gently swirl the plate to evenly distribute the seeds [2].
 - 3.7.1. Talent pipetting the seed suspension onto the MS plate.
 - 3.7.2. Talent gently swirling the plate for even seed spread.
- 3.8. Wrap the plates with laboratory sealing film [1]. Then place them in a growth chamber with a 16-hour light and 8-hour dark cycle at 23 degrees Celsius and 70% humidity [2-TXT].
 - 3.8.1. Talent wrapping the agar plates with sealing film.
 - 3.8.2. Talent placing the wrapped plates inside a growth chamber. **TXT: Leave plates** for 1 2 weeks for germination
- 4. Typha latifolia Seed Inoculation with Selected Bacteria
 - 4.1. To inoculate cattail seeds, sterilize seeds with Polysorbate 20, bleach and double distilled water as demonstrated [1]. Remove the final rinse water from the 15-milliliter conical polypropylene tube, ensuring that 3 milliliters of water remain [2].
 - 4.1.1. Shot of labeled tube with seeds and 3 mL sterile water.
 - 4.1.2. Talent removing excess water from the tube, leaving a small volume.

 NOTE: Shot deleted at author's request
 - 4.2. Measure the optical density of an overnight culture of *Luteimonas* isolate at 600 nanometers [1]. Normalize the culture to an absorbance value of 1.0 by diluting in

culture medium [2-TXT].

4.2.1. Talent pipetting culture into a cuvette and placing it in a spectrophotometer.
Videographer's Note: Clip0050 – 4.2.1 – Only action of pipetting and into cuvette,
Clip0051 – 4.2.1a – Placing on spectrophotometer **Do not let results on monitor to be seen

4.2.2. Talent diluting culture with culture medium. **TXT: If necessary, incubate cultures longer until required density is achieved Videographer's Note:** Re-use 4.1.1 for 4.2.2, and move that step after 4.3.1a

- 4.3. Now, centrifuge 1 milliliter of the culture at 9300 g for 2 minutes [1]. Remove the supernatant and resuspend the pellet in 1 milliliter of PBS [2]. After centrifuging and removing the supernatant again, resuspend the bacterial pellet in 1 milliliter of sterile double-distilled water [3].
 - 4.3.1. Talent pipetting microbial culture into a microcentrifuge tube and placing it in centrifuge.

Videographer's Note: Clip0053 – 4.3.1 – Pipetting culture in micro centrifuge, Clip0054 – 4.3.1a – Placing in centrifuge

4.3.2. Talent removing supernatant and adding phosphate-buffered saline to the pellet.

4.3.2a – Added shot - Centrifuge so we can see new pellet Videographer's Note: Clip0056 for 4.3.2a, Clip0057 – No Slate – ECU of new pellet

- 4.3.3. Talent pipetting sterile water into the tube.
- 4.4. Transfer 1 milliliter of the seeds to a 15-milliliter conical polypropylene tube [1]. Use sterilized seeds then dilute the inoculum at a 1 to 10 dilution with 0.025% organosilicone surfactant, in the same tube [2]. Shake the suspension at low speed for 24 hours before seed germination [3].
 - 4.4.1. Talent adding 1 mL seeds to a 15 mL tube.

 NOTE: Shot deleted by authors-
 - 4.4.2. Shot of the bacterial inoculum and organisilicone surfactant being added to the same tube.
 - 4.4.3. Shot of the suspension being placed on a shaker at low speed.

5. Typha latifolia Seedling Growth

5.1. Start by filling a sterile plant growth chamber unit with a soil of choice pre-wetted with tap water [1]. Cover the Luer lock tip with aluminum foil [2] and autoclave the unit on

a liquid cycle for 20 minutes [3-TXT].

- 5.1.1. Talent adding soil and water into the chamber unit.

 Videographer's Note: Clip0061 5.1.1 Only adding soil
- 5.1.2. Talent wrapping the tip with foil.

 Videographer's Note: Clip0062 5.1.2 Include action of adding water into chamber
- 5.1.3. Talent placing the unit into the autoclave. TXT: Repeat autoclaving after 24 h
- 5.2. Next, in a laminar flow hood, attach a 0.2-micrometer filter unit to the Luer lock connector on the growth chamber [1]. Open the chamber and add 500 microliters of filter-sterilized 1% 20/20/20 (Twenty-by-twenty-by-Twenty) fertilizer to the soil [2].
 - 5.2.1. Talent attaching the filter to the Luer lock port.
 - 5.2.2. Talent opening the chamber and adding 500 μ L of filter sterilized 1% 20/20/20 fertilizer.
- 5.3. Mix the soil with a sterile spatula while simultaneously adding sterile double-distilled water to maintain hydration without oversaturating the soil [1].
 - 5.3.1. Talent gradually adding water while stirring the soil to moisten it appropriately.
- 5.4. Now, use a sterile razor blade to cut Murashige and Skoog agar from plates containing 1-week-old seedlings into quarters [1]. With a sterile spatula, transfer one agar section with seedling onto the prepared soil in the growth chamber [2].
 - 5.4.1. Talent slicing agar plate into quarters using a sterile blade.
 - 5.4.2. Talent using sterile spatula to place agar section with seedling into soil.

