Journal of Visualized Experiments

Functional Assessment of Intestinal Permeability and Neutrophil Transepithelial Migration in Mice Using a Standardized Intestinal Loop Model --Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video
Manuscript Number:	JoVE62093R1
Full Title:	Functional Assessment of Intestinal Permeability and Neutrophil Transepithelial Migration in Mice Using a Standardized Intestinal Loop Model
Corresponding Author:	Anny-Claude Luissint, Ph.D. University of Michigan Ann Arbor, MI UNITED STATES
Corresponding Author's Institution:	University of Michigan
Corresponding Author E-Mail:	luissint@med.umich.edu
Order of Authors:	Kevin Boerner, M.D.
	Anny-Claude Luissint, PhD
	Charles A. Parkos, M.D., PhD
Additional Information:	
Question	Response
Please specify the section of the submitted manuscript.	Immunology and Infection
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Ann Arbor, Michigan, United States of America
Please confirm that you have read and agree to the terms and conditions of the author license agreement that applies below:	I agree to the Author License Agreement
Please provide any comments to the journal here.	Co-Corresponding Authors for the manuscript are: Anny-Claude Luissint, Charles A. Parkos

1 TITLE:

2 Functional Assessment of Intestinal Permeability and Neutrophil Transepithelial Migration in

Mice Using a Standardized Intestinal Loop Model

AUTHORS AND AFFILIATIONS:

Kevin Boerner¹, Anny-Claude Luissint^{1*}, Charles A. Parkos^{1*}

¹Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA

10 Email addresses of co-authors:

11 Kevin Boerner (kboerner@med.umich.edu)

13 Co-Corresponding authors:

14 Anny-Claude Luissint (luissint@med.umich.edu)

15 Charles A. Parkos (cparkos@med.umich.edu)

KEYWORDS:

intestinal barrier function, mucosal immunology, intestinal epithelium, permeability assay, leukocyte transepithelial migration assay, ileal loop, proximal colon loop, fluorescent isothiocyanate (FITC)—dextran, chemokine, proinflammatory cytokine

SUMMARY:

Dysregulated intestinal epithelial barrier function and immune responses are hallmarks of inflammatory bowel disease that remain poorly investigated due to a lack of physiological models. Here, we describe a mouse intestinal loop model that employs a well-vascularized and exteriorized bowel segment to study mucosal permeability and leukocyte recruitment in vivo.

ABSTRACT:

The intestinal mucosa is lined by a single layer of epithelial cells that forms a dynamic barrier allowing paracellular transport of nutrients and water while preventing passage of luminal bacteria and exogenous substances. A breach of this layer results in increased permeability to luminal contents and recruitment of immune cells, both of which are hallmarks of pathologic states in the gut including inflammatory bowel disease (IBD).

Mechanisms regulating epithelial barrier function and transepithelial migration (TEpM) of polymorphonuclear neutrophils (PMN) are incompletely understood due to the lack of experimental in vivo methods allowing quantitative analyses. Here, we describe a robust murine experimental model that employs an exteriorized intestinal segment of either ileum or proximal colon. The exteriorized intestinal loop (iLoop) is fully vascularized and offers physiological advantages over ex vivo chamber—based approaches commonly used to study permeability and PMN migration across epithelial cell monolayers.

We demonstrate two applications of this model in detail: (1) quantitative measurement of intestinal permeability through detection of fluorescence-labeled dextrans in serum after

intraluminal injection, (2) quantitative assessment of migrated PMN across the intestinal epithelium into the gut lumen after intraluminal introduction of chemoattractants. We demonstrate feasibility of this model and provide results utilizing the iLoop in mice lacking the epithelial tight junction-associated protein JAM-A compared to controls. JAM-A has been shown to regulate epithelial barrier function as well as PMN TEpM during inflammatory responses. Our results using the iLoop confirm previous studies and highlight the importance of JAM-A in regulation of intestinal permeability and PMN TEpM in vivo during homeostasis and disease.

The iLoop model provides a highly standardized method for reproducible in vivo studies of intestinal homeostasis and inflammation and will significantly enhance understanding of intestinal barrier function and mucosal inflammation in diseases such as IBD.

INTRODUCTION:

The intestinal mucosa encompasses a single layer of columnar intestinal epithelial cells (IECs), underlying lamina propria immune cells and the muscularis mucosae. Besides its role in the absorption of nutrients, the intestinal epithelium is a physical barrier that protects the body interior from luminal commensal bacteria, pathogens, and dietary antigens. In addition, IECs and lamina propria immune cells coordinate the immune response inducing either tolerance or response depending on the context and stimuli. It has been reported that the disruption of the epithelial barrier can precede the onset of pathologic mucosal inflammation and contribute to inflammatory bowel disease (IBD) encompassing both ulcerative colitis and Crohn's disease¹⁻⁷. Individuals with ulcerative colitis present excessive transepithelial migration (TEpM) of polymorphonuclear neutrophils (PMN) forming crypt abscesses, a finding that has been associated with severity of disease^{8,9}. Although compromised epithelial barrier function and excessive immune responses are hallmarks of IBD, there is a lack of experimental in vivo assays to perform quantitative assessments of intestinal permeability and immune cell recruitment into the intestinal mucosa.

The most common methods used to study intestinal epithelial permeability and PMN TEpM employ ex vivo chamber–based approaches using IEC monolayers cultured on semi-permeable porous membrane inserts¹⁰⁻¹². The epithelial barrier integrity is monitored either by measurements of transepithelial electrical resistance (TEER) or the paracellular flux of the Fluorescein isothiocyanate (FITC)-labeled dextran from apical to basal compartment¹³⁻¹⁵. Similarly, PMN TEpM is typically studied in response to a chemoattractant that is added in the lower chamber¹⁶. PMN are placed in the upper chamber and after an incubation period, PMN that have migrated into the basal compartment are collected and quantified. While these methods are useful, easy to perform and very reproducible, they are obviously reductionist approaches and do not necessarily represent an accurate reflection of in vivo conditions.

 In mice, a common assay to study intestinal paracellular permeability is by oral gavage of FITC-dextran and subsequent measurement of FITC-dextran appearance in the blood serum^{13,17}. The disadvantage of this assay is that it represents an assessment of overall barrier integrity of the gastrointestinal tract rather than that of regional intestinal contributions. In addition, Evans blue is commonly used to evaluate vascular leakage in vivo¹⁸ and has also been employed to evaluate

intestinal mucosal permeability in mouse and rat¹⁹⁻²¹. The quantification of Evans blue in the intestinal mucosa requires extraction from tissue employing incubation in formamide overnight. Therefore, the same tissue cannot be used to study intestinal epithelial permeability and neutrophil infiltration.

Here we highlight a simple protocol that reduces the number of animals needed to collect reproducible data on colonic mucosal permeability and leukocyte transepithelial migration in vivo. We, therefore, recommend the use of FITC-dextrans that are easily detectable in blood serum without compromising the integrity of intestinal loops which can be harvested for further analysis. Of note, the intestinal ligated loops have been used in various species (including mouse, rat, rabbit, calf) to study bacterial infection (such as *Salmonella, Listeria monocytogenes and Escherichia coli*)²²⁻²⁵ as well as intestinal permeability²⁶; however, to the best of our knowledge there are no studies investigating mechanisms of PMN TEpM in specific regions in the intestine such as ileum or colon that are commonly involved in IBD.

Here we describe the mouse intestinal loop (iLoop) model that is a robust and reliable microsurgical in vivo method that employs a well-vascularized and exteriorized intestinal segment of either the ileum or proximal colon. The iLoop model is physiologically relevant and allows the assessment of intestinal barrier integrity and PMN TEpM on living mice under anesthesia. We demonstrate two applications: 1) quantification of serum levels of 4 kDa FITC-dextran after intraluminal administration in the iLoop 2) quantification of transmigrated PMN in the iLoop lumen after intraluminal injection with the potent chemottractant Leukotriene B_4 (LTB₄)²⁷. Moreover, utilizing the iLoop model with Jam-a –null mice or mice harboring selective loss of JAM-A on IECs (*Villin-cre;Jam-a* f^{I/f_1}) compared to control mice, we are able to corroborate previous studies that have reported a major contribution for tight junction-associated protein JAM-A to intestinal permeability and neutrophil transmigration $^{15,28-31}$.

The iLoop model is a highly functional and physiological method that can be used to corroborate in vitro assays. Furthermore, this is a versatile experimental model that allows the study of various reagents that can be injected into the loop lumen, including chemokines, cytokines, bacterial pathogens, toxins, antibodies and therapeutics.

PROTOCOL:

All animal experiments were conducted in accordance with the guidelines and policies of the National Institutes of Health and approved by the Institutional Animal Care & Use Committee at the University of Michigan.

1. Preoperative preparation

NOTE: This method was generated employing adult mice from C57BL/6 genetic background, aged 8-12 weeks. All mice were kept under strict specific pathogen free conditions with ad libitum access to normal chow and water. Results were obtained using C57BL/6, Jam-a - null mice ($Jam-a^{-/-}$) or mice harboring selective loss of JAM-A on IECs (Villin-cre; $Jam-a^{fl/fl}$) and littermate $Jam-a^{fl/fl}$ controls as previously described³⁰.

134135

1.1. Area preparation

136

1.1.1. Perform surgery in clean area. The intestinal Loop model, however, is a non-survival surgery that does not require aseptic/sterile technique. Observe veterinary sanitation practices and use cleaned surgical instruments (i.e., scrubbed with soap, rinsed with water followed by 70% ethanol).

141

1.1.2. Turn on a temperature-controlled surgical board (or heating pads) and adapted light source to keep animal from hypothermia during the anesthesia and surgery.

144

145 1.1.3. Prepare ligatures by cutting 6 cm segments of non-absorbable 4-0 silk surgical sutures.

146

- 1.1.4. Prepare cotton gauzes (5 cm x 5 cm) that are cut in the center following an ellipsoid shape.
- 148 These will be used to cover the midline laparotomy and prevent direct contact between the
- 149 exteriorized iLoop and animal fur. Soak the cut gauzes in warm Hanks' Balanced Salt Solution
- 150 (HBSS) in a petri dish container.

151

152 1.1.5. Prepare wet cotton swabs soaked in warm HBSS that will be used to handle organs and exteriorized iLoop.

154 155

1.1.6. Prepare 10 mL syringe filled with warm HBSS and attach to a yellow feeding tube. This syringe will be used for moisturizing exposed tissues during surgery and to gently flush the iLoop of fecal content.

157158159

156

1.2. Animal preparation

160 161

162163

1.2.1. Anesthetize the animal in accordance with the approved animal protocol. In this protocol a mix of isoflurane and oxygen is administered through an anesthesia vaporizer. According to manufacturer's instructions, adjust oxygen flow rate to 1 L/min. Set the vaporizer to 5% and precharge the induction chamber. After 5 min, reduce isoflurane vaporizer to 2% - 2.5%.

