

Submission ID #: 67523

Scriptwriter Name: Poornima G

Project Page Link: https://review.jove.com/account/file-uploader?src=20594563

Title: Harvest of Vestibular End-Organs under Physiologic Conditions During Labyrinthectomy

Authors and Affiliations:

Nicholas S. Andresen¹, Hakim Hiel¹, Catherine J. Graham¹, Yassine Balhi¹, John P. Carey¹, Amanda M. Lauer^{1,2,3}, Bryan K. Ward¹

Corresponding Authors:

Nicholas S. Andresen nickandresen280@gmail.com

Email Addresses for All Authors:

Hakim Hiel hhiel1@jhmi.edu
Catherine J. Graham cgraha48@jhmi.edu
Yassine Balhi ybalhi1@jh.edu
John P. Carey jcarey@jhmi.edu
Amanda M. Lauer alauer2@jhmi.edu
Bryan K. Ward bward15@jh.edu

Nicholas S. Andresen nickandresen280@gmail.com

¹Department of Otolaryngology – Head & Neck Surgery, Johns Hopkins University School of Medicine

²Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine

³Department of Functional Anatomy and Evolution, Johns Hopkins University School of Medicine

Author Questionnaire

- **1. Microscopy**: Does your protocol require the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or something similar? **No**
- **2. Software:** Does the part of your protocol being filmed include step-by-step descriptions of software usage? **No**
- **3. Filming location:** Will the filming need to take place in multiple locations? **No**

Current Protocol Length

Number of Steps: 9 Number of Shots: 17

Introduction

NOTE: Only the interview was filmed by the videographer

- 1.1. <u>Nicholas Andresen or Bryan Ward:</u> This protocol describes a new technique for harvesting human inner ear tissue during labyrinthectomy using an underwater technique. We are using this technique to better understand inner ear disorders such as Meniere's disease.
 - 1.1.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: 2.2.2*

What research gap are you addressing with your protocol?

- 1.2. <u>Nicholas Andresen or Bryan Ward:</u> Human inner ear diseases are difficult to study because the human inner ear is encased in dense bone. Previous studies have primarily relied upon post-mortem tissue analysis or high-resolution imaging. This protocol offers a new means of directly studying human inner ear tissue.
 - 1.2.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: 2.8.1*

What advantage does your protocol offer compared to other techniques?

- 1.3. <u>Nicholas Andresen or Bryan Ward:</u> The inner ear tissue is kept under physiologic conditions using balanced salt solution. Additionally, the underwater technique and increased magnification afforded by the endoscope allow the easy visualization of a membranous labyrinth, aiding in trauma-free dissection.
 - 1.3.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera. *Suggested B-roll: 2.10.1*

Videographer: Obtain headshots for all authors.

Ethics Title Card

This research has been approved by the Institutional Review Board at Johns Hopkins University School of Medicine

Protocol

NOTE: The protocol shots were filmed by the authors themselves and they have given timestamps. The writer has not reviewed the footage.

2. Fresh Human Vestibular End Organ Isolation

Demonstrators: Nicholas Andresen and Bryan Ward

- 2.1. To begin, perform mastoidectomy and identify the semicircular canals inside it under the operating microscope [1].
 - 2.1.1. WIDE: Talent examining the sample under the operating microscope. NOTE:

 Not filmed
- 2.2. To begin, perform mastoidectomy and submerge the mastoid cavity in a balanced salt solution [1] and visualize the labyrinth using a zero-degree endoscope with a lenscleaning sheath irrigation system [2].
 - 2.2.1. Talent placing the mastoid cavity in a dish filled with balanced salt solution.
 - 2.2.2. Talent using the zero-degree endoscope for visualization, with the lenscleaning sheath system visible.
- 2.3. Then, irrigate the mastoid cavity with balanced salt solution to wash away blood and improve visualization of the labyrinth [1].
 - 2.3.1. Talent irrigating the mastoid cavity. Author provided timecode: CH2_004_CH001 1:10-1:20
- 2.4. Using the endoscope for visualization, carefully drill away the otic capsule bone [1].with a 3 millimeter diamond burr until the semicircular canals appear as a bluish line
 [1]. Irrigate intermittently with balanced salt solution to wash away blood and ensure
 adequate visualization of the semicircular canals [2].
 - 2.4.1. TEXT ON PLAIN BACKGROUND:

 Use a 3-millimeter diamond burr for drilling

Irrigate intermittently with balanced salt solution

- 2.4.2. Talent using the endoscope and holding the 3 millimeter diamond burr while drilling the otic capsule bone.. NOTE: Not filmed
- 2.4.3. Talent using the lens-cleaning sheath irrigation system to flush the area.
- 2.5. Under balanced salt solution, enter the dome of the lateral semicircular canal and follow it anteriorly until its ampullae are identified [1]. Enter the superior semicircular

canal and follow it medially to its ampullae [2]. Then, cut the lateral semicircular canal duct sharply to facilitate removal [3].

- 2.5.1. Shot of entering the dome of the lateral semicircular canal with the endoscope. Author provided timecode: CH2 004 CH001 1:20-1:25
- 2.5.2. Shot of following the superior semicircular canal with precise drilling. Author provided timecode: CH2 004 CH001 4:00-14:00
- 2.5.3. Shot of cutting the lateral semicircular canal duct. Author provided timecode: CH2 004 CH001 02:30
- 2.6. Next, employing a Rosen needle, elevate the horizontal and superior semicircular canal ampullae off the crista [1]. Harvest the required structures and place all tissues in balanced salt solution [2].
 - 2.6.1. Shot of elevating the ampullae using a Rosen needle. Author provided timecode: CH2 004 CH002 7:50-15:00 and CH2 004 CH003 0:00-10:10
 - 2.6.2. TEXT ON PLAIN BACKGROUND:
 - Separate the afferent fibres from the epithelia and the membranous
 - Transect the dome of the posterior semicircular canal
 - Harvest the ampullae
 - 2.6.3. Talent removing the ampullae and separating the afferent fibers. . NOTE: Not filmed
- 2.7. Transect the dome of the posterior semicircular canal and follow it inferiorly and anteriorly to its ampullae [1]. Harvest the ampullae and place all tissues in balanced salt solution on ice [2].
 - 2.7.1. Shot of transecting the posterior semicircular canal.
 - 2.7.2. Talent placing harvested tissues into a dish containing balanced salt solutionon ice. . NOTE: Not filmed
- 2.8. Remove the bone between the horizontal and posterior semicircular canal ampullae to expose the vestibule [1]. Elevate and remove the macula while maintaining the fluid level [2].
 - 2.8.1. Shot of removing bone to expose the vestibule. Author provided timecode: CH2 004 CH003 12:50-15:00 and CH2 004 CH004 0:00-2:30
 - 2.8.2. Shot of macula being elevated and removed. Author provided timecode: CH2_004_CH004 2:30-4:15
- 2.9. Finally, sharply elevate and remove the saccule from the spherical recess and place the tissue samples in balanced salt solution on ice [1-TXT].
 - 2.9.1. Shot of elevating and removing the saccule from the recess. Author provided timecode: CH2 004 CH005 2:00-3:00 TXT: Perform immunohistochemistry and imaging

2.9.2. Talent placing harvested saccule tissue into a dish with balanced salt solution on ice. . NOTE: Not filmed

Results

3. Representative Results

- 3.1. The human utricle [1] and lateral and superior canal ampullae were harvested intact with minimal trauma [2].
 - 3.1.1. LAB MEDIA: Figure 2. Video editor: Focus on the image labeled A.
 - 3.1.2. LAB MEDIA: Figure 2. Video editor: Focus on the image labeled B.
- 3.2. Immunofluorescent labeling showed intact type 1 vestibular hair cells in the utricle [1]. Hair cell density was recorded at 82 cells per 10,000 square micrometers [2].
 - 3.2.1. LAB MEDIA: Figure 3. *Video editor: Highlight the red-stained hair cells (type 1 vestibular cells) pointed by the white arrows*.
 - 3.2.2. LAB MEDIA: Figure 3. Video editor: Focus on the image B.

Pronunciation Guide

1. Mastoidectomy

Pronunciation link:

https://www.merriam-webster.com/medical/mastoidectomy

IPA: / mæstəɪˈdɛktəmi/

Phonetic Spelling: ma-stoy-dek-tuh-mee

2. Semicircular

Pronunciation link:

https://www.merriam-webster.com/dictionary/semicircular

IPA: / sem.i's3:.kjə.la/

Phonetic Spelling: seh-mee-sur-kyuh-lur

3. Labyrinth

Pronunciation link:

https://www.merriam-webster.com/dictionary/labyrinth

IPA: /ˈlæbəˌrɪn θ /

Phonetic Spelling: la-buh-rinth

4. Endoscope

Pronunciation link:

https://www.merriam-webster.com/dictionary/endoscope

IPA: /ˈεn.dəˌskoυp/

Phonetic Spelling: en-duh-skohp

5. Irrigation

Pronunciation link:

https://www.merriam-webster.com/dictionary/irrigation

IPA: / irə geifən/

Phonetic Spelling: ih-ruh-gay-shun

6. Ampullae

Pronunciation link:

https://www.howtopronounce.com/ampullae

IPA: /ˈæmpjʊˌliː/

Phonetic Spelling: am-pyuh-lee

7. Crista

Pronunciation link:

https://www.howtopronounce.com/crista

IPA: /'kristə/

Phonetic Spelling: kris-tuh

8. Afferent

Pronunciation link:

https://www.merriam-webster.com/dictionary/afferent

IPA: /'æfərənt/

Phonetic Spelling: af-uh-ruhnt

9. Epithelia

Pronunciation link:

https://www.howtopronounce.com/epithelia

IPA: / εpəˈθiːliə/

Phonetic Spelling: eh-puh-thee-lee-uh

10. Membranous

Pronunciation link:

https://www.merriam-webster.com/dictionary/membranous

IPA: /ˈmɛmbrənəs/

Phonetic Spelling: mem-bruh-nuhs

11. Vestibule

Pronunciation link:

https://www.merriam-webster.com/dictionary/vestibule

IPA: /'vesti_bju:l/

Phonetic Spelling: veh-stuh-byool

12. Macula

Pronunciation link:

https://www.merriam-webster.com/dictionary/macula

IPA: /ˈmækjʊlə/

Phonetic Spelling: mak-yuh-luh

13. Saccule

Pronunciation link:

https://www.merriam-webster.com/medical/saccule

IPA: /ˈsæk.juːl/

Phonetic Spelling: sak-yool

14. Utricle

Pronunciation link:

https://www.merriam-webster.com/medical/utricle

IPA: /ˈjuːtrɪkəl/

Phonetic Spelling: yoo-tri-kuhl

15. Immunofluorescent

Pronunciation link:

https://www.howtopronounce.com/immunofluorescent

IPA: /ɪˌmjunəʊflʊˈrɛsənt/

Phonetic Spelling: ih-myoo-noh-floo-reh-suhnt