Journal of Visualized Experiments

High-Temperature and High-Pressure In Situ Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy --Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video
Manuscript Number:	JoVE61794R1
Full Title:	High-Temperature and High-Pressure In Situ Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy
Corresponding Author:	Jianzhi Hu
	UNITED STATES
Corresponding Author's Institution:	
Corresponding Author E-Mail:	Jianzhi.Hu@pnnl.gov
Order of Authors:	Nicholas R Jaegers
	Wenda Hu
	Yong Wang
	Jianzhi Hu
Additional Information:	
Question	Response
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Richland, Washington, United States
Please confirm that you have read and agree to the terms and conditions of the author license agreement that applies below:	I agree to the Author License Agreement
Please specify the section of the submitted manuscript.	Chemistry
Please provide any comments to the journal here.	

TITLE: High-Temperature and High-Pressure In situ Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopy **AUTHORS:** Nicholas R Jaegers Pacific Northwest National Laboratory, Richland, WA USA nicholas.jaegers@pnnl.gov Wenda Hu Washington State University, Pullman, WA USA wenda.hu@pnnl.gov Yong Wang Pacific Northwest National Laboratory, Richland, WA USA yong.wang@pnnl.gov Jian Zhi Hu Pacific Northwest National Laboratory, Richland, WA USA jianzhi.hu@pnnl.gov **CORRESPONDING AUTHOR:** Jian Zhi Hu

KEYWORDS:

Nuclear Magnetic Resonance, NMR, in situ, spectroscopy, high-temperature, high-pressure, materials characterization, biomedical materials

SHORT ABSTRACT:

The molecular structures and dynamics of solids, liquids, gases, and mixtures are of critical interest to diverse scientific fields. High-temperature, high-pressure in situ MAS NMR enables detection of the chemical environment of constituents in mixed phase systems under tightly controlled chemical environments.

LONG ABSTRACT:

Nuclear magnetic resonance (NMR) spectroscopy represents an important technique to understand the structure and bonding environments of molecules. There exists a drive to characterize materials under conditions relevant to the chemical process of interest. To address this, in situ high-temperature, high-pressure MAS NMR methods have been developed to enable the observation of chemical interactions over a range of pressures (vacuum to several hundred bar) and temperatures (well below 0 °C to 250 °C). Further, the chemical identity of the samples can be comprised of solids, liquids, and gases or mixtures of the three. The method incorporates all-zirconia NMR rotors (sample holder for MAS NMR) which can be sealed using a threaded cap

to compress an O-ring. This rotor exhibits great chemical resistance, temperature compatibility, and low NMR background and can withstand high pressures. These combined factors enable it to be utilized in a wide range of system combinations, which in turn permit its use in diverse fields as carbon sequestration, catalysis, material science, geochemistry, and biology. The flexibility of this technique makes it an attractive option for scientists from numerous disciplines.

INTRODUCTION:

Spectroscopic analysis of samples is an analytical tool used to gain valuable information about materials of interest such as their chemical state, structure, or reactivity. In a simplistic view, nuclear magnetic resonance (NMR) is one such technique that utilizes a strong magnetic field to manipulate the spin state of atomic nuclei to better understand the chemical environment of the species of interest. The nuclear spin state refers to the relative direction of the magnetic moment induced by the motion of the spinning nucleus, a positively charged particle. In the absence of a magnetic field, the nuclear spins are randomly oriented but in the presence of a magnetic field, nuclear spins preferentially align with the external field of the magnet in a low energy spin state. This splitting of spin states to discrete energy values is known as the Zeeman effect. The difference between these energy levels (ΔE) is modeled by Equation 1:

$$\Delta E = h \gamma B_0$$
 Eq. 1

where h is Plank's constant, B_0 is the strength of the external magnetic field and γ is the gyromagnetic ratio of the nucleus. The chemical environment of these spins also applies slight perturbations to these energy levels. Radio waves of corresponding frequencies can be used to excite the nuclei, which generates a transverse magnetization due to spins gaining phase coherence as longitudinal magnetization (based on the population of spins in parallel and antiparallel states) is decreased. As the nuclei continue precessing about the axis of the magnetic field, the rotating magnetic movement creates a magnetic field that is also rotating and generating an electric field. This field modulates the electrons in the NMR detection coil, generating the NMR signal. Slight differences in the chemical environment of the nuclei in the sample affect the frequencies detected in the coil.

NMR analysis of solid samples introduces complexities not found in fluids. In fluids, the molecules tumble at fast rates, averaging the chemical environment spatially around the nuclei. In solid samples, no such averaging effect occurs, introducing an orientation-dependent chemical environment and broad spectral lines in the NMR signal. To mitigate these challenges, a technique known as magic angle spinning (MAS) is employed^{1,2}. In MAS NMR, the samples are quickly rotated (several kilohertz) at an angle of 54.7356° with respect to the external magnetic field using an external spinning mechanism to address the orientation-dependent (anisotropic) interactions of NMR. This substantially narrows the NMR features and enhances the spectral resolution by averaging the orientation-dependent terms of the chemical shift anisotropy, dipolar interactions, and quadrupolar interactions. Two notable exceptions do hinder the line narrowing abilities of MAS NMR. The first is strong homonuclear coupling sometimes present in ¹H NMR that requires high spinning speeds (~70 kHz) to remove. However, the significantly

elevated temperatures of the high temperature applications will greatly suppress the ¹H homonuclear interaction by imparting enhanced thermal motion such that a much reduced sample spinning rate can be utilized for significantly enhanced spectral resolution. Furthermore, with the technology continuously evolving, rotors with smaller diameters can now be fabricated to achieve spinning rates far exceeding 5 kHz, which helps to further suppress the ¹H homonuclear dipolar interactions. The second exception is residual second-order quadrupolar interactions for nuclei with spin that exceeds one-half since only the first order term is eliminated at the magic angle, leaving more complex lineshapes that can only be improved by stronger external magnetic fields. It should be emphasized that 2D MQMAS techniques can be readily incorporated into the current technology so that a true isotropic chemical shift spectrum can be obtained in a similar way as to the standard MQMAS experiments³.