164 165

1.2.2. Place the animal in the induction chamber for 3 min – 5 min, then transfer animal to a
 heated surgery board and connect an anesthesia nosecone plug. Restrain the animal in supine
 position by the four limbs using adhesive tape.

169

NOTE: As an anesthesia alternative, a mixture of ketamine (80 mg/kg - 100 mg/kg) and xylazine (5 mg/kg - 10 mg/kg) diluted in saline solution (0.9% NaCl) can be administrated by intraperitoneal injection. Anesthesia should be maintained throughout the surgery by intramuscular administration of ketamine/xylazine (at 0.1 - 0.25 times of initial doses) to ensure anesthetic depth. If available, an isoflurane anesthesia vaporizer is highly recommended to assure better reproducibility, survivability and prevent animal pain.

177 1.2.3. Apply ophthalmic ointment to both eyes to prevent corneal desiccation.

1.2.4. Perform a physical exam that includes heart rate (around 500 beats/min) and rhythm, mucous membrane color (pink), capillary refill time (< 2 s), respiratory rate (not lower than 40 – 60 breaths/min), and temperature (36.5 °C)³².

1.2.5. Before proceeding to the next steps, assess anesthetic depth by pedal withdrawal reflex. Employ a painful stimulus (pinch) of the skin between the toes and/or toe pads. Mouse will respond by contracting and removing its leg. This pedal reflex disappears when animal is anesthetized deeply.

NOTE: Monitoring of vitals and pedal reflex are recommended throughout anesthesia at minimum every 15 min. Institutional Animal Care and Use Committee (IACUC) guidelines for evaluation of anesthetic depth recommend monitoring of the following: (a) color of tail, foot and mucous membrane (such as tongue). Color pink as normal and pale or blue as indicative of decreased blood perfusion or respiratory distress; (b) evaluation of the breathing pattern as regular versus irregular breaths. A rectal temperature probe, rodent oximeter and heart rate monitors can be used for the assessment of body temperature, heart and respiratory rates, respectively.

2. Generation of the ileal loop

2.1. Skin preparation: Scrub fur of the abdominal midline with alcohol swabs or gauze sponge soaked with 70% Ethanol. Do not wet a wide area of fur with alcohol to prevent hypothermia.

2.2. Using scissors, perform a midline laparotomy. Make a horizontal incision in the middle of the abdomen (about 2 cm in length) and expose the peritoneum. Be careful to not injure intraabdominal organs.

2.3. Place pre-cut wet cotton gauze over the exposed intra-abdominal cavity.

2.4. Use wet cotton swabs to mobilize and exteriorize the caecum. Carefully place the caecum on the wet cotton gauze.

NOTE: Caecum is localized in the left caudal quadrant of the abdominal cavity in a majority of mice independent of the sex of the animal.

2.5. Use wet cotton swabs to mobilize and gently exteriorize the ileum of which the terminal section (distal end) is attached to the caecum (**Figure 1B**).

2.6. Deploy at least 6 cm of terminal ileum on the wet cotton gauze without disruption of the mesenteric vessels and blood supply. Blood supply is maintained if there is no bleeding and the tissue maintains its pink color (**Figure 1B**).

NOTE: Avoid drying of exposed tissues by maintaining tissues moist at all times with warm HBSS (every 2 – 3 min) using 10 mL syringe attached to a yellow feeding tube (step 1.1.6).

223

224 2.7. Close to the caecum, identify the major artery supplying the ileum in the mesentery. Then locate two ligation sites in the mesentery that are free of critical blood vessels.

226

228 2.8. Using blunt tissue forceps, firmly grab the terminal ileum (closest to the caecum) and using fine tip forceps, fenestrate the mesentery avoiding blood vessels. Place silk suture across the perforation and tie a surgical knot to create the first ligation (distal end of the loop).

230

2.9. Use the ruler to measure 4 cm away from the first ligature and create the second ligature (proximal end of the loop) as mentioned in step 2.8 (**Figure 1C**).

233

234 2.10. With fine scissors carefully cut next to each ligation to isolate the 4 cm ileal loop, keeping intact blood supply and mesenteric membrane.

236

NOTE: Cut off both ends of the exteriorized segment of the iLoop, then flush gently as a necessary step that prevents interference with luminal contents (fecal matter), thus facilitating even dispersion of FITC-dextrans or chemotactic stimuli across the entire length of the isolated segment as well as allowing for more accurate quantification of leukocytes by flow cytometry. This procedure also allows uniform distension of the mucosa after injection of specified volumes of reagent and better reproducibility between animals.

243

2.11. Gently flush the content of the ileal loop segment with warm HBSS using a flexible yellow feeding tube attached to a 10 mL syringe (see step 1.1.6).

246

247 2.12. Ligate the two cut ends of the flushed ileal loop using silk suture.

248

2.13. Use a 1 mL syringe with 30 G needle to slowly inject 250 μL of reagent such as FITC dextrans (step 4.2) or chemokine (step 5.3) into the intestinal lumen. The ileal loop will inflate
 causing a moderate distension of the mucosa (Figure 1D).

252

NOTE: Inject reagent into the loop lumen on the opposite side of the mesenteric artery. Be careful not to pull out the ileal loop from the animal while injecting to avoid tearing blood vessels and induce bleeding.

256

257 2.14. Using wet cotton swabs, gently put back the ileal loop, proximal ileum and caecum.

258

259 2.15. Use a needle holder, anatomical forceps and 3.0 non-absorbable silk sutures with reverse cutting needle to close the abdominal wall.

261

262 2.16. Place the animal in a temperature-regulated anesthesia chamber for the incubation period.

3. Generation of the proximal colon loop (pcLoop)

NOTE: For details about mice that were used for the generation of the pcLoop, see the information provided at the beginning of the protocol section.

3.1. Perform steps 2.1. – 2.4. as described above for the ileal loop.

3.2. Using wet cotton swabs, exteriorize the entire ileum and place it on the top of a wet cotton gauze. Identify the proximal colon and the blood supply located in the mesocolon. Mobilize the proximal colon and by using fine tip forceps create the first ligature in an area free of vessels in the mesocolon at about 0.5 cm distal from the caecum (**Figure 2B**).

278 3.3. Measure 2 cm from the first ligature and create a second ligature at an area free of blood supply in the mesocolon (**Figure 2C**).

3.4. Using fine scissors carefully cut next to each ligation to isolate a 2 cm long pcLoop.

NOTE: As mentioned in the note under step 2.10, it is important to cut off both ends to isolate a pcLoop that is gently cleaned of luminal contents. Carefully cut through the colonic tissue and mesocolon to prevent small vessels from bleeding into the intestinal lumen. If necessary, use thermal cautery to limit bleeding at the incision site.

288 3.5. Gently flush the pcLoop with warm HBSS to remove feces using a flexible yellow feeding tube attached to 10 mL syringe (see step 1.1.6).

3.6. Ligate the two cut ends of the flushed pcLoop using silk suture.

3.7. Use a 1 mL syringe with 30G needle to slowly inject 200 μL of reagent such as FITC-dextrans (step 4.2) or chemokine (step 5.3) into the intestinal lumen. The pcLoop will inflate causing a moderate distension of the mucosa (**Figure 2D**).

NOTE: Inject the reagent into the pcLoop lumen on the opposite side of the mesenteric artery. Ensure consistency between animals and create a 2 cm long pcLoop to ensure equal distension of the mucosa.

301 3.8. Utilize wet cotton swabs to gently place back the ligated pcLoop, ileum and caecum into the abdominal cavity.

304 3.9. Use a needle holder, anatomical forceps and 3.0 non-absorbable silk sutures with reverse cutting needle to close the abdominal wall.

307 3.10. Place the animal in a temperature-regulated anesthesia chamber for the incubation period.

309
310
311 4. Quantitative assessment of intestinal permeability: 4kDa FITC-dextran assay
312

Perform an ileal loop or pcLoop (as described above).

4.2. Using a 1 mL syringe with 30 G needle, inject into the intestinal lumen either 250 μ L (ileum – step 2.13) or 200 μ L (colon – step 3.7) of 4 kDa FITC-dextran solution (1 mg / mL in HBSS). Keep the unused FITC-dextran solution protected from light to prepare the standard

318 curve after serum collection.

4.1.

4.3. For the ileal loop follow steps 2.14 to 2.16, for the pcLoop steps 3.8 to 3.10. Briefly, put organs and iLoop back in place into the abdominal cavity, close the abdominal wall.

323 4.4. Place the animal for 120 min in a heated anesthesia chamber.

4.5. After the incubation period open the abdominal wall, gain access to the heart and
 perform cardiac puncture using a 1 mL syringe with 25G needle to collect the blood. Transfer
 blood into a 1.3 mL serum clot activator tube, mix gently, and keep on ice protected from light.
 Collect at least 500 μL of blood per mouse.

NOTE: Animals are euthanized when being under anesthesia by using a physical method such as decapitation or cervical dislocation, and in accordance with the approved animal protocol.

- 4.6. Centrifuge serum clot activator tube for 5 min at $10,000 \times g$ at room temperature according to manufacturer's recommendations. Collect the serum (supernatant) and transfer into a 1.7 mL centrifuge tube. Keep the tube on ice and protected from light.
- 337 4.7. Quantification of fluorescence in blood serum
- 4.7.1. Prepare a standard curve of FITC-dextran 4 kDa in serum of control mice (saline or HBSS is a valid alternative). Create a two-fold serial dilution with a starting concentration of 1 mg/mL FITC-dextran. FITC-dextran 4kDa concentrations that are measured range between 0.25 mg/mL and 2 μ g/mL.
 - 4.7.2. Transfer equal volume of the sample and standards to a black 96-well plate (flat bottom) and measure FITC in a fluorescence plate reader (Excitation 490 nm, Emission 520 nm), according to manufacturer's instructions and published protocols³³. Calculate the FITC concentration based on the standard curve or present permeability values as fold-change normalized to the experimental control group.
 - 5. Quantitative assessment of migrated PMN into the intestinal lumen after intraluminal stimulation with chemokines

- NOTE: Very few PMN reside in the intestinal mucosa at the baseline level. Pretreatment of
- animals with pro-inflammatory cytokines results in an inflammatory environment that
- 355 facilitates PMN recruitment from bloodstream into the intestinal mucosa.

357 5.1. Using a 1 mL syringe with 30 G needle, perform intraperitoneal (i.p.) injection of a sterile 358 solution of 100 ng of Tumor Necrosis Factor- α (TNF α) and 100 ng of Interferon- γ (INF γ) in 200 μL of Phosphate Buffered Saline (PBS).

