

Submission ID #: 62215

**Scriptwriter Name: Bridget Colvin** 

Project Page Link: <a href="https://www.jove.com/account/file-uploader?src=18975623">https://www.jove.com/account/file-uploader?src=18975623</a>

Title: Air-Inflation of Murine Lungs with Vascular Perfusion-Fixation

Authors and Affiliations: Stacey M. Thomas<sup>1</sup>, Joseph Bednarek<sup>2</sup>, William J. Janssen<sup>1</sup>, and Patrick S. Hume<sup>1</sup>

<sup>1</sup>Division of Pulmonary, Sleep and Critical Care Medicine, Department of Medicine, National Jewish Health

<sup>2</sup>Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital Colorado

#### **Corresponding Author:**

Patrick S. Hume, M.D., Ph.D. HumeP@njhealth.org

#### **Co-authors:**

ThomasSt@njhealth.org
Joseph.Bednarek@ucdenver.edu
JanssenW@njhealth.org
HumeP@njhealth.org



# **Author Questionnaire**

- **1. Microscopy**: Does your protocol demonstrate the use of a dissecting or stereomicroscope for performing a complex dissection, microinjection technique, or similar? **N**
- 2. Software: Does the part of your protocol being filmed demonstrate software usage? N
- **3. Interview statements:** Considering the Covid-19-imposed mask-wearing and social distancing recommendations, which interview statement filming option is the most appropriate for your group? **Please select one**.
  - Statements are read by JoVE VO talent
- **3. Filming location:** Will the filming need to take place in multiple locations (greater than walking distance)? **No**

**Protocol Length** 

Number of Shots: 47

Videographer: When filming the protocol, please avoid filming the faces of any of the demonstrators



## Introduction

#### 1. Introductory Interview Statements

#### NOTE to JoVE VO Talent: Please record all introduction and conclusion statements

#### **REQUIRED:**

- **1.1.** This is an inexpensive method that combines the advantages of air inflation and vascular perfusion-fixation for preserving lungs for structural and functional analyses. [1].
  - 1.1.1. 4.7.2 for 'vascular perfusion-fixation'
- **1.2.** The main advantage of this technique is the preservation of both cell morphology and location within the airspaces of the lung. [1].
  - 1.2.1. *4.2.2*.

#### **OPTIONAL:**

- **1.3.** Care should be taken while placing the Luer stub adapter into the trachea and the perfusion needle into the right ventricle to ensure adequate inflation and fixation.
  - 1.3.1. Suggested B-roll: 3.7.1 for 'luer stub adapter'

#### **Ethics Title Card**

1.4. Procedures involving animal subjects have been approved by the Institutional Animal Care and Use Committee (IACUC) at National Jewish Health.



## Protocol

#### 2. Air-Inflation Apparatus Preparation

Videographer: When filming the protocol, please avoid filming the faces of any of the demonstrators

- 2.1. To set up the air-inflation apparatus, place a syringe for the water column into a ring holder [1] and measure a vertical height of 25 centimeters from the animal platform to 25 centimeters on the water column [2].
  - 2.1.1. WIDE: Talent placing syringe into ring holder
  - 2.1.2. Talent measuring/marking height
- 2.2. Attach the end of the water column tube to the stopcock on the air chamber [1] and attach a tube from the female Luer of the air chamber to the stopcock on the animal processing container [2].
  - 2.2.1. Talent attaching water column tube to stopcock
  - 2.2.2. Talent attaching female Luer tube to stopcock
- 2.3. Confirm that the cap to the air chamber [1] and the stopcock on the outside of the animal processing container are closed [2] and that the stopcock on the tubing leading from the water column to the air-inflation chamber is open [3].
  - 2.3.1. Cap closure being checked
  - 2.3.2. Stopcock closure being checked
  - 2.3.3. Stopcock being opened/shot of open stopcock
- 2.4. Then fill the syringe with water to the 25-centimeter mark [1]. Water will flow through the syringe and tubing into the air chamber [2]. Once the pressure has equalized, the water will stop flowing [3-TXT].
  - 2.4.1. Talent filling syringe



- 2.4.2. Water leaving syringe through tubing
- 2.4.3. Water stopping flowing TEXT: See text for water leakage correction details