MAS NMR has enabled detailed characterization of solid materials, strengthening the quality of observations. However, the necessity of spinning the samples in NMR rotors (the sample holder) at high rates also imposes challenges in conducting experiments at elevated temperatures and pressures which may be more relevant to the conditions of interest. It may, at times, be desirable to examine materials under conditions that are relatively harsh for NMR rotors. A number of efforts have successfully adapted liquid-state NMR technologies to conduct high-temperature, high-pressure NMR⁴⁻⁷; however, commercial rotor caps used for solid-state MAS NMR may be expelled from the rotor at high pressures, causing significant damage to the equipment. Such effects may be compounded by examining a decomposition reaction that greatly increases the pressure in the sample holder. As such, new designs are required to effectively and safely conduct in situ NMR experiments. For example, the rotor must adhere to several qualities for effective use in MAS NMR, namely non-magnetic, lightweight, durable, temperature resistant, low NMR background material, sealable, high-strength, and chemical resistant. The pressures the rotor must withstand are quite large. Not only must the rotor withstand the pressure of the sample contained within (e.g., high-pressure gas), the rotation of the device imparts centrifugal force which has its own contribution to the total system pressure⁸, P_T, by equation 2:

$$P_T = \frac{(R_O^2 - R_I^2) * \rho * \omega^2 * R_O}{2 * R_I} + P_S$$
 Eq. 2

 R_I and R_O are the inner and outer rotor radii, respectively, ω is the rotational frequency in radians per second, and P_S is the sample pressure.

A number of strategies have been developed to address these concerns⁹. Early examples resembled flame-sealed tubes¹⁰⁻¹² or polymer inserts^{13,14}, which were insufficient for extended, fine-controlled operation at elevated temperatures and pressures. Iterations to rotor designs have suffered from limitations in the maximum operating temperature imparted by the use of epoxy or sample volume reductions from ceramic inserts^{8,15,16}. A recent technology reduces unit production costs by employing simple snap-in features in a commercial rotor sleeve, but offers relatively less control over the conditions with which it can operate¹⁷. The design employed herein is an all-zirconia, cavern-style rotor sleeve milled with a threaded top¹⁸. A cap is also

threaded to allow for a secure seal. Reverse threading prevents sample rotation from loosening the zirconia cap and an O-ring constitutes the sealing surfaces. This rotor design is visible in **Figure** 129 **1** and similar rotors and instructions to make them have been patented¹⁹. Such a strategy enables high mechanical strength, chemical resistance, and temperature tolerance.

These designs are suitable for temperatures and pressures of at least 250 °C and 100 bar, limited in temperature by readily-available NMR probe technology. When combined with specialized sample preparation equipment, it represents a truly powerful technique that has been employed for far-reaching applications as carbon sequestration, catalysis, energy storage, and biomedicine²⁰. Such equipment includes a way to pretreat the solid materials to remove unwanted surface species such as water. A furnace is often employed for this step. A dry box is typically used to load the solid samples into the NMR rotor. From there, the rotor is transferred into an exposure device which enables the rotor to be opened under a tightly controlled atmosphere to load a desired gas or mixture into the rotor. Such a device is depicted in **Figure 2**.

PROTOCOL:

The protocol is divided into four sections which specify 1) the preparation of any solid materials being used in the system or activation or clearing of undesired adsorbed species, 2) addition of the solid and liquid materials to the NMR rotor, 3) addition of gases to the rotor, and 4) conducting the NMR experiments in the spectrometer. The procedure is representative of a typical sequence but may be modified to fit the specific needs of the experiment.

1. Pretreating solid samples

1.1) Weigh approximately twice the mass of the solid sample that is desired for the NMR experiment (for a 7.5 mm rotor, ~250 mg) and place the solid sample into a quartz sample tube used for treating materials in a furnace system, plugging the tube with quartz wool to hold the material in place.

1.2) Connect the isolation valves to the solids treatment 1) flow or 2) vacuum system by placing the tube into the cool furnace and tightening the connections.

1.3) Affix the quartz tube end(s) onto the gas isolation valve(s) in the open position.

1.4) Begin the treatment.

1.4.1) For flow systems:

1.4.1.1) Affix a thermocouple to the outside of the tube, holding it in place with a heat-resistant material.

1.4.1.2) Begin the flow of the treatment gas (e.g., N_2 at 100 sccm) to clear the solid surface or activate the material.

171

172 1.4.2) Alternatively, for vacuum systems:

173

1.4.2.1) Close the isolation valve to the vacuum system and start the vacuum pump.

175

1.4.2.2) When full vacuum is established, very slowly open the isolation valve to apply vacuum to the sample, pausing periodically to allow the system to equilibrate. Continue until the valve is open.

179

1.5) Turn on the furnace controller and set the temperature ramp program to the desired condition (e.g., 300 °C for 4 hours at a ramp rate of 5 °C/min).

182

183 1.6) Start the temperature program and let it run.

184

185 1.7) When completed, allow the sample to cool to a workable temperature.

186

1.8) Turn off the temperature controller and stop the flow/vacuum.

187 188

189 1.9) Quickly seal the sample with the isolation valves to maintain the desired sample environment.

191

192 1.10) Disconnect the quartz tube from the treatment system and transfer the tubes and closed valves to the antechamber of a dry, N₂-purged glove box.

194

195 1.11) Empty and refill the antechamber at least 4 times and transfer the tube inside of the glove box.

197

2. Loading solid samples into the NMR rotor

198 199

2.1) Weigh the empty and clean high-pressure, high-temperature NMR rotor with the rotor cap.

201

202 2.2) Place the NMR rotor in the holder to maintain directionality.