360

361 5.2. After 4 – 24 h of pretreatment with pro-inflammatory cytokines, perform an ileal loop or pcLoop (as described above).

363

5.3. Using a 1 mL syringe with 30 G needle, inject into the intestinal lumen either 250 μ L (ileum – step 2.13) or 200 μ L (colon – step 3.7) of chemoattractant solution Leukotriene B4 (LTB₄) 1 nM in HBSS.

367

NOTE: Leukotriene B4 (LTB₄) is used in this protocol as a potent chemoattractant for PMN. Other chemoattractants such as N-Formylmethionyl-leucyl-phenylalanine (fMLF) or chemokine (C-X-C motif) ligand 1 (CXCL1/KC) can also be used to induce significant recruitment of PMN into the colonic lumen³⁰.

372

5.4. For the ileal loop follow steps 2.14 to 2.16. For the pcLoop follow steps 3.8 to 3.10. Briefly, put organs and iLoop back in place into the abdominal cavity, close the abdominal wall.

375

376 5.5. Place the animal for 60 min in a heated anesthesia chamber.

377

378 5.6. Collection of the intestinal loop content

379

5.6.1. Prepare solutions and store on ice: For the ileal loop and pcLoop, prepare a wash buffer
 containing 2 mM Ethylenediaminetetraacetic acid (EDTA), 5 mM Dithiothreitol (DTT) and 2%
 FBS in sterile PBS without calcium and magnesium.

383

5.6.2. After the incubation period and under anesthesia maintenance, open the abdominal wall and pull out the iLoop (ileal loop or pcLoop). Euthanize animals when being under anesthesia by using a physical method such as decapitation or cervical dislocation, and in accordance with the approved animal protocol.

388

5.6.3. Rinse loop with cold PBS to remove any residual blood contaminant and absorb excess of PBS with tissue wipes. Carefully collect the loop content into a 1.7 mL centrifuge tube (about 250 μ L for ileal loop and 200 μ L for pcLoop). Flush the loop with 500 μ L cold wash buffer and, immediately after collection, place the tube on ice.

393

NOTE: DTT helps to dissolve mucus. If iLoop luminal content is very viscous (depending on the mouse genetic background), dilute it 1:2 or 1:3 with wash buffer containing DTT.

- 397 5.6.4. Pass the luminal content solution through a 35 μm nylon mesh filter using a 5 mL round-
- 398 bottom tube with cell strainer cap. This step helps to remove tissue fragments and cell
- aggregates. Rinse the cell strainer with 1 mL of wash buffer.

5.6.5. Centrifuge tube at 400 x g for 5 min at 4 °C. Discard supernatant, rinse pellet with 500 μ L 402 -1 mL wash buffer, then centrifuge at 400 x g for 5 min, 4 °C.

403

5.6.6. Resuspend iLoop luminal cell pellet in 200 μL of flow cytometry buffer (FCB) containing
 2% FBS in sterile PBS without calcium and magnesium. Cells can be kept in a tube or transferred
 to a 96-well round bottom plate for flow cytometry staining and analysis.

407

408 5.7. Flow Cytometry staining and analysis

409

410 5.7.1. Compensation controls: white blood cells

411

- 5.7.1.1. Prepare a 1 mL syringe with 25 G needle pre-filled with sterile 0.5 M EDTA (pH 8.0).
- 413 10% EDTA per expected blood volume (100 μL of EDTA for 1 mL blood).

414

5.7.1.2. Collect blood under anesthesia by cardiac puncture. Transfer blood into a 1.7 mL tube, then centrifuge at 400 x *q* for 10 min, 4 °C.

417

NOTE: While the mouse is under anesthesia use a physical method to confirm death in accordance with the approved animal protocol (such as cervical dislocation).

420

- 421 5.7.1.3. Aspirate the supernatant. Resuspend the pellet in 1 mL of Ammonium-Chloride-
- 422 Potassium (ACK) lysis buffer for the lysis of red blood cells. Incubate for 3 min 5 min on ice.
- 423 Centrifuge 400 x g for 5 min, 4 °C. If the pellet is still red, repeat this ACK lysis buffer step until 424 pellet turns white.

424

425

5.7.1.4. Resuspend the pellet in 1 mL FCB and plate $0.5 \times 10^6 - 1 \times 10^6$ of cells per well. Prepare five wells of a 96-well round-bottom plate. Place the plate on ice.

428

NOTE: Use the same 96-well plate that contains the loop luminal contents (see step 5.6.6).

430

431 5.7.2. Flow cytometry staining

432

5.7.2.1. Centrifuge the 96-well plate for 5 min at 400 x g, 4 °C. Discard the supernatant and resuspend the pellets with 50 μ L of Purified Rat Anti-Mouse CD16/CD32 as an Fc-Block (1 μ g per 100 μ L of FCB). Incubate for 5 min – 10 min on ice.

436

5.7.2.2. Immunostaining of the iLoop luminal content: Prepare a mixture containing all fluorochrome-conjugated antibodies (1:50 dilution in FCB): anti-CD45-PerCP, anti-CD11b-PE and anti-Ly-6G-Alexa Fluor 647. Add 50 μ L of the combination per well, for a final volume of 100 μ L.

- 441 5.7.2.3. Immunostaining of the white blood cells for compensations (1:50 dilution in FCB): Use
- 442 50 μL of FCB alone (unstained sample, well 1), 50 μL of each individual fluorochrome-conjugated
- 443 antibody (wells 2 – 4), 50 μL of the combination of all fluorochrome-conjugated antibodies (well
- 444 5). Final volume of 100 μL.

446 5.7.2.4. Incubate the plate for 30 min on ice protected from light.

447

5.7.2.5. Centrifuge the plate for 5 min at 400 x g, 4 °C. Discard the supernatant and wash with 448 449 200 μL of FCB. Repeat this washing step twice.

450

451 5.7.2.6. Add FCB 150 µL/well to the blood samples.

452

453 5.7.2.7. Add 100 μL/well FCB to the iLoop luminal content sample. Then 50 μL/well of fluorescent 454 counting beads.

455

456 5.7.3. Flow cytometry analysis

457

458 5.7.3.1. Gate for CD45 positive events and for the expression of Ly-6G-/Gr-1 and CD11b³⁰.

459

460 5.7.3.2. Use 100 μ L of the sample volume as a stop condition.

461

462 5.7.3.3. Calculate the absolute number of PMN that has migrated into the iLoop lumen following 463 the information provided by the manufacturer of the fluorescent counting beads.

464

465

466

NOTE: Data may be presented as (1) total number of PMN in the lumen^{30,34,35}, (2) number of PMN per gram of tissue as well as (3) number of PMN per mm³ by using the formula for volume of a cylinder: $V = \pi(pi) r 2 h$ (V for volume, r for radius and h for height).

467 468 469

REPRESENTATIVE RESULTS:

470 A schematic representation of the ileal loop and pcLoop models is depicted in Figure 1 and Figure 471 2, respectively. The anatomical pictures display the critical steps of the procedure including 472 exteriorization of the intestinal segment (Figure 1B and Figure 2B), identification of an 473 appropriate location for ligations that allows minimal disturbance of blood supply (Figure 1C and 474 Figure 2C) and cleaning followed by ligation of cut ends of the iLoop that can be filled with 475 476

reagent solution (Figure 1D and Figure 2D). Importantly, the iLoop model preserves vital blood supply and allows physiological absorption of applied reagents such as FITC-dextrans or the 477 potent PMN chemoattractant LTB₄. At the end of the assay, the iLoop should be inflated (as seen 478 in Figure 1D and Figure 2D) and display normal mucosal perfusion with bright-red mesenteric

- 479 vessels. Depending on the assay, blood is collected to measure FITC-dextran in serum or iLoop
- 480 luminal contents are processed for quantification of PMN TEpM prior to euthanizing the animal.

- In order to verify the accuracy of the iLoop model for the assessment of intestinal permeability, 482 483 a FITC-dextran pcLoop assay was performed to evaluate the role of TJ-associated protein JAM-A
- 484 in the regulation of intestinal barrier function in vivo. Of note, it has been reported that JAM-A

deficiency lead to increased epithelial intestinal permeability in vitro²⁸ and after oral gavage in vivo²⁹. Herein, using the pcLoop model, a 2.5-fold increase in 4 kDa FITC-dextran serum levels was quantified in *Jam*-a-null mice (*Jam*- $a^{-/-}$) compared to controls (*Jam*- $a^{+/+}$) (**Figure 3A**)³⁰. Furthermore, similar results were obtained with mice harboring selective loss of JAM-A on IECs (*Villin-cre;Jam-a* ^{fl/fl}) compared to littermate controls (*Jam-a* ^{fl/fl}) (**Figure 3B**)³⁰. Therefore, the pcLoop model was able to corroborate previous studies that have reported a positive contribution for JAM-A to the intestinal barrier function.

Then pcLoop model was employed to study PMN recruitment into the intestinal mucosa and subsequent TEpM in vivo. As shown in Figure 4A, the number of PMN in the luminal content of the pcLoop was quantified by flow cytometry analysis. PMN were defined as cells positive for each of the cell-surface makers CD45, CD11b and Ly6G36. Circulating white blood cells were used as positive control for gating strategy. As expected, the number of PMN present in a segment of proximal colon similar to the pcLoop was low under physiological conditions (Figure 4B). Pretreatment with pro-inflammatory cytokines TNF α and IFN γ prior to surgery resulted in augmented numbers of PMN recruited in the pcLoop lumen. The administration of the PMN chemoattractant LTB4 led to a dramatic increase in PMN counts supporting a LTB4-dependent PMN recruitment (Figure 4B). Immunohistochemical staining of PMN in the colonic mucosa corroborate the elevated recruitment of PMN following stimulation with cytokines and LTB4 when compared with cytokine treatment without LTB₄ (Figure 4C)³⁰. The pcLoop model was employed to study the contribution of JAM-A to PMN TEpM by using Villin-cre;Jam-a fl/fl mice. Loss of epithelial JAM-A led to a reduced number of transmigrated PMN in the colonic lumen compared to littermate controls (Figure 4D)³⁰. These findings strongly support a role for JAM-A in facilitating PMN migration across the intestinal epithelium and provide complementary insights to studies that have reported the involvement of JAM-A in PMN migration across vascular endothelium in various models of inflammation^{31,37,38}.

