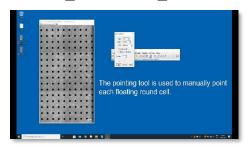

ASSESSMENT OF THE VIABILITY OF TUMOR CELLS

VIDEO SUMMARY

Screenshots

Steps + timecodes


62748 screenshot 1

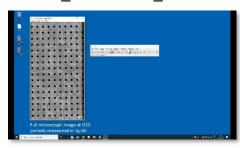
Open ImageJ and import microscopic images from D21 as TIFF or JPEG files.

 $00:00 \rightarrow 00:12$

62748_screenshot_2

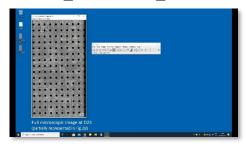
Click on the pointing tool button and manually select each floating round cell from D21 using the mouse cursor.

 $00:12 \rightarrow 00:49$


62748_screenshot_3

When all cells are selected, click on the pointing tool button again to obtain the number of counted cells.

 $00:49 \rightarrow 01:03$


62748_screenshot_4

Import microscopic images from D23 as TIFF or JPEG files..

 $01:03 \rightarrow 01:12$

62748_screenshot_5

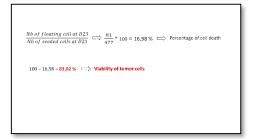
Click on the pointing tool button and manually select each floating round cell from D23 using the mouse cursor.

 $01:12 \rightarrow 01:23$

62748_screenshot_6

When all cells are selected, click on the pointing tool button again to obtain the number of counted cells.

 $01:23 \rightarrow 01:40$


62748_screenshot_7

Calculate the percentage of tumor cell death by dividing the number of pointed cells at D23 by the number of pointed cells at D21, the total multiplied by 100.

01:40 → 01:51

62748_screenshot_8

Subtract this total from 100 to obtain the viability of tumor cells.

 $01:51 \rightarrow 01:58$