 Videographer's Note: Clip0068 5.4.2 Take 1 Some parts of this clip are not good, Clip0069 Mislabelled slate Should be 5.4.2 Take 2 Good
- 5.5. Transfer the growth chamber unit into a plant growth incubator set to a 16-hour light and 8-hour dark cycle at 23 degrees Celsius and 70% humidity [1].
 - 5.5.1. Talent placing the sealed growth chamber into the plant incubator and adjusting settings on control panel.

Results

6. Results

- 6.1. Complete scarification of *Typha* seeds resulted in visibly separated seed components [1], whereas incomplete scarification left the beak attached, and non-scarified seeds remained intact [2].
 - 6.1.1. LAB MEDIA: Figure 1B. Video editor: Highlight seed number 1 showing the separated plume, beak, and seed.
 - 6.1.2. LAB MEDIA: Figure 1B. Video editor: Highlight seeds number 2 and 3
- 6.2. The sterile hydroponic growth system successfully supported the establishment and growth of *Juncus* species seedlings up to 1 year [1].
 - 6.2.1. LAB MEDIA: Figure 2B.
- 6.3. The highest seed germination rate of 20.8% was observed using the 30% bleach and Polysorbate 20 method [1], which was significantly greater than all other sterilization treatments except for the 1-hour chlorine gas method [2].
 - 6.3.1. LAB MEDIA: Figure 3. Video editor: Highlight the tallest bar labeled "30% bleach and Polysorbate 20". Use file Fig 3 ed.jpg
 - 6.3.2. LAB MEDIA: Figure 3. Video editor: Highlight the remaining bars
- 6.4. At 7 days post-scarification, germinating *Typha* seedlings developed visible radicles and shoot tissue in the non-sterile Petri plate environment [1]. Following transplant to soil, a subset of *Typha* seedlings established successfully and produced new shoot tissue within 1 to 2 weeks [2].
 - 6.4.1. LAB MEDIA: Figure 4A.
 - 6.4.2. LAB MEDIA: Figure 4B
- **6.5.** After inoculation with *Luteimonas* species carrying a DsRed (*D-S-Red*) plasmid, red fluorescent bacterial colonization was observed throughout the *Typha* seedling roots at 16 days post-inoculation [1].
 - 6.5.1. LAB MEDIA: Figure 5A and B. Video editor: Highlight the red fluorescent dots

Pronunciation Guide:

1. Typha latifolia

Pronunciation link: https://www.howtopronounce.com/typha-latifolia pronouncekiwi.com+15How To Pronounce+15How To Pronounce+15

IPA: /ˈtaɪfə lætəˈfoʊliə/

Phonetic Spelling: TYE-fuh lat-uh-FOE-lee-uh

2. bioaugmentation

Pronunciation link: https://www.howtopronounce.com/bioaugmentation How To

PronounceSynonyms.com

IPA: / baɪoʊˌɔːgmənˈteɪʃən/

Phonetic Spelling: bye-oh-awg-mən-TAY-shuhn

3. Murashige and Skoog (as in "Murashige and Skoog medium")

Pronunciation link: https://www.howtopronounce.com/murashige-e-skoog How To

PronounceHow To Pronounce IPA: / morəˈʃiːgeɪ ænd skoʊg/

Phonetic Spelling: moo-ruh-SHEE-gay and skohg

4. Büchner funnel

Pronunciation link: https://www.merriam-webster.com/medical/B%C3%BCchner%20funnel

Merriam-WebsterCambridge Dictionary

IPA: /'buːxnər ˌfʌnəl/

Phonetic Spelling: BOOCH-ner FUHN-uhl

5. Luteimonas

Pronunciation link: No confirmed link found via Merriam-Webster or Oxford. HowToPronounce

did not have entries. en.wikipedia.orgfindwords.info

IPA (based on genus Latin pronunciation): / luːtiːˈmoʊnəs/

Phonetic Spelling: loo-tee-MOH-nuhs