FIGURE AND TABLE LEGENDS:

Figure 1: The ileal loop model. (A) Schematic overview of the ileal loop model. Median laparotomy is performed on mice under anesthesia and placed on a temperature-controlled surgery board. (B) Exteriorization of the caecum (*), ileum and mesentery. Two adequate sites for ligation are identified (1,2). (C) Isolate a segment of 4 cm length: the first ligature (1) is placed close to the ileo-caecal junction and a second ligature (2) is placed 4 cm away from the first ligature. (D) Two small incisions are made in the mesentery (1, 2) to create a 4 cm length ileal loop. After removal of luminal content and ligation of cut-ends, reagents such as fluorescent markers and chemoattractants can be injected into the lumen. The ileal loop is well vascularized (black arrowheads).

Figure 2: The proximal colon loop model. (A) Schematic overview of the pcLoop model. Median laparotomy is performed on mice under anesthesia placed on a temperature-controlled surgery board. (B) Exteriorization of the caecum (*), proximal colon, mesocolon and ileum. Two adequate sites for ligation are identified (1,2). (C) The first ligature (1) is placed close to the caecum and a second ligature (2) is placed 2 cm more distal from the first ligature. (D) The pcLoop is exteriorized, cleaned of luminal content and inflated with reagents such as fluorescent markers

and chemoattractants. The pcLoop is a well-vascularized 2 cm segment of proximal colon (black arrowheads indicate blood supply).

530531532

533

534

535536

537

538539

529

Figure 3: JAM-A regulates intestinal permeability in vivo. (A) JAM-A deficiency ($Jam-a^{-/-}$) led to increased colonic permeability to 4 kDa FITC-dextran. $Jam-a^{-/-}$ (13x animals; black dots) were compared with $Jam-a^{+/+}$ controls (12x animals; white dots). 4 kDa FITC-dextran (1 mg/mL) in HBSS was injected into the pcLoop lumen. Fluorescence was measured in blood serum after a 120 min incubation period. Data are expressed as means \pm SEM; n=3 independent experiments. ****P<0.0001; Mann–Whitney U test. (B) Increased colonic permeability to 4 kDa FITC-dextran in *Villincre*; $Jam-a^{fl/fl}$ (18x animals, black dots) compared to controls ($Jam-a^{fl/fl}$, 12x animals, white dots). Data are means \pm SEM; n=4 independent experiments. ****P<0.0001; Mann–Whitney U test. This figure has been modified from Flemming S, Luissint AC et al.³⁰.

540541542

543544

545

546

547

548

549

550

551

552553

554

555

556557

Figure 4: JAM-A promotes LTB₄-dependent recruitment of PMN into the lumen of the pcLoop. (A) Gating strategy to quantify PMN (CD45+, CD11b+, and Ly-6G/Gr1+ cells) in luminal content by flow cytometry with fluorescent counting beads. Leukocytes from blood samples were used as a positive control for the gating strategy. (B) Number of PMN recruited into the pcLoop lumen after cytokine (TNF α +IFN γ , 100ng each) treatment (10x animals; white dots) or after a combination of cytokines and 1 nM LTB₄ (10x animals; black dots). Black squares represent the number of PMN at baseline as assessed in an intact colonic segment identical in length to the pcLoop that was not subjected to any surgery or treatment with proinflammatory cytokines and LTB₄ (9x animals). Data are the mean \pm SEM (n=3 independent experiments), Kruskal–Wallis test with Dunn's multiple comparison test. *P < 0.05, ****P < 0.0001. (C) Immunohistochemical staining of PMN (anti-Ly6G/Gr1 antibody) in the epithelium of the pcLoop after treatment with cytokines alone (left panel, TNF α +IFN γ) or a combination of cytokines and LTB₄ (right panel). The number of PMN recruited in the pcLoop is increased in the presence of LTB₄ (black arrowheads). Scale bar: 100 μm. (**D**) Number of PMN recruited in the pcLoop lumen in *Villin-cre*; *Jam-a^{fl/fl}* mice (11x animals; black dots) compared to Jam-a^{fl/fl} mice (10x animals; white dots) in response to 1 nM LTB₄. Data are means \pm SEM; n=3 independent experiments. *P < 0.05; 2-tailed Student's t test. This figure has been modified from Flemming S, Luissint AC et al.³⁰.

558559560

561

562

563

564

DISCUSSION:

The mechanisms responsible for dysregulation of intestinal barrier function and immune cell recruitment under pathologic conditions such as IBD are incompletely understood due to a lack of experimental in vivo methods. Here, we detail a robust in vivo murine model that employs a well-vascularized exteriorized intestinal segment of either ileum or proximal colon and allows for assessment of intestinal permeability, neutrophil migration studies as well as other applications.

565566567

568

569

570

571

572

The iLoop is a non-recovery surgery that is performed on live animals. Anesthesia must be continuously monitored over the course of the experiment and evaluation of depth of sedation is mandatory. The most critical steps include (1) the isolation of the iLoop, (2) ligation of cut ends and, (3) the inflation of the iLoop by intraluminal injection of reagent solution. In each of these steps, bleeding can occur, compromising the blood supply of the iLoop and affecting accuracy of the results. Of note, in rare instances of intraluminal bleeding during the PMN TEPM assay, the

flow cytometry gating strategy presented here will help to distinguish transmigrated PMN from PMN originating directly from the bloodstream (non-migrated PMN). Transmigrated PMN collected in the iLoop lumen express high levels of surface marker CD11b¹⁰ compared to circulating PMN (**Figure 4D**).

Given that the iLoop allows quantitative analyses of intestinal permeability and migration of blood PMN into the intestinal lumen, it is important to standardize the size of the absorbing mucosal area and the blood supply. In order to ensure consistency between animals, it is essential that a correct length of intestinal segment is exteriorized. The iLoop should be 4 cm for the ileal loop and 2 cm for the pcLoop and be perfused by comparable blood supply. Inconsistency in these parameters will also result in unequal distension of the iLoop after intraluminal injection of reagents and augment variability inter and between experimental groups. Furthermore, to avoid over-distension of the iLoop, we recommend that no more than 250 μ L of reagent solution be injected in the lumen for the ileal loop and 200 μ L for the pcLoop, respectively.

There are some limitations inherent with the nature of the procedure. The iLoop is a non-recovery surgery that is performed on live animals. This is a technically challenging microsurgical method; however, personnel can acquire surgical skills through practice. The average duration of the surgery should be short (maximum 15 min). We recommend 120 min as an ideal incubation time for measuring intestinal permeability and 60 min for the PMN TEpM. Incubation times can be reduced, but extended timepoints might affect the overall inflammatory state of the animal under anesthesia. In addition, the protocol from the start of the surgical procedure to sample collection / analysis cannot be paused.

This iLoop model presents key advantages with respect to existing methods: (1) the iLoop is fully vascularized and is more physiologically relevant, (2) in contrast to the oral gavage method that assesses the overall gastrointestinal tract integrity and depends on gastrointestinal motility¹³, the iLoop allows to study the properties of specific localized areas in the intestine (terminal ileum or proximal colon) that are commonly involved in IBD, (3) the iLoop is the first in vivo model that allows the quantitative study of PMN TEpM into the gut lumen as well as other parts of the intestinal mucosa, including lamina propria and epithelial factions^{30,35}. It is possible to employ high versus low molecular weight FITC-labeled dextrans (4 to 150 kDa) to evaluate both size selectivity and/or severity of epithelial barrier defects in knockout/knock-in mice or various experimental models including, but not limited to, intestinal inflammation. In addition FITClabeled dextrans can be quantified in other organs such as the liver³⁹ or as a novel approach for studies of the blood brain barrier providing insights into the role of intestinal permeability in gutliver and gut-brain axes⁴⁰⁻⁴². Furthermore, this method offers the possibility to perform two loops in parallel (ileal loop and pcLoop in the same animal) and instill two different fluorescent labeled probes for analyses of barrier properties in distinct areas in the intestine. Along similar lines, generation of two loops in parallel can be employed to specifically evaluate ileum versus colon for differences or similarities in recruitment of immune cells in response to the same reagent.

Here, by using the pcLoop with Jam-a –null mice or mice harboring selective loss of JAM-A on IECs (*Villin-cre;Jam-a* ^{fl/fl}), we corroborate findings from previous studies that have reported a

positive role for the TJ-associated protein JAM-A in intestinal permeability and PMN TEpM. The applications of the iLoop can be expanded to various reagents including antibodies, microbial pathogens and therapeutic drugs^{30,34,35}. Of note, we used LTB₄ (336.5 Da) to model PMN TEpM given that it is a well-accepted potent and physiologic PMN chemoattractant and its ability to induce TEpM at low concentrations (1 nM) in the physiologic range. However, our loop model is adaptable to other relevant chemoattractants. We have reported the use of the bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLF) to induce significant recruitment of PMN into the colonic lumen³⁰. fMLF (437.5 Da) is a lower affinity chemoattractant in mice which requires much higher concentrations to be effective (1µM). This model is adaptable for use of CXCL1/KC, another potent physiologic chemoattractant that we have successfully used, yet CXCL1/KC is expensive and a relatively large molecule (11 kDa) that is less efficient in crossing the epithelial barrier. We have also demonstrated that neutralizing antibodies against leukocyte-specific integrin CD11b/CD18 (αMβ2) that were injected into the loop lumen prior administration of chemoattractant LTB4 resulted in reduced PMN TEpM corroborating results from in vitro studies^{10,30,35}. Furthermore, the pcLoop was recently employed to study the effect of PMN versus epithelial glycans in controlling the rate of PMN TEpM⁴³. Reagents were injected into the pcLoop lumen prior administration of chemoattractant LTB4. Therefore, with its broad spectrum of applications, the iLoop can complement and confirm findings obtained via in vitro assays. Ligated intestinal loops have also been used by others to study bacterial infection (such as Salmonella, L. monocytogenes and E. coli), therefore we believe that the ease in adaptability of this iLoop model can be used for these studies as well.

637638639

640

641

642

643

644

645

646

647

648

649

650

651

652

617

618

619

620 621

622

623

624625

626

627

628

629

630

631

632 633

634

635

636

Following treatment with pro-inflammatory immune mediators, the iLoop can be used as an acute model of intestinal inflammation. Furthermore, the iLoop may enable studies elucidating the link between increased intestinal permeability and immune cell recruitment after exposure to intraluminal pathogens or in chronic inflammatory experimental models. Of note, we have recently observed by employing the pcLoop model that in response to high dose of proinflammatory cytokines TNF α and IFN γ (1 mg of each) intestinal paracellular permeability to 4 kDa FITC-dextran resulted in enhanced PMN recruitment into the pcLoop lumen in response to LTB₄ in comparison to low dose cytokines (100 ng of each)³⁰. Interestingly, here we show that increased epithelial permeability secondary to *Jam-a* deficiency did not lead to enhanced PMN TEpM but diminished it. All together these results suggest that intestinal paracellular permeability affects the rate of PMN TEpM but the correlation is not direct and depends on factors such as the expression of adhesion molecules (similar to JAM-A) that play an important role in both epithelial barrier function and leukocyte migration¹⁶. Future studies are needed to investigate the fine tuning of immune cell responses by the intestinal epithelium, and contributions to pathologic mucosal inflammation such as inflammatory bowel disease.

653654655

In conclusion, the iLoop model provides a major improvement to existing approaches for the assessment of intestinal permeability and PMN TEpM in vivo that will significantly aid in understanding mechanisms underlying the regulation of intestinal inflammation and IBD.

657658659

656

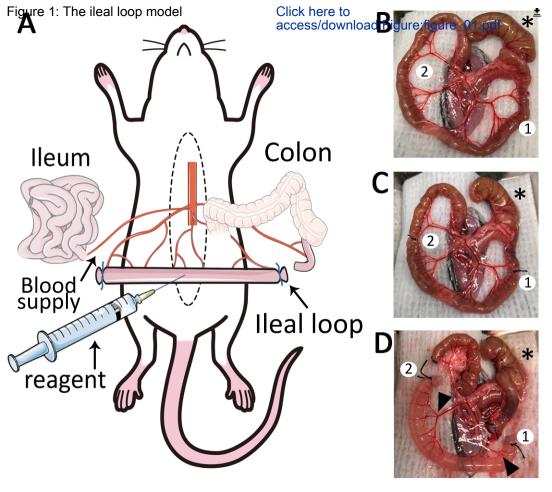
ACKNOWLEDGMENTS:

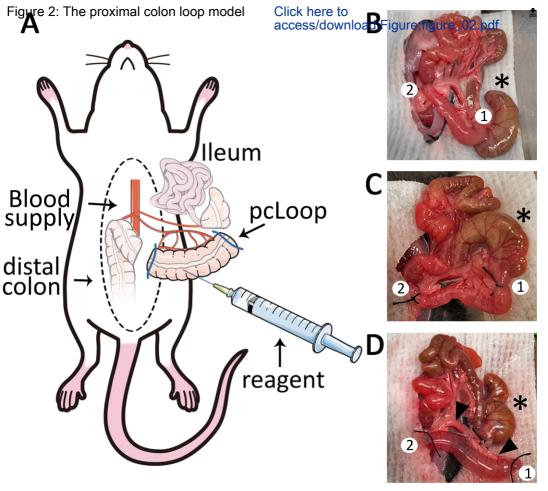
- The authors thank Dr. Sven Flemming of the University of Wuerzburg for his contributions to
- the establishment of the proximal colon loop model, Sean Watson for the management of the
- mouse colonies and Chithra K. Muraleedharan for helping with the acquisition of the pictures of
- the iLoop model. This work was supported by the German Research Foundation/DFG (BO
- 664 5776/2-1) to KB, R01DK079392, R01DK072564, and R01DK061379 to C.A.P.

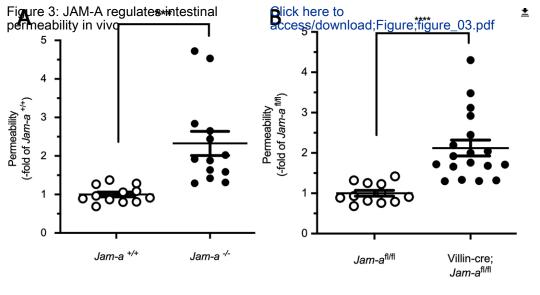
665 666 **DISCLOSURES:**

The authors have nothing to disclose.

668 669


REFERENCES:


- 1. Olson, T. S. et al. The primary defect in experimental ileitis originates from a nonhematopoietic source. *Journal of Experimental Medicine*. **203** (3), 541-552 (2006).
- 2. Jump, R. L., Levine, A. D. Mechanisms of natural tolerance in the intestine: implications for inflammatory bowel disease. *Inflammatory Bowel Diseases.* **10** (4), 462-478 (2004).
- 3. Peeters, M. et al. Clustering of increased small intestinal permeability in families with Crohn's disease. *Gastroenterology.* **113** (3), 802-807 (1997).
- 676 4. Michielan, A., D'Inca, R. Intestinal permeability in inflammatory bowel disease:
- Pathogenesis, clinical evaluation, and therapy of leaky gut. *Mediators of Inflammation*. **2015** 628157 (2015).
- 679 5. Chin, A. C., Parkos, C. A. Neutrophil transepithelial migration and epithelial barrier
- function in IBD: potential targets for inhibiting neutrophil trafficking. *Annals of the New York*Academy of Sciences. **1072**, 276-287 (2006).
- 682 6. Baumgart, D. C., Sandborn, W. J. Crohn's disease. *Lancet.* **380** (9853), 1590-1605 (2012).
- 7. Ordás, I., Eckmann, L., Talamini, M., Baumgart, D. C., Sandborn, W. J. Ulcerative colitis. *Lancet.* **380** (9853), 1606-1619 (2012).
- 685 8. Muthas, D. et al. Neutrophils in ulcerative colitis: A review of selected biomarkers and
- their potential therapeutic implications. *Scandanavian Journal of Gastroenterology.* **52** (2), 125-135 (2017).
- 9. Pai, R. K. et al. The emerging role of histologic disease activity assessment in ulcerative colitis. *Gastrointestinal Endoscopy.* **88** (6), 887-898 (2018).
- 690 10. Parkos, C. A., Delp, C., Arnaout, M. A., Madara, J. L. Neutrophil migration across a cultured
- intestinal epithelium. Dependence on a CD11b/CD18-mediated event and enhanced efficiency in
- 692 physiological direction. *The Journal of Clinical Investigation.* **88** (5), 1605-1612 (1991).
- 693 11. Brazil, J. C., Parkos, C. A. Pathobiology of neutrophil-epithelial interactions.
- 694 *Immunological Reviews.* **273** (1), 94-111 (2016).
- Thomson, A. et al. The Ussing chamber system for measuring intestinal permeability in health and disease. *BMC Gastroenterology.* **19** (1), 98 (2019).
- 13. Li, B. R. et al. In vitro and in vivo approaches to determine intestinal epithelial cell permeability. *Journal of Visualized Experiments.* (140), e57032 (2018).
- 699 14. Srinivasan, B. et al. TEER measurement techniques for in vitro barrier model systems.
- 700 *Journal of Laboratory Automation.* **20** (2), 107-126 (2015).
- 701 15. Fan, S. et al. Role of JAM-A tyrosine phosphorylation in epithelial barrier dysfunction
- during intestinal inflammation. *Molecular Biology of the Cell.* **30** (5), 566-578 (2019).
- 703 16. Parkos, C. A. Neutrophil-epithelial interactions: A double-edged sword. *American Journal*


- 704 of Pathology. **186** (6), 1404-1416 (2016).
- 705 17. Volynets, V. et al. Assessment of the intestinal barrier with five different permeability
- tests in healthy C57BL/6J and BALB/cJ mice. *Digital Diseases and Sciences.* **61** (3), 737-746 (2016).
- 707 18. Wick, M. J., Harral, J. W., Loomis, Z. L. & Dempsey, E. C. An optimized evans blue protocol
- to assess vascular leak in the mouse. *Journal of Visualized Experiments*. (139), e57037 (2018).
- 709 19. Tateishi, H., Mitsuyama, K., Toyonaga, A., Tomoyose, M., Tanikawa, K. Role of cytokines
- in experimental colitis: relation to intestinal permeability. *Digestion.* **58** (3), 271-281 (1997).
- 711 20. Mei, Q., Diao, L., Xu, J. M., Liu, X. C., Jin, J. A protective effect of melatonin on intestinal
- 712 permeability is induced by diclofenac via regulation of mitochondrial function in mice. Acta
- 713 *Pharmacologica Sinica.* **32** (4), 495-502 (2011).
- 714 21. Vargas Robles, H. et al. Analyzing beneficial effects of nutritional supplements on
- 715 intestinal epithelial barrier functions during experimental colitis. Journal of Visualized
- 716 Experiments. (119), e55095 (2017).
- 717 22. Argues, J. L. et al. Salmonella induces flagellin- and MyD88-dependent migration of
- 5718 bacteria-capturing dendritic cells into the gut lumen. *Gastroenterology.* **137** (2), 579-587 (2009).
- 719 23. Coombes, B. K. et al. Analysis of the contribution of Salmonella pathogenicity islands 1
- and 2 to enteric disease progression using a novel bovine ileal loop model and a murine model
- of infectious enterocolitis. *Infection and Immunity.* **73** (11), 7161-7169 (2005).
- 722 24. Everest, P. et al. Evaluation of Salmonella typhimurium mutants in a model of
- 723 experimental gastroenteritis. *Infection and Immunity.* **67** (6), 2815-2821 (1999).
- 724 25. Pron, B. et al. Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal
- 725 loop system. *Infection and Immunity.* **66** (2), 747-755 (1998).
- 726 26. Clayburgh, D. R. et al. Epithelial myosin light chain kinase-dependent barrier dysfunction
- mediates T cell activation-induced diarrhea in vivo. The Journal of Clinical Investigation. 115 (10),
- 728 2702-2715 (2005).
- 729 27. Palmblad, J. et al. Leukotriene B4 is a potent and stereospecific stimulator of neutrophil
- 730 chemotaxis and adherence. *Blood.* **58** (3), 658-661 (1981).
- 731 28. Mandell, K. J., Babbin, B. A., Nusrat, A., Parkos, C. A. Junctional adhesion molecule 1
- 732 regulates epithelial cell morphology through effects on beta1 integrins and Rap1 activity. The
- 733 *Journal of Biological Chemistry.* **280** (12), 11665-11674 (2005).
- 734 29. Laukoetter, M. G. et al. JAM-A regulates permeability and inflammation in the intestine
- 735 in vivo. *Journal of Experimental Medicine*. **204** (13), 3067-3076 (2007).
- 736 30. Flemming, S., Luissint, A. C., Nusrat, A., Parkos, C. A. Analysis of leukocyte transepithelial
- 737 migration using an in vivo murine colonic loop model. Journal of Clinical Investigation Insight. 3
- 738 (20), (2018).
- 739 31. Luissint, A. C., Nusrat, A., Parkos, C. A. JAM-related proteins in mucosal homeostasis and
- 740 inflammation. *Seminars in Immunopathology.* **36** (2), 211-226 (2014).
- 741 32. Cesarovic, N. et al. Isoflurane and sevoflurane provide equally effective anaesthesia in
- 742 laboratory mice. *Lab Animal.* **44** (4), 329-336 (2010).
- 743 33. Introduction to the Microplate Reader. Journal of Visualized Experiments. e5024.
- 744 34. Kelm, M. et al. Targeting epithelium-expressed sialyl Lewis glycans improves colonic
- mucosal wound healing and protects against colitis. Journal of Clinical Investigation Insight. 5 (12)
- 746 (2020).
- 747 35. Azcutia, V. et al. Neutrophil expressed CD47 regulates CD11b/CD18-dependent

- 748 neutrophil transepithelial migration in the intestine in vivo. Mucosal Immunology.
- 749 10.1038/s41385-020-0316-4 (2020).
- 750 36. Yu, Y. R. et al. A protocol for the comprehensive flow cytometric analysis of immune cells
- in normal and inflamed murine non-lymphoid tissues. *PloS One.* **11** (3), e0150606 (2016).
- 752 37. Bradfield, P. F., Nourshargh, S., Aurrand-Lions, M., Imhof, B. A. JAM family and related
- 753 proteins in leukocyte migration (Vestweber series). Arteriosclerosis, Thrombosis, and Vascular
- 754 *Biology.* **27** (10), 2104-2112 (2007).

- 755 38. Ebnet, K. Junctional Adhesion Molecules (JAMs): Cell adhesion receptors with pleiotropic
- functions in cell physiology and development. *Physiological Reviews.* **97** (4), 1529-1554 (2017).
- 757 39. Sorribas, M. et al. FXR modulates the gut-vascular barrier by regulating the entry sites for
- bacterial translocation in experimental cirrhosis. *Journal of Hepatology.* **71** (6), 1126-1140 (2019).
- 759 40. Mazzucco, M. R., Vartanian, T., Linden, J. R. In vivo Blood-brain Barrier Permeability Assays
- 760 Using Clostridium perfringens Epsilon Toxin. *Bio-Protocol.* **10** (15), e3709 (2020).
- 761 41. Kelly, J. R. et al. Breaking down the barriers: the gut microbiome, intestinal permeability
- and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience. 9, 392 (2015).
- 763 42. Fiorentino, M. et al. Blood-brain barrier and intestinal epithelial barrier alterations in
- autism spectrum disorders. *Molecular Autism.* **7** (1), 49 (2016).
- 765 43. Kelm, M. et al. Regulation of neutrophil function by selective targeting of glycan epitopes
- 766 expressed on the integrin CD11b/CD18. FASEB Journal: An Official Publication of the Federation
- of American Societies for Experimental Biology. **34** (2), 2326-2343 (2020).

Name of Material/ Equipment	Company	Catalog Number
Equipment and Material		
BD Alcohol Swabs	BD	326895
BD PrecisionGlide Needle, 25G X 5/8"	BD	305122
BD PrecisionGlide Needle, 30G X 1/2"	BD	305106
BD 1ml Tuberculin Syringe Without Needle	BD	309659
15ml Centrifuge Tube	Corning	14-959-53A
Corning 96-Well Solid Black Polystyrene Microplate	FisherScientific	07-200-592
Corning Non-treated Culture Dish, 10cm	MilliporeSigma	CLS430588
Cotton Tip Applicator (cotton swab), 6", sterile	FisherScientific	25806 2WC
Dynarex Cotton Filled Gauze Sponges, Non-Sterile, 2" x 2"	Medex	3249-1
EZ-7000 anesthesia vaporizer (Classic System, including heating units)	E-Z Systems	EZ-7000
Falcon Centrifuge Tube 50ml	VWR	21008-940
Fisherbrand Colored Labeling Tape	FisherScientific	15-901-10R
Halsey Needle Holder (needle holder)	FST	12001-13
Kimwipes, small (tissue wipe)	FisherScientific	06-666
1.7ml Microcentrifuge Tubes	Thomas Scientific	c2170
Micro Tube 1.3ml Z (serum clot activator tube)	Sarstedt	41.1501.105
Moria Fine Scissors	FST	14370-22
5ml Polystyrene Round-Bottom Tube with Cell-Strainer Cap (35 μm nylon mesh)	Falcon	352235
Puralube Vet Ointment, Sterile Ocular Lubricant	Dechra	12920060
Ring Forceps (blunt tissue forceps)	FST	11103-09
Roboz Surgical 4-0 Silk Black Braided, 100 YD	FisherScientific	NC9452680
Semken Forceps (anatomical forceps)	FST	1108-13
Sofsilk Nonabsorbable Coated Black Suture Braided Silk Size 3-0, 18", Needle 19mm length 3/8 circle		
reverse cutting	HenrySchein	SS694
Student Fine Forceps, Angled	FST	91110-10
10ml Syringe PP/PE without needle	Millipore Sigma	Z248029
96 Well Cell Culture Plate	Corning	3799
Yellow Feeding Tubes for Rodents 20G x 30 mm	Instech	FTP-20-30
Solutions and Buffers		
Accugene 0.5M EDTA	Lonza	51201
Ammonium-Chloride-Potassium (ACK) Lysing Buffer	BioWhittaker	10-548E
Hanks' Balanced Salt Solution	Corning	21-023-CV
Phosphate-Buffered Saline without Calcium and Magnesium	Corning	21-040-CV
Reagents		
Alexa Fluor 647 Anti-Mouse Ly-6G Antibody (1A8)	BioLegend	127610
CD11b Monoclonal Antibody, PE, eBioscience (M1/70)	ThermoFisher	12-0112-81
CountBright Absolute Counting Beads	Invitrogen	C36950
Dithiotreitol	FisherScientific	BP172-5
Fetal Bovine Serum, heat inactivated	R&D Systems	511550
Fluorescein Isothiocyanate-Dextran, average molecular weight 4.000	Sigma	60842-46-8
Isoflurane	Halocarbon	12164-002-25
Leukotriene B ₄	Millipore Sigma	71160-24-2
PerCP Rat Anti-Mouse CD45 (30-F11)	BD Pharmingen	557235
Purified Rat Anti-Mouse CD16/CD32 (Mouse BD FC Block)	BD Bioscience	553142
Recombinant Murine IFN-γ	Peprotech	315-05
Recombinant Murine TNF- $lpha$	Peprotech	315-01A

November 23rd, 2020

Reference: JoVE62093

Dear Dr. Bajaj

We thank you for your recent email inviting to resubmit a revised version of our manuscript entitled "Functional Assessment of Intestinal Permeability and Neutrophil Transepithelial Migration in Mice Using a Standardized Intestinal Loop Model".

Below is a point-by-point response to the editorial's comments and attached as a separate document a point-by-point response to the reviewers' comments.

All additional information and discussion points are included in the revised manuscript and are highlighted in red color.

Response to editorial comments:

1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues. Please define all abbreviations at first use.

Response: We have proofread and corrected the manuscript. Abbreviations are defined at first use.

2. Please shorten your title to "Functional Assessment of Intestinal Permeability and Neutrophil Transepithelial Migration in Mice Using a Standardized Intestinal Loop Model".

Response: As requested, we have shortened our title.

3. JoVE cannot publish manuscripts containing commercial language. This includes trademark symbols (TM), registered symbols (®), and company names before an instrument or reagent. Please remove all commercial language from your manuscript and use generic terms instead. All commercial products should be sufficiently referenced in the Table of Materials and Reagents.

For example: EZ-7000 anesthesia vaporizer; Kimwipe etc

Response: We have edited our manuscript to comply with JoVE's publication requirements.

4. Please note that your protocol will be used to generate the script for the video and must contain everything that you would like shown in the video. Please add more details to your protocol steps. Please ensure you answer the "how" question, i.e., how is the step performed? Alternatively, add references to published material specifying how to perform the protocol action. Please add more specific details (e.g. button clicks for software actions, numerical values for settings, etc) to your protocol steps. There should be enough detail in each step to supplement the actions seen in the video so that viewers can easily replicate the protocol.

<u>Response</u>: We have included more details (including references) to our protocol in order to facilitate reproducibility of the methods. In addition, the specific points raised by reviewer #1 in the protocol section have also been addressed (see response to reviewers).

5. Please specify the number, strain, sex, and age of the mice. Please mention (even as notes) in the beginning if you are using Villin-cre; Jam-afl/fl and Jam-a-/- mice.

<u>Response</u>: We have provided more detailed information about the number, strain, sex, and age of the mice at the beginning of the protocol section (on line 125).

6. Please specify the method of euthanasia without highlighting it.

<u>Response</u>: We have clarified that animals are euthanized when being under anesthesia by using a physical method such as decapitation or cervical dislocation, and in accordance with the approved animal protocol (see note after step 4.5 and step 5.6.2).

7. Note after 1.2.5: What should the vitals and pedal reflex be (to help readers monitor)?

<u>Response</u>: We have now detailed what is expected for vitals and the pedal reflex when mice are under deep anesthesia and can undergo surgery (see steps 1.2.4 and 1.2.5).

8. Please use comma and not period as decimal (line 4.6).

Response: Done

9. Please include a one line space between each protocol step and then highlight up to 3 pages of protocol text for inclusion in the protocol section of the video.

Response: Done

10. Please do not abbreviate journal names in the reference list.

Response: Done

Respectfully,

Charles A. Parkos, MD, PhD

Manuscript: JoVE62093

Title: "Functional Assessment of Intestinal Permeability and Neutrophil Transepithelial Migration in Mice Using a Standardized Intestinal Loop Model"

We would like to thank the reviewers for their positive assessment of our manuscript. Below is a point-by-point response to the reviewers' thoughtful comments that have helped to improve this manuscript. Additional information and discussion points are included in the revised manuscript and are highlighted in **red color**.

Response to the reviewers' comments

Reviewer #1:

I only have some minor comments to improve the clarity of the content:

• Line 95: They state that the Evans blue assay is not suitable for analyzing passage of the into the blood stream. I think it will be helpful for the unexperienced reader to provide the explanation.

Response: We acknowledge that Evans blue is commonly used to evaluate vascular leakage in vivo¹ and that it has also been employed to evaluate intestinal mucosal permeability in mouse and rat²⁻⁴. The quantification of Evans blue in the intestinal mucosa requires extraction from tissue employing incubation in formamide overnight. Thus, the same tissue cannot be used to study permeability and neutrophil infiltration. Here, we highlight a simple protocol that reduces the number of animals needed to collect reproducible data on colonic mucosal permeability and leukocyte transepithelial migration in vivo. We thus recommend the use of FITC-dextrans that are easily detectable in blood serum without compromising the integrity of intestinal loops which can be harvested for further analysis. We have clarified this point in the revised manuscript on line 89.

• Lines 116-118 and 532-533: Use of different stimuli is suggested, but not discussed later. Do the authors have experience using different stimuli and could discuss difference/similarities, advantages/disadvantages?

Response: Here, we used Leukotriene B₄ (LTB₄) to model PMN TEpM given that it is a well-accepted potent and physiologic PMN chemoattractant. However, our loop model is adaptable to other relevant chemoattractants. We have reported the use of the bacterial peptide N-formyl-methionyl-leucyl-phenylalanine (fMLF) to induce significant recruitment of PMN into the colonic lumen⁵. Furthermore, this model is adaptable for use of CXCL1/KC, another potent physiologic chemoattractant that we have successfully used with this model. We have focused on LTB₄ (336.5 Da) because of its ability to induce TEpM at very low concentrations (1nM) in the physiologic range. fMLF (437.5 Da) is a lower affinity chemoattractant in mice which requires much higher concentrations to be effective (1μM). CXCL1/KC is expensive and a relatively large molecule (11 kDa) that is less efficient in crossing the epithelial barrier. Of note, ligated intestinal loops have also been used by others to study bacterial infection (such as Salmonella, Listeria monocytogenes and Escherichia coli), therefore we believe that the ease in adaptability of this iLoop model can be used for these studies as well. We discuss this point on lines 377 and 638.

• Lines 148-152: Any recommendable anesthesia alternatives? For example, would the loop be affected by ip injection of ketamine/xylazine?

Response: We have added on line 170/ step 1.2.2 the use of ketamine/xylazine as anesthesia alternative. There is no contraindication for using intraperitoneal injection (IP) of ketamine (80 - 100 mg/kg) and xylazine (5 - 10 mg/kg) to conduct the surgery. Anesthesia should be maintained throughout the surgery by intramuscular administration of ketamine/xylazine at 0.1 - 0.25 times of initial doses to ensure anesthetic depth. We highly recommend an isoflurane anesthesia vaporizer for this method, which is optimal to assure better reproducibility, survivability and prevent animal pain.

• Lines 194-204: Please explain the necessity to cut off both ends for flushing and isolating the loop (same for the colon section). Wouldn't injection of the flushing needle into one end of the loop followed by ligation here be enough? This section does not appear to be very clear for unexperienced experimenters. It may become clear with the accompanying video; but consider providing more details here.

Response: We cut off both ends of the exteriorized segment of ileum or proximal colon, then flush gently as a necessary step that prevents interference with luminal contents (fecal matter) thus facilitating even dispersion of FITC-dextrans or chemotactic stimuli across the entire length of the isolated segment as well as allowing for more accurate quantification of leukocytes by flow cytometry. This procedure also allows uniform distension of the mucosa after injection of specified volumes of reagent and better reproducibility between animals. We have clarified this information on lines 241 and 288.

• Line 267: 10,000 x g (also lines 332, 344...)

Response: Corrected

• Lines 325-327: please add why EDTA is not required in the pcLoop wash buffer.

Response: Thank you for this comment. The wash buffer for the ileal and pcLoop is the same and contains 2mM EDTA and 2% FBS in sterile PBS without calcium and magnesium. Given that adding DTT does not interfere with the collection of the ileal loop luminal content, we have now simplified the protocol and recommend the same wash buffer complemented with 5mM DTT for the iLoops (ileum and colon) in step 5.6.1.

• Figures 1 and 2 should be mentioned in the protocol where appropriate.

Response: Figures 1 and 2 are now mentioned in the protocol section

• Line 411: Number of PMN *Response*: Corrected (line 510)

• Line 425: epithelium instead of epithelial.

Response: Corrected (line 524)

• Line 467: what does "similar to the pcLoop at baseline" mean? Is baseline supposed to mean with cytokines only? But then it is not similar because it's significantly different (*). Or is baseline not shown here? Please clarify.

Response: On line 566, baseline condition means "no surgery and no treatment". We have now clarified that the black squares represent the number of PMN in an intact colonic segment similar to the pcLoop that was not subjected to any surgery or treatment with proinflammatory cytokines and LTB₄.

• Lines 500-507: is there a way to express the data differently to compensate for variations such as PMN/mm3 tissue/injected volume; or a similar formula?

Response: We do not expect major variations between experimental groups that need to be compensated if the length of the iLoop as well as the volume of reagent solution injected into the lumen are strictly maintained between animals. However, we agree that the data may be presented as number of PMN per mm³ by using the formula for volume of a cylinder: $V = \pi(pi)$ r 2 h (V for volume, r for radius and h for height) as well as number of PMN per gram of tissue. We have added this information on line 479.

• Lines 536-538: the link between permeability and TEpM is interesting and should be discussed in some more detail. What kind of link do you expect, if any? Are the mechanisms much different to those in

endothelial cells, where both phenomena are separated and explained by different mechanism (i.e. increased permeability does not necessarily mean increased transmigration!)?

Response: We thank the reviewer for pointing out this important point of discussion. We have recently reported by employing the pcLoop model that enhanced intestinal paracellular permeability to 4 kDa FITC-dextran following treatment with a high dose of proinflammatory cytokines TNFα and IFNγ (1 mg of each) resulted in enhanced PMN recruitment into the pcLoop lumen in response to LTB₄, in comparison to low dose cytokines (100 ng of each)⁵. Interestingly, here we show that increased epithelial permeability secondary to Jam-a deficiency did not lead to enhanced PMN TEpM but diminished it. Therefore, it is likely that the intestinal paracellular permeability affects the rate of PMN TEpM but the correlation is not direct. We believe that the pcLoop enables future studies aiming to determine how increased intestinal permeability controls immune cell response and contributes to pathologic mucosal inflammation such as inflammatory bowel disease. We have discussed this point in the revised manuscript on line 661.

Reviewer #2:

• Major Concerns: on the presented data not. However, as has been published by others (Sorribas M et al. J.Hepatology 2019) this method could be widened in its application by i) using different sizes of dextrans being FITC-labeled (e.g. 40 or 150 kDA) to characterize the severity of permeability changes in any pathological disease state or as here the JAM-/- and ii) as secondary read out use the liver thus, evaluating the gut-liver-axis, which is easy to achieve even within the same Experiment by harvesting liver tissue and analyse fluorescence per gramm tissue.

Response: We thank the reviewer for the constructive comments that broaden the application of our iLoop model. We have addressed these points of discussion on lines 621 - 632.

• Finally, by utilizing differently labeled probes within the same mouse both loop could be generated and so the main site of translocated be tested. This at least could be stated in the discussion to stimulate other researches to do so since, it is not yet clear where translocation is most predominant along the GI-tract.

Response: We agree and thank the reviewer for the suggestion. We have now included this comment in the discussion on lines 621-632.

Reviewer #3:

I believe that the manuscript is ready for the prime time and I do not have any meaningful comments or corrections.

Response: We thank the reviewer for the positive evaluation of our manuscript.

Respectfully,

Charles A. Parkos, MD, PhD

References

- 1 Wick, M. J., Harral, J. W., Loomis, Z. L. & Dempsey, E. C. An Optimized Evans Blue Protocol to Assess Vascular Leak in the Mouse. Journal of Visualized Experiments. 10.3791/57037 (139), (2018).
- 2 Tateishi, H., Mitsuyama, K., Toyonaga, A., Tomoyose, M. & Tanikawa, K. Role of cytokines in experimental colitis: relation to intestinal permeability. Digestion. 58 (3), 271-281, (1997).
- 3 Mei, Q., Diao, L., Xu, J. M., Liu, X. C. & Jin, J. A protective effect of melatonin on intestinal permeability is induced by diclofenac via regulation of mitochondrial function in mice. Acta Pharmacologica Sinica. 32 (4), 495-502, (2011).
- 4 Vargas Robles, H. et al. Analyzing Beneficial Effects of Nutritional Supplements on Intestinal Epithelial Barrier Functions During Experimental Colitis. Journal of Visualized Experiments. 10.3791/55095 (119), (2017).
- Flemming, S., Luissint, A. C., Nusrat, A. & Parkos, C. A. Analysis of leukocyte transepithelial migration using an in vivo murine colonic loop model. JCI Insight. 3 (20), (2018).

American Society for Clinical Investigation - License Terms and Conditions

This is a License Agreement between Anny-Claude Luissint or Charles A Parkos ("You") and American Society for Clinical Investigation ("Publisher") provided by Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and conditions provided by American Society for Clinical Investigation, and the CCC terms and conditions.

All payments must be made in full to CCC.

Order Date Order license ID **ISSN**

05-Aug-2020 1053423-1 2379-3708

Type of Use **Publisher**

Portion

Republish in a journal/magazine American Society for Clinical

Investigation

Chart/graph/table/figure

LICENSED CONTENT

Publication Title

Article Title

Author/Editor

JCI insight

Analysis of leukocyte

transepithelial migration using an in vivo murine colonic loop model.

American Society for Clinical

Investigation,

01/01/2016 Date

English Language

Country United States of America Rightsholder

American Society for Clinical

Investigation

Publication Type e-Journal

20 Issue Volume 3

URL https://insight.jci.org/

REQUEST DETAILS

Portion Type

Duration of Use

Chart/graph/table/figure

Distribution **Translation**

Currency

Worldwide

Number of charts / graphs / tables / figures requested

5

Electronic

Copies for the disabled?

Original language of publication

Format (select all that apply) Who will republish the content?

Author of requested content

Life of current edition

Minor editing privileges?

Incidental promotional use?

No USD

No

Yes

https://marketplace.copyright.com/rs-ui-web/mp/license/f9977407-6b04-40f2-8a35-95ce2183c45e/7a5ec1c0-ff7d-455f-9293-e6e36ebb4c80

≛

Lifetime Unit Quantity Up to 14,999

Rights Requested Main product

NEW WORK DETAILS

Title Migration in Mice: Analyses in a

Standardized Intestinal Loop Model

Author Kevin Boerner, Anny-Claude

Luissint and Charles A. Parkos

Publication Journal of Visualized Experiments

(JoVE)

Publisher Copyright Journal of Visualized

Experiments (JoVE)

Publisher imprint

Expected publication date

Expected size (number of pages)

Standard identifier

N/A

2020-11-02

12

N/A

ADDITIONAL DETAILS

Order reference number

N/A

The requesting person / organization to appear on the

license

Anny-Claude Luissint or Charles A

Parkos

REUSE CONTENT DETAILS

Title, description or numeric reference of the portion(s)

Editor of portion(s)

Volume of serial or monograph

Page or page range of portion

Figures 2A and 2B, Figure 4A and

Figures 5B and 5D

N/A

3

page 4, page 6 and page 8

Title of the article/chapter the

portion is from

Analysis of leukocyte transepithelial migration using an

in vivo murine colonic loop model.

Author of portion(s)

Parkos, Charles A; Nusrat, Asma; Luissint, Anny-Claude; Flemming,

Sven

Issue, if republishing an article

from a serial

Publication date of portion

20

2018-10-18

CCC Republication Terms and Conditions

Description of Service; Defined Terms. This Republication License enables the User to obtain licenses for republication of one or more copyrighted works as described in detail on the relevant Order Confirmation (the "Work(s)"). Copyright Clearance Center, Inc. ("CCC") grants licenses through the Service on behalf of the rightsholder identified on the Order Confirmation (the "Rightsholder"). "Republication", as used herein, generally means the

inclusion of a Work, in whole or in part, in a new work or works, also as described on the Order Confirmation. "User", as used herein, means the person or entity making such republication.

- 2. The terms set forth in the relevant Order Confirmation, and any terms set by the Rightsholder with respect to a particular Work, govern the terms of use of Works in connection with the Service. By using the Service, the person transacting for a republication license on behalf of the User represents and warrants that he/she/it (a) has been duly authorized by the User to accept, and hereby does accept, all such terms and conditions on behalf of User, and (b) shall inform User of all such terms and conditions. In the event such person is a "freelancer" or other third party independent of User and CCC, such party shall be deemed jointly a "User" for purposes of these terms and conditions. In any event, User shall be deemed to have accepted and agreed to all such terms and conditions if User republishes the Work in any fashion.
- 3. Scope of License; Limitations and Obligations.
 - 3.1. All Works and all rights therein, including copyright rights, remain the sole and exclusive property of the Rightsholder. The license created by the exchange of an Order Confirmation (and/or any invoice) and payment by User of the full amount set forth on that document includes only those rights expressly set forth in the Order Confirmation and in these terms and conditions, and conveys no other rights in the Work(s) to User. All rights not expressly granted are hereby reserved.
 - 3.2. General Payment Terms: You may pay by credit card or through an account with us payable at the end of the month. If you and we agree that you may establish a standing account with CCC, then the following terms apply: Remit Payment to: Copyright Clearance Center, 29118

 Network Place, Chicago, IL 60673-1291. Payments Due: Invoices are payable upon their delivery to you (or upon our notice to you that they are available to you for downloading). After 30 days, outstanding amounts will be subject to a service charge of 1-1/2% per month or, if less, the maximum rate allowed by applicable law. Unless otherwise specifically set forth in the Order Confirmation or in a separate written agreement signed by CCC, invoices are due and payable on "net 30" terms. While User may exercise the rights licensed immediately upon issuance of the Order Confirmation, the license is automatically revoked and is null and void, as if it had never been issued, if complete payment for the license is not received on a timely basis either from User directly or through a payment agent, such as a credit card company.
 - 3.3. Unless otherwise provided in the Order Confirmation, any grant of rights to User (i) is "one-time" (including the editions and product family specified in the license), (ii) is non-exclusive and non-transferable and (iii) is subject to any and all limitations and restrictions (such as, but not limited to, limitations on duration of use or circulation) included in the Order Confirmation or invoice and/or in these terms and conditions. Upon completion of the licensed use, User shall either secure a new permission for further use of the Work(s) or immediately cease any new use of the Work(s) and shall render inaccessible (such as by deleting or by removing or severing links or other locators) any further copies of the Work (except for copies printed on paper in accordance with this license and still in User's stock at the end of such period).
 - 3.4. In the event that the material for which a republication license is sought includes third party materials (such as photographs, illustrations, graphs, inserts and similar materials) which are identified in such material as having been used by permission, User is responsible for identifying, and seeking separate licenses (under this Service or otherwise) for, any of such third party materials; without a separate license, such third party materials may not be used.
 - 3.5. Use of proper copyright notice for a Work is required as a condition of any license granted under the Service. Unless otherwise provided in

the Order Confirmation, a proper copyright notice will read substantially as follows: "Republished with permission of [Rightsholder's name], from [Work's title, author, volume, edition number and year of copyright]; permission conveyed through Copyright Clearance Center, Inc. " Such notice must be provided in a reasonably legible font size and must be placed either immediately adjacent to the Work as used (for example, as part of a by-line or footnote but not as a separate electronic link) or in the place where substantially all other credits or notices for the new work containing the republished Work are located. Failure to include the required notice results in loss to the Rightsholder and CCC, and the User shall be liable to pay liquidated damages for each such failure equal to twice the use fee specified in the Order Confirmation, in addition to the use fee itself and any other fees and charges specified.

- 3.6. User may only make alterations to the Work if and as expressly set forth in the Order Confirmation. No Work may be used in any way that is defamatory, violates the rights of third parties (including such third parties' rights of copyright, privacy, publicity, or other tangible or intangible property), or is otherwise illegal, sexually explicit or obscene. In addition, User may not conjoin a Work with any other material that may result in damage to the reputation of the Rightsholder. User agrees to inform CCC if it becomes aware of any infringement of any rights in a Work and to cooperate with any reasonable request of CCC or the Rightsholder in connection therewith.
- 4. Indemnity. User hereby indemnifies and agrees to defend the Rightsholder and CCC, and their respective employees and directors, against all claims, liability, damages, costs and expenses, including legal fees and expenses, arising out of any use of a Work beyond the scope of the rights granted herein, or any use of a Work which has been altered in any unauthorized way by User, including claims of defamation or infringement of rights of copyright, publicity, privacy or other tangible or intangible property.
- 5. Limitation of Liability. UNDER NO CIRCUMSTANCES WILL CCC OR THE RIGHTSHOLDER BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL OR INCIDENTAL DAMAGES (INCLUDING WITHOUT LIMITATION DAMAGES FOR LOSS OF BUSINESS PROFITS OR INFORMATION, OR FOR BUSINESS INTERRUPTION) ARISING OUT OF THE USE OR INABILITY TO USE A WORK, EVEN IF ONE OF THEM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. In any event, the total liability of the Rightsholder and CCC (including their respective employees and directors) shall not exceed the total amount actually paid by User for this license. User assumes full liability for the actions and omissions of its principals, employees, agents, affiliates, successors and assigns.
- 6. Limited Warranties. THE WORK(S) AND RIGHT(S) ARE PROVIDED "AS IS". CCC HAS THE RIGHT TO GRANT TO USER THE RIGHTS GRANTED IN THE ORDER CONFIRMATION DOCUMENT. CCC AND THE RIGHTSHOLDER DISCLAIM ALL OTHER WARRANTIES RELATING TO THE WORK(S) AND RIGHT(S), EITHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ADDITIONAL RIGHTS MAY BE REQUIRED TO USE ILLUSTRATIONS, GRAPHS, PHOTOGRAPHS, ABSTRACTS, INSERTS OR OTHER PORTIONS OF THE WORK (AS OPPOSED TO THE ENTIRE WORK) IN A MANNER CONTEMPLATED BY USER; USER UNDERSTANDS AND AGREES THAT NEITHER CCC NOR THE RIGHTSHOLDER MAY HAVE SUCH ADDITIONAL RIGHTS TO GRANT.
- Effect of Breach. Any failure by User to pay any amount when due, or any use by User of a Work beyond the scope of the license set forth in the Order Confirmation and/or these terms and conditions, shall be a material breach of the license created by the Order Confirmation and these terms and conditions. Any breach not cured within 30 days of written notice thereof shall result in immediate termination of such license without further notice. Any unauthorized (but licensable) use of a Work that is terminated immediately upon notice thereof may be liquidated by payment of the Rightsholder's ordinary license price therefor; any unauthorized (and unlicensable) use that is not terminated immediately for any reason (including, for example, because materials containing the Work cannot reasonably be recalled) will be subject to all remedies available at law or in equity, but in

no event to a payment of less than three times the Rightsholder's ordinary license price for the most closely analogous licensable use plus Rightsholder's and/or CCC's costs and expenses incurred in collecting such payment.

- 8. Miscellaneous.
 - 8.1. User acknowledges that CCC may, from time to time, make changes or additions to the Service or to these terms and conditions, and CCC reserves the right to send notice to the User by electronic mail or otherwise for the purposes of notifying User of such changes or additions; provided that any such changes or additions shall not apply to permissions already secured and paid for.
 - 8.2. Use of User-related information collected through the Service is governed by CCC's privacy policy, available online here:https://marketplace.copyright.com/rs-ui-web/mp/privacy-policy
 - 8.3. The licensing transaction described in the Order Confirmation is personal to User. Therefore, User may not assign or transfer to any other person (whether a natural person or an organization of any kind) the license created by the Order Confirmation and these terms and conditions or any rights granted hereunder; provided, however, that User may assign such license in its entirety on written notice to CCC in the event of a transfer of all or substantially all of User's rights in the new material which includes the Work(s) licensed under this Service.
 - 8.4. No amendment or waiver of any terms is binding unless set forth in writing and signed by the parties. The Rightsholder and CCC hereby object to any terms contained in any writing prepared by the User or its principals, employees, agents or affiliates and purporting to govern or otherwise relate to the licensing transaction described in the Order Confirmation, which terms are in any way inconsistent with any terms set forth in the Order Confirmation and/or in these terms and conditions or CCC's standard operating procedures, whether such writing is prepared prior to, simultaneously with or subsequent to the Order Confirmation, and whether such writing appears on a copy of the Order Confirmation or in a separate instrument.
 - 8.5. The licensing transaction described in the Order Confirmation document shall be governed by and construed under the law of the State of New York, USA, without regard to the principles thereof of conflicts of law. Any case, controversy, suit, action, or proceeding arising out of, in connection with, or related to such licensing transaction shall be brought, at CCC's sole discretion, in any federal or state court located in the County of New York, State of New York, USA, or in any federal or state court whose geographical jurisdiction covers the location of the Rightsholder set forth in the Order Confirmation. The parties expressly submit to the personal jurisdiction and venue of each such federal or state court. If you have any comments or questions about the Service or Copyright Clearance Center, please contact us at 978-750-8400 or send an e-mail to support@copyright.com.

v 1.1

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:

Functional Assessment of Intestinal Permeability and Neutrophil Transepithelial Migration in Mice: Analyses Using a Standardized Intestinal Loop Model

Author(s):	Kevin Boerner, Anny-Claude Luissint, Charles A. Parkos										
Item 1: The http://www.jove	• •		have	the	Materials	_	made pen Acc		(as	described	at
Item 2: Please se	lect one of th	e follov	ving ite	ms:							
X The Auth	or is NOT a l	inited S	tates go	overn	ment emplo	oyee.					
	nor is a Unito f his or her d								ere p	repared in	the

ARTICLE AND VIDEO LICENSE AGREEMENT

- Defined Terms. As used in this Article and Video 1. License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-
- nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion

- of the Article, and in which the Author may or may not appear.
- 2. **Background.** The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and(c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. **Retention of Rights in Article.** Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video - Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this **Section 6** is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. **Protection of the Work.** The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. **Likeness, Privacy, Personality.** The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

ARTICLE AND VIDEO LICENSE AGREEMENT

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 13. **Fees.** To cover the cost incurred for publication, JoVE must receive payment before production and publication of the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 14. **Transfer, Governing Law.** This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.