#### 3. Animal Preparation

- 3.1. To prepare the lungs for inflation, make one lateral incision in the abdominal wall below the rib cage of a euthanized mouse [1] and a second, lateral, abdominal wall incision above the hips [2].
  - 3.1.1. WIDE: Talent making incision *Videographer: More Talent than mouse in shot*
  - 3.1.2. Shot of first incision, then second incision being made
- 3.2. Cut along the midline from the inferior incision toward the superior incision [1] and use blunt scissors to carefully make an incision into the lateral side of the diaphragm. The lungs should collapse as soon as the diaphragm is punctured [2-TXT].
  - 3.2.1. Incision being made between incisions
  - 3.2.2. Incision being made in diaphragm/lungs collapsing **TEXT**: **Caution**: **Do not puncture lungs**
- 3.3. Cut transversely along the diaphragm to open the thoracic cavity [1] and cut superiorly along the sternum from the xiphoid process to the jugular notch and laterally above the rib cage to fully expose the heart and lungs [2]. Videographer: This step is important!
  - 3.3.1. Diaphragm being cut
  - 3.3.2. Incision(s) being made/heart and lungs being exposed
- **3.4.** Pin down the sides of the ribcage [1] and make a midline incision in the neck above the trachea [2].
  - 3.4.1. Pin(s) being placed
  - 3.4.2. Incision being made



- 3.5. Remove the skin, muscle, thyroid gland, and connective tissue surrounding the trachea [1] and use curved forceps to slide two pieces of suture under the posterior trachea [2].
  - 3.5.1. Tissue being removed
  - 3.5.2. Suture/thread being placed
- 3.6. Use one piece of suture to hold the inflation Luer-stub adapter in place [1] and use an 18-gauge x 1-inch needle to make a small hole in the trachea [2]. Videographer: This step is important!
  - 3.6.1. Suture being placed
  - 3.6.2. Hole being made
- 3.7. Insert a 20-gauge Luer-stub adapter into the hole [1] and tie the suture around the trachea immediately distal to where the Luer-stub adapter enters the hole [2]. Videographer: This step is important!
  - 3.7.1. Adapter being inserted
  - 3.7.2. Suture being tied
- **3.8.** Then transfer the animal to the animal processing container [1] and attach the Luerstub adapter to the female Luer on the inside of the animal processing container [2].
  - 3.8.1. Talent placing animal into container *Videographer: More Talent than mouse in shot*
  - 3.8.2. Adapter being attached to Luer

### 4. Lung Air-Inflation, Perfusion, and Fixation

4.1. To inflate the lungs, place the 25-gauge x 5/8-inch needle attached to the perfusion apparatus tubing into the right ventricle of the heart [1] and cut the abdominal aorta to allow blood to drain from the heart and to promote the flow of perfusate through the lungs [2]. Videographer: This step is important!



- 4.1.1. WIDE: Talent placing needle Videographer: More Talent than mouse in shot
- 4.1.2. Shot of needle in place, then aorta being cut
- **4.2.** Open the stopcock on the outside of the animal processing container [1] and inflate the lungs at 25 centimeters of water for 5 minutes [2], while that the water level in the syringe does not decrease too quickly [3]. *Videographer: This step is important!* 
  - 4.2.1. Stopcock being opened
  - 4.2.2. Lungs being inflated
  - 4.2.3. Water level decreasing
- **4.3.** During the last minute of the lung inflation, turn on the peristaltic pump to a flow rate of 10 milliliters/minute [1]. Heparin solution should flow from the bottle through the tubing into the animal [2].
  - 4.3.1. Talent turning on pump *Videographer: This step is important!*
  - 4.3.2. Solution flowing into animal
- **4.4.** After inflating the lungs for 5 minutes, turn off the pump [1] and switch the perfusate from heparin to fixative [2].
  - 4.4.1. Talent turning off pump
  - 4.4.2. Talent selecting fixative
- **4.5.** Lower the water column syringe to 20 centimeters. It is normal for air bubbles to move within the water column as the pressure changes [1].
  - 4.5.1. Talent lowering water column
- 4.6. Check the water level in the syringe. It should be at the 25-centimeter mark [1-TXT].
  - 4.6.1. Shot of water level in syringe **TEXT: Add more H<sub>2</sub>O to syringe as necessary**



- **4.7.** Then wait 1 minute to allow the lungs to deflate from 25 to 20 centimeters of water pressure [1] before restarting the pump at a 6.5 milliliter/minute flow rate for 10-15 minutes of vascular fixative perfusion [2].
  - 4.7.1. Lungs deflating
  - 4.7.2. Fixative being perfused into lungs

#### 5. Lung Extraction

- 5.1. For extraction of the inflated and fixed lung tissue, tightly tie the second piece of thread around the trachea distal to the Luer-stub adapter [1] and remove the Luer-stub adapter from the trachea [2].
  - 5.1.1. WIDE: Talent tying suture *Videographer: More Talent than mouse in shot*
  - 5.1.2. Shot of tied suture, then adapter being removed
- 5.2. Remove the needle from the heart [1] and use blunt scissors to cut the connective tissue posterior to the mediastinum to free the lungs and heart from the thoracic cavity, taking care to avoid puncturing the lungs [2].
  - 5.2.1. Needle being removed
  - 5.2.2. Tissue being dissected
- **5.3.** Carefully remove the heart from the lungs [1] and place the lungs into 20-25 milliliters of fixative in a 50-milliliter conical tube [2].
  - 5.3.1. Heart being removed
  - 5.3.2. Talent placing lungs into tube
- 5.4. Pull the suture holding the trachea through the opening of the conical tube and secure the suture by the threads of the cap [1].
  - 5.4.1. Suture being pulled/secured



- 5.5. Then invert the tube to ensure that the buoyant, air-inflated lungs remain fully submerged in fixative [1] and process the lungs for histologic studies according to standard protocols [2].
  - 5.5.1. Tube being inverted
  - 5.5.2. LAB MEDIA: Figure 4



## Results

- 6. Results: Representative Lung Inflation, Extraction, and Histological Evaluation
  - 6.1. When the diaphragm is entered during dissection [1], the integrity of the pleural space will be abolished and the lungs should collapse [2].
    - 6.1.1. LAB MEDIA: Figure 2B
    - 6.1.2. LAB MEDIA: Figure 2B *Video Editor: please emphasize collapsed lung (white tissue)*
  - 6.2. Upon the application of 25 centimeters of water pressure [1], air will enter the lungs via the trachea and inflation should be easily observed [2].
    - 6.2.1. LAB MEDIA: Figure 2C
    - 6.2.2. LAB MEDIA: Figure 2C Video Editor: please emphasize inflated lung (white tissue)
  - 6.3. Once the lungs have fully expanded [1], the inflation pressure can be decreased to 20 centimeters to keep the lungs inflated without over-distension [2].
    - 6.3.1. LAB MEDIA: Figure 2D
    - 6.3.2. LAB MEDIA: Figure 2D Video Editor: please emphasize white tissue
  - 6.4. The lungs should remain inflated after tracheal ligation [1] and removal from the thorax [2].
    - 6.4.1. LAB MEDIA: Figures 3A and 3B *Video Editor: please emphasize white tissue in Figure 3A*
    - 6.4.2. LAB MEDIA: Figures 3A and 3B *Video Editor: please emphasize white tissue in Figure 3B*
  - **6.5.** Deflation can occur if the lungs are punctured during the animal preparation or lung extraction [1].
    - 6.5.1. LAB MEDIA: Figure 3C Video Editor: please emphasize white tissue
  - 6.6. Histological analysis of inflated lung sections [1] reveals that very few immune cells are present in the airway lumens of tissues fixed using traditional liquid-based inflation [2].



- 6.6.1. LAB MEDIA: Figure 4
- 6.6.2. LAB MEDIA: Figure 4 Video Editor: please emphasize empty space in right Figure 4A image
- **6.7.** In contrast, inflammatory cells are preserved within the airspaces of tissues fixed via vascular perfusion with air-inflation [1].
  - 6.7.1. LAB MEDIA: Figure 4 Video Editor: please emphasize cells in empty space in right Figure 4B image/arrows in right Figure 4B image



# Conclusion

#### 7. Conclusion Interview Statements

### NOTE to JoVE VO Talent: Please record all introduction and conclusion statements

- **7.1.** Following air-inflation with perfusion fixation, lung tissue may be embedded in formalin for tissue sectioning and subsequent analysis via histology techniques including staining, immunohistochemistry and immunofluorescent imaging. **[1]**.
  - 7.1.1. 5.5.1 for 'embedded in formalin'