203204

2.3) Place the sample funnel into the bore of the rotor.

205

206 2.4) Remove the isolation valve(s) from the sample tube and pour a small quantity of solid material into the funnel.

208

209 2.5) Tap the powder down into the funnel and lightly direct it into the rotor with the packing rod as necessary.

211

2.6) Repeat the stepwise addition of solid material until the desired quantity (e.g., ½ rotor) is achieved.

214

2.7) Weigh the NMR rotor (and cap) with the sample inside to determine the quantity of sample added.

217218

2.8) If desired, draw up a specified quantity of any liquid sample and slowly inject the liquid into the center of the NMR rotor with a micro syringe.

219220221

222

223

2.9) Seal the rotor by placing the cap onto the top and turning it counterclockwise with the rotor cap bit to engage the O-ring between the rotor and cap. Note that a new O-ring may been periodically required to prevent leaking, especially if using chemically abrasive mixtures or small gases such as hydrogen.

224225226

2.10) Weigh the NMR rotor to determine the total mass of added sample.

227228

3. Charging the NMR rotor with the desired chemicals at the desired conditions

229230

3.1) Place the sealed NMR rotor into the rotor stage, ensuring the size of the stage insert is compatible with the rotor size, and tighten the nut by hand to secure it in place. Note that the tightness of the rotor in the holder in this step will determine the tightness of the cap seal.

232233234

231

3.2) Lower the rotor stage into the lower section of the high-pressure exposure device.

235236

3.3) Use an Allen wrench to turn one of the screws 90° to secure the rotor stage into the bottom of the exposure device.

237238239

3.4) Place the top section of the NMR loading device into and on top of the bottom section, lining up the NMR cap bit to the top of the cap head of the NMR rotor to ensure it is engaged.

240241242

3.5) Place the 2 clamps over the top of the lip where the upper and lower sections of the exposure device meet and latch them in place.

243244245

3.6) Tighten the 6 bolts on the top of the upper section of the exposure device to engage the sealing surface between the upper and lower sections.

246247

248 3.7) Connect the upper section of the NMR exposure device to the gas line inlet and outlets.

249

250 3.8) Connect the thermocouple on the upper section of the NMR exposure device to the temperature sensor.

252

3.9) If desired, wrap the heating tape around the gas lines and upper sections of the exposure device to enable heating with the respective controller. A hot plate can also be engaged.

3.10) Ensuring the exposure chamber outlet is open and source gas valve is closed, turn on the vacuum pump to remove air from the exposure device and associated lines. 3.11) Purge the lines with either the desired gas or an inert one, cycling between vacuum and atmospheric pressure three times to ensure the lines are cleared of air. 3.12) Prepare the desired gas composition either from 1) a high-pressure delivery system or 2) a flow system to introduce vapors at a specified pressure. 3.12.1) For high-pressure or vacuum sample preparation: 3.12.1.1) Close the exposure device gas outlet and set the gas manifold valves to bypass the liquid injection line. 3.12.1.2) Set the desired pressure on the high-pressure syringe pump of the high-pressure delivery system. 3.12.1.3) Open the gas source valves on the high-pressure syringe pump and run the program set on the pump, monitoring the real pressure inside of the exposure device. 3.12.1.4) When the desired pressure is achieved inside the exposure device, stop the syringe pump and close the source gas valves. 3.12.1.5) Open the NMR rotor by rotating clockwise the external screw mechanism, which is coupled to the interior NMR cap bit.

3.12.1.6) Allow the gas of the desired pressure to enter the NMR rotor and equilibrate.

3.12.1.7) Reseal the NMR rotor by rotating the external screw mechanism counterclockwise. A viewing window will assist in determining when the rotor is closed.

3.12.1.8) Slowly depressurize the system by opening the exposure device gas outlet valve.

3.12.2) For flowing gas or vapor sample preparation:

3.12.2.1) Ensure the exposure device gas outlet is open to prevent over-pressure.

3.12.2.2) Set the desired gas flow rate on the mass flow controller and begin the gas flow.

3.12.2.3) Connect the liquid supply line from the liquid syringe pump to the gas manifold.

3.12.2.4) Set the gas manifold valves to enable flow to the liquid injection line. 3.12.2.5) Set the liquid flow rate on the liquid syringe pump to achieve the desired vapor pressure and begin liquid injection. 3.12.2.6) Open the NMR rotor by rotating clockwise the external screw mechanism which is coupled to the interior NMR cap bit. 3.12.2.7) Allow the system to equilibrate to the desired gas pressures inside the NMR rotor and reseal the NMR rotor by rotating the external screw mechanism counterclockwise. A viewing window will assist in determining when the rotor is closed. 3.12.2.8) Stop the liquid syringe pump injection and configure the valves to bypass the liquid injection line, disconnecting the pump from the system. 3.12.2.9) Stop the flowing gas. 3.13) Purge the system with an inert gas to remove any potentially toxic or flammable gases. 3.14) Stop any heating and allow the system to cool. 3.15) Disconnect any heating tape and the thermocouple. 3.16) Disconnect the inlet and outlet gas lines. 3.17) Loosen the 6 bolts on the top of the exposure device to compromise the seal. 3.18) Unclip the 2 clamping sections and remove them from the exposure device. 3.19) Carefully lift the upper section up and off the lower section. 3.20) Use an Allen wrench to loosen the rotor stage and draw it up with the threaded rod. 3.21) Loosen the nut on the rotor stage and remove the rotor from the device component. 3.22) Weigh the rotor to ensure the desired gas quantities are present. 4. Conducting the MAS NMR experiment 4.1) Place the NMR rotor into the NMR coil on the NMR probe. 4.2) Raise the probe into the magnet bore and lock it into place.

- 340 4.3) Initiate sample spinning using the MAS control box and adjust to the desired rotor spinning rate.
- 343 4.4) Use the computer to begin the tuning/match sequence on the desired channel.
 - 4.5) Adjust the tuning/match settings on the probe to optimize the probe electronics.
 - 4.6) Exit the tuning/match sequence on the computer and set up the desired experimental parameters (e.g., pulse sequence, experiment array, temperature, etc.).
 - 4.7) Collect the MAS NMR data.

REPRESENTATIVE RESULTS:

The output from the NMR spectrometer takes the form of a free induction decay (FID) which is the time-domain signal from the excited spins as they relax back to thermodynamic equilibrium. Such an FID resembles **Figure 3**. When Fourier transformed from the time domain to the frequency domain (PPM to frequency by Equation 3, whereby the difference absolute frequency and a reference is divided by the carrier frequency of the NMR spectrometer), it represents the NMR spectrum for which each peak indicates a nucleus in a unique chemical environment (**Figure 3**).

$$PPM = \frac{f - f_{ref}}{SF} * 10^6$$
 Eq. 3

One representative result from an in situ high-temperature, high-pressure MAS NMR experiment comes from the field of catalysis 21 . In this investigation, the reaction pathways for the conversion of ethanol to butenes were explored to elucidate the mechanism for biogenic molecules upgrading to jet fuel. This reaction takes place at elevated pressures and temperature, necessitating in situ NMR experiments conducted at 210 °C and 100 psig. In the cascade of reactions, ethanol is converted to crotonaldehyde through acetaldehyde and acetaldol. It has been shown that Meerwein–Ponndorf-Verley reduction to crotyl alcohol may be a step in the further conversion of crotonaldehyde, but the specific steps to form butenes after crotonaldehyde formation are poorly understood. To investigate this, time-resolved 1 H NMR at 300 MHz was employed to monitor the conversion of ethanol (and crotonaldehyde) to butene products. A portion of the pertinent data can be found in **Figure 4**. Approximately 25 mg of 4% Ag/4% 2 CrO₂/SiO₂ was placed into the NMR rotor along with the liquid component of the feed to generate a wet solid sample. The rotor atmosphere was charged with H₂ (a reactant with a broad resonance at 4.35 ppm) to bring the total pressure at reaction temperature to 100 psig.

¹H NMR spectra were collected every 64 seconds to monitor the transitions of the chemical species present as the temperature was increased to 210 °C. From the onset of crotonaldehyde conversion, resonance features characteristic of crotonaldehyde (9.4, 7.05, and 6.12 ppm, black dotted line) are suppressed as these molecules convert to product and intermediate species

overtime. Crotonaldehyde exhibits a transient adsorbed-like species (9.28, 6.3, and 5.8 ppm, blue dotted line) at lower temperatures, which dissipates as a feature characteristic of butyraldehyde develops at 9.7 ppm (red dotted line). Butyraldehyde signal intensity initially intensifies, reaching a maximum at about 800 s before it begins to dissipate. Concomitant with its consumption, peaks consistent with 1-butene and 2-butene at 5.65 and 5.3 ppm (green dotted line) arise and grow with time. Also apparent from the NMR spectra is the temperature-dependent chemical shift of butyraldehyde and crotonaldehyde, which shift higher as the temperature is elevated, indicative of thermal perturbation to the shielding of the proton nuclei in these polar molecules and potentially indicating vaporization at elevated temperatures²².

This series of spectra provides some insight into the operational reaction mechanism for the conversion of ethanol to butenes. The consumption of butyraldehyde, coupled with the simultaneous appearance of peaks characteristic of n-butenes, suggests that butyraldehyde is an intermediate in the formation of n-butene. Additional in situ high-temperature, high-pressure MAS NMR experiments have highlighted the role of surface hydrogen species, the role of ethanol protons, adsorbed olefins, and further insight into the system²³. Further, the low-field region (not shown) offers additional transient information which compliments the results shown in **Figure 4** which helps affirm the peak identification and supplements the observations already noted. The wealth of information extracted for just this system highlights some of the capabilities possible with in situ NMR.

In addition to applications in catalysis, in situ, high-temperature, high-pressure MAS NMR can be used to better understand the evolution of chemical species for biological applications. For example, the thermal degradation of liquids used in electronic cigarettes is of great concern to the health and well-being of users since toxic compounds may be generated and subsequently inhaled. Due to the variety of species present in such systems, ¹³C MAS NMR exhibited beneficial signal resolution for the assignment of spectral features, leading to a discernment of the pathways for thermochemical transformation. The results showed that at temperatures between 130 and 175 °C, the principle components of vape juices would degrade via an oxidative, radicalmediated mechanism. A representative ¹³C MAS NMR spectrum is depicted in Figure 5. In this, parent glycerol is shown to be present at 63 and 73 ppm (with spinning sidebands, *). As time progresses at 130 °C in an O₂ environment, new features emerge across the spectral range. Key features indicative of toxins are highlighted by their chemical structures. Namely, acrylic acid and formic acid/formaldehyde are observed to form at 175 and 164 ppm, respectively. Further, oxidation product CO₂ is observed at 125 ppm. Most importantly, even at such low temperatures, acetal-species of formaldehyde and acetaldehyde are shown to form between 50 and 112 ppm. The addition of parent glycerol to formaldehyde and acetaldehyde generates new hemiacetal species which act as aldehyde carriers. These can self-interact and dehydrate to generate new acetal species as well. Distinct peaks at 105 and 112 ppm correspond to acetaldehyde-derived acetals. Numerous other peaks between 50 and 80 ppm correspond to the many other chemical environments of the hemiacetals and acetals. Such observations enable the identification of toxic compounds which may be inhaled under conditions relevant to electronic cigarette use,

highlighting the flexibility of the MAS NMR method in addressing problems across many disciplines.

Figure Legends:

Figure 1: Cross-section diagram of the high-temperature, high-pressure MAS NMR rotor. The rotor consists of four main components. The cylindrical rotor sleeve is the main body of the sample holder. It contains a caver for the samples space and threads at the top. The rotor cap screws into the sleeve threads where it compresses an O-ring, making the seal. An NMR drive tip is fitted into the bottom of the rotor sleeve to enable spinning in the NMR spectrometer. Adapted with permission from reference 20. Copyright 2020 American Chemical Society.

Figure 2: Schematic diagram of the high-temperature, high-pressure NMR exposure device chamber. The NMR rotor is placed within the high-temperature, high-pressure exposure device, affixed in the stage. Pressure and temperature gauges monitor the condition inside the chamber. Gas lines are connected to the loading chamber which connect to a vacuum supply, outlet discharge, and gas feeds. The gas feed connects to a high-pressure syringe pump supply as well as a gas flow manifold. An optional liquid feed line can be selected in flow mode via two three-way valves. The rotor can be opened and closed in the controlled environment using a rotating mechanism coupled with the inside screw bit engaged onto the NMR cap. Adapted with permission from reference 20. Copyright 2020 American Chemical Society.

Figure 3: Representative FID and spectrum from an NMR experiment. The ¹³C NMR result illustrates the Fourier transform of the FID to the NMR spectrum. The ¹³C NMR spectrum identifies two distinct chemical environments, representative of the two types of carbon atoms in adamantane at 38.48 ppm (grey carbon) and 29.39 ppm (blue carbons).

Figure 4: In situ ¹H MAS NMR time sequence of ethanol to butadiene on Ag/ZrO₂/SiO₂ catalysts under H₂ pressure. The left side summarizes the observed NMR phenomena. Peaks corresponding to crotonaldehyde at 9.4, 7.05, and 6.12 ppm dissipate as peaks at 9.28, 6.3, and 5.8 ppm develop, which are assigned to an adsorbed crotonaldehyde species. Subsequently, the signature peak of butyraldehyde at 9.7 ppm is observed and then dissipates as butenes appear at 5.65 and 5.3 ppm.

FIGURE 5: In situ 13 C MAS NMR data for the oxidative thermal decomposition of glycerol. A representative single-pulse 13 C MAS NMR spectrum acquired at 3.5 kHz for the oxidative (75 psig O_2) degradation of glycerol (63 and 73 ppm). At extended times at 130° C, new features assigned to acrylic acid and formic acid/formaldehyde are observed to form at 175 and 164 ppm, respectively. CO_2 is also observed at 125 ppm. Hemiacetals and acetal species from the combination of glycerol to formaldehyde and acetaldehyde are also apparent by the array of signals between 50 and 112 ppm. Typical spectral parameters included a $\pi/4$ pulse width, 400 ms acquisition time, and a 4 s recycle delay over a few thousand repetitions. 1 H decoupling was active.

DISCUSSION:

The method of conducting MAS NMR spectroscopic measurements outlined herein represents the state of the art for conducting high-temperature, high-pressure MAS NMR. Such methods enable the observation of interactions occurring in vacuum atmospheres up to several hundred bar and from low temperatures (well below 0 °C to 250 °C) in a reliable, reproducible fashion. The ability to probe systems containing mixtures of solids, liquids, and gases under flexible chemical environments enables a wide range of experiments for diverse interests.

While many of the previous efforts have centered around the utilization of relatively large (7.5 mm) NMR rotors at low magnetic fields (300 MHz), the nature of the design makes it scalable to smaller rotor sizes for faster spinning at higher magnetic fields. The extension of operation to such smaller sizes enables a wider array of nuclei to be probed. While ¹H and ¹³C are standard at 300 MHz, in situ ²⁷Al MAS NMR, for example, greatly benefits from faster spinning rates and higher magnetic fields. In situ high-temperature, high-pressure NMR rotors as small as 3.2 mm are currently in operation for detection at spinning rates up to 25 kHz. The use of even smaller rotors (2.5 mm and 1.6 mm) would facilitate even faster spinning rates up to 35 or 45 kHz, respectively, which would be especially beneficial for quadrupolar nuclei. As the rotor sizes become smaller, the challenges to seal, spin, and handle the rotors all become greater. It should also be noted that the rotors described herein were designed to operate in probes compatible with Varian NMR systems, but these same principles could drive the development of similar rotors compatible with Bruker systems, taking care to adhere to physical dimensions of the rotor as well as the tight sealing which would be required of a cap located below the sample. Achieving such feats would extend the potential applications of the method even further.

While flexible, the application of this method is limited by several attributes. Chief among these limitations is the resource requirements to operate the NMR instrument in under conditions of high temperature and pressure. The specialized loading chamber and all-zirconia rotors are custom devices which are not readily available nor easily fabricated; however, an alternate hightemperature, high-pressure design¹⁷, which offers less flexibility given the nature of plastic snapin bushings and a minimum operating pressure exceeding ambient, is commercially available in 5 mm and 7.5 mm rotor diameters. Another limitation is that, while the pressure range is quite large (vacuum to more than 100 bar), the temperature range is limited to around 250 °C by commercially available NMR probes. Current efforts are underway to expand this range by the design of novel NMR probes. Indeed, one such effort has resulted in MAS NMR data acquisition at 325 °C and 60 bar²⁴. Many reactions in catalysis require even higher temperatures, limiting what can be studied by the technique. Further, spinning at such temperatures can sometimes create instabilities in the rotation of the sample, causing the potential for a rotor crash. At temperatures substantially lower than 0 °C, rotor spinning is also complicated by the contraction of the plastic spin tip, which may unseat and crash the rotor as well. Spinning challenges such as these are quite common for mixtures of solids and liquids, which result in a sample with the consistency of a slurry. When such a sample is prepared, it is easy to distribute the weight heterogeneously within the rotor volume, which causes great difficulty in spinning in a slurry sample which provides notable weight imbalances and resistance to movement. In practice, we

have found it useful to, when possible, load the solid sample alone and spin it at rates comparable to the MAS NMR experiment. This takes advantage of the centrifugal force to evenly spread the solid material. The rotor can then be removed from the magnet, reopened in an inert environment, and the liquid can be slowly injected into the bottom of the central axis to promote an even weight distribution. Once the sample successfully spins, the chemical constituents will naturally approach an equilibrium distribution over time. Finally, another important limitation to this method is the requirement that the system operate in a batch reactor-type of mode. There is a strong drive to have flowing cells to mimic the conditions of fixed-bed reactors, however the successful implementation of such a system that enables spinning, minimizes leaking, and prevents channeling is of great difficulty. Some efforts have been made on this front to varying degrees of success²⁵⁻²⁷. To do so at high pressures and temperatures brings further challenges to the endeavor.

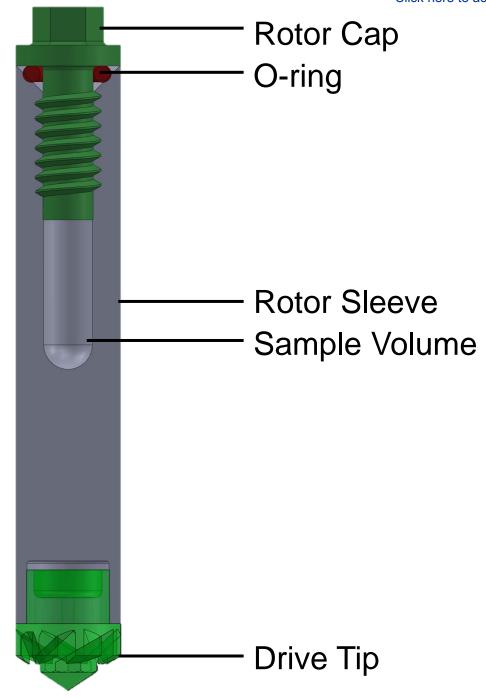
Such NMR methods are adaptable to a variety of experimental conditions, making it an attractive technique for a diverse array of scientific disciplines. In addition to applications in catalysis, previous use has spanned across numerous fields. For example, in geochemistry in situ MAS NMR has been employed to better understand the complex speciation of aluminate species under highly alkaline environments to elucidate the chemistry in radioactive high-level waste²⁸⁻³⁰. The method has also been used in energy storage investigations to help identify the interactions between electrolytes components and electrode surfaces using in situ MAS NMR^{31,32}. For biological applications, intact biological tissues have been analyzed to understand the chemical constituents at elevated temperatures without the concern of biofluid leaking¹⁸. The applications for which this technique can provide information are truly massive and expanding, highlighting the potential for widespread future use of in situ, high-temperature, high-pressure MAS NMR.

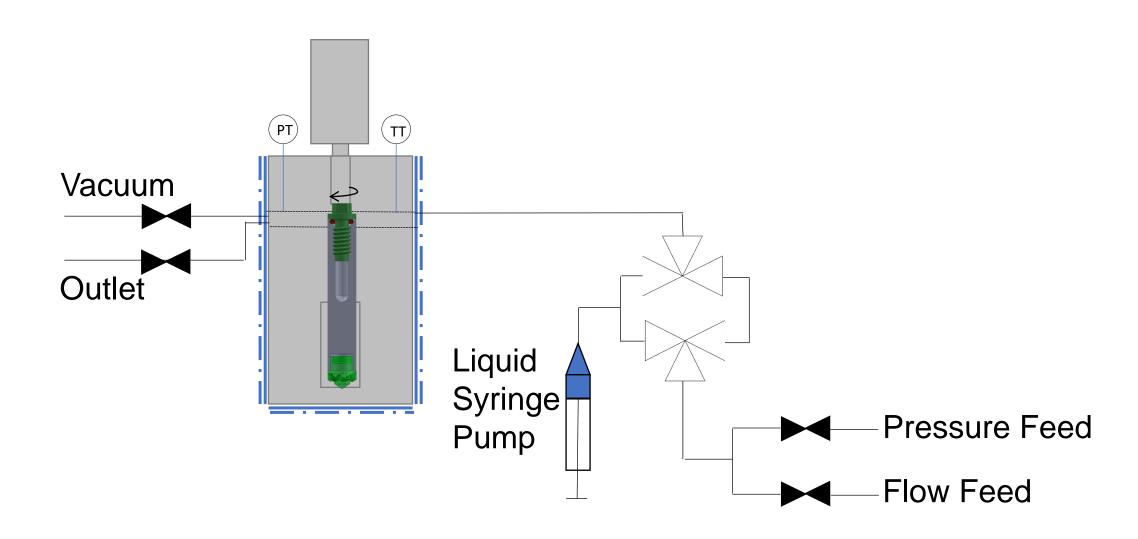
ACKNOWLEDGMENTS:

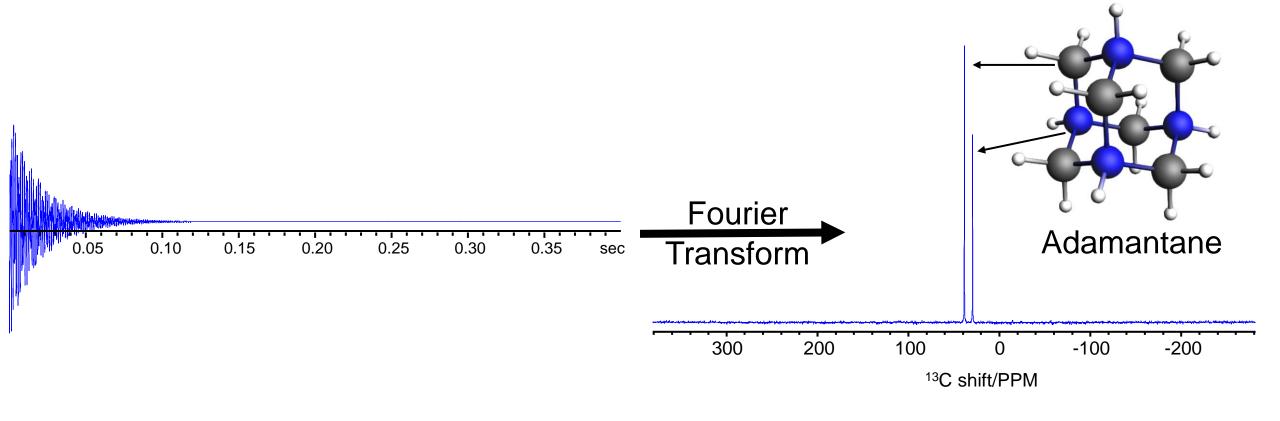
The review of catalyst applications was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Biosciences, and Geosciences Catalysis Program. The review of biomedical applications was supported by the National Institute of Health, National Institute of Environmental Health Sciences under grant R21ES029778. Experiments were conducted at EMSL (grid.436923.9), a DOE Office of Science User Facility sponsored by the Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy under Contract DE-AC05-76RL01830.

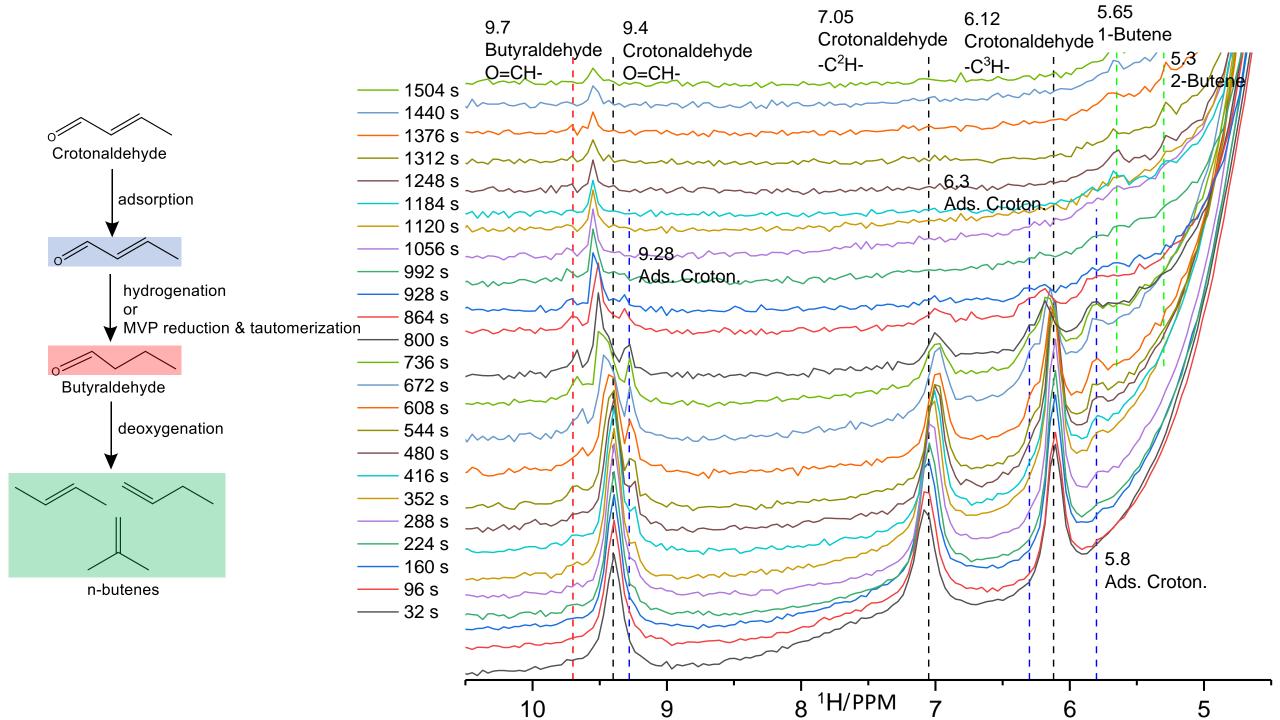
DISCLOSURES:

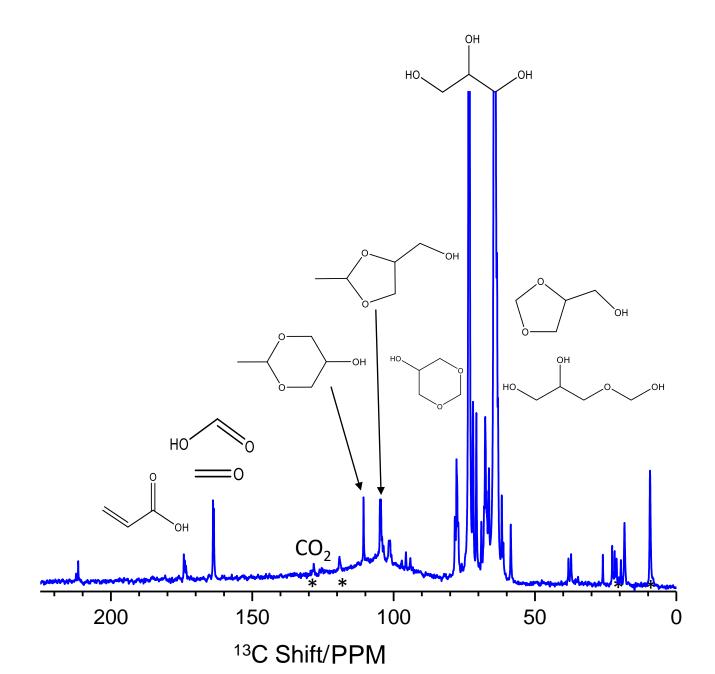
The authors declare the following competing financial interests. J.Z.H and colleagues hold a patent on the rotor design (US9151813B2). J.Z.H., N.R.J., et al. have filed a provisional patent application on the exposure device.


REFERENCES


550 1. Andrew, E. R., Bradbury, A., Eades, R. G. Nuclear Magnetic Resonance Spectra from a Crystal rotated at High Speed. *Nature*. **182** (4650), 1659-1659 (1958).


- Lowe, I. J. Free Induction Decays of Rotating Solids. *Physical Review Letters.* **2** (7), 285-
- 553 287 (1959).
- 554 3. Frydman, L., Fundamentals of Multiple-Quantum Magic-Angle Spinning NMR on Half-
- 555 Integer Quadrupolar Nuclei. In Encyclopedia of Nuclear Magnetic Resonance, Grant, D. M.,
- 556 Harris, R. K., Eds. 9, 262-274 (2002).
- 557 4. Khodov, I., Dyshin, A., Efimov, S., Ivlev, D., Kiselev, M. High-pressure NMR
- 558 spectroscopy in studies of the conformational composition of small molecules in supercritical
- carbon dioxide. *Journal of Molecular Liquids*. **309** (2020).
- 560 5. Kolbe, F. et al. High-Pressure in situ 129Xe NMR Spectroscopy: Insights into Switching
- 561 Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49. Chemistry of
- 562 *Materials.* **31** (16), 6193-6201 (2019).
- 563 6. Ochoa, G. et al. (2) H and (139) La NMR Spectroscopy in Aqueous Solutions at
- 564 Geochemical Pressures. Angewandte Chemie International Edition. **54** (51), 15444-15447
- 565 (2015).
- 7. Hoffmann, H. C. et al. High-pressure in situ 129Xe NMR spectroscopy and computer
- simulations of breathing transitions in the metal-organic framework Ni2(2,6-ndc)2(dabco) (DUT-
- 568 8(Ni)). *Journal of the American Chemical Society*. **133** (22), 8681-8690 (2011).
- 569 8. Turcu, R. V. F. et al. Rotor design for high pressure magic angle spinning nuclear
- magnetic resonance. *Journal of Magnetic Resonance*. **226**, 64-69 (2013).
- 571 9. Jaegers, N. R., Hu, M. Y., Hoyt, D. W., Wang, Y., Hu, J. Z., Development and Application
- of In situ High-Temperature, High-Pressure Magic Angle Spinning NMR. In *Modern Magnetic*
- 573 *Resonance*, 2017; pp 1-19.
- 574 10. Miyoshi, T., Takegoshi, K., Terao, T. 13C High-Pressure CPMAS NMR Characterization of
- 575 the Molecular Motion of Polystyrene Plasticized by CO2 Gas. *Macromolecules*. **30** (21), 6582-
- 576 6585 (1997).
- 577 11. Miyoshi, T., Takegoshi, K., Terao, T. 129Xe n.m.r. study of free volume and phase
- separation of the polystyrene/poly(vinyl methyl ether) blend. *Polymer.* **38** (21), 5475-5480
- 579 (1997).
- 580 12. Miyoshi, T., Takegoshi, K., Terao, T. Effects of Xe Gas on Segmental Motion in a Polymer
- 581 Blend As Studied by 13C and 129Xe High-Pressure MAS NMR. Macromolecules. 35 (1), 151-154
- 582 (2002).
- 583 13. Yonker, C. R., Linehan, J. C. The use of supercritical fluids as solvents for NMR
- 584 spectroscopy. *Progress in Nuclear Magnetic Resonance Spectroscopy*. **47** (1), 95-109 (2005).
- 585 14. Deuchande, T., Breton, O., Haedelt, J., Hughes, E. Design and performance of a high
- pressure insert for use in a standard magic angle spinning NMR probe. *Journal of Magnetic*
- 587 Resonance. **183** (2), 178-182 (2006).
- 588 15. Hoyt, D. W. et al. High-pressure magic angle spinning nuclear magnetic resonance.
- 589 *Journal of Magnetic Resonance*. **212** (2), 378-385 (2011).
- 590 16. Vjunov, A. et al. Following Solid-Acid-Catalyzed Reactions by MAS NMR Spectroscopy in
- 591 Liquid Phase-Zeolite-Catalyzed Conversion of Cyclohexanol in Water. *Angewandte Chemie*
- 592 *International Edition.* **53** (2), 479-482 (2014).
- 593 17. Chamas, A. et al. High temperature/pressure MAS-NMR for the study of dynamic
- 594 processes in mixed phase systems. *Magnetic Resonance Imaging*. **56**, 37-44 (2019).


- 595 18. Hu, J. Z. et al. Sealed rotors for in situ high temperature high pressure MAS NMR.
- 596 *ChemComm.* **51** (70), 13458-13461 (2015).
- 19. Hu, J. Z., Hu, M. Y., Townsend, M. R., Lercher, J. A., Peden, C. H. High-pressure, high-
- 598 temperature magic angle spinning nuclear magnetic resonance devices and processes for
- making and using same. US patent. (US9151813B2).
- 500 20. Jaegers, N. R., Mueller, K. T., Wang, Y., Hu, J. Z. Variable Temperature and Pressure
- 601 Operando MAS NMR for Catalysis Science and Related Materials. Accounts of Chemical
- 602 *Research.* **53** (3), 611-619 (2020).
- 603 21. Dagle, V. et al. Single-step Conversion of Ethanol to n-butenes over Ag-ZrO₂/SiO₂
- 604 catalysts. ACS Catalysis. **10** (18), 10602-10613 (2020).
- 605 22. Jaegers, N. R., Wang, Y., Hu, J. Z. Thermal perturbation of NMR properties in small polar
- and non-polar molecules. Scientific Reports UK. 10 (1), 6097 (2020).
- 607 23. Jaegers, N. R. Applications of In situ Magnetic Resonance Spectroscopy for Structural
- Analysis of Oxide-supported Catalysts. Washington State University, dissertation (2019).
- 609 24. Mehta, H. S. et al. A novel high-temperature MAS probe with optimized temperature
- 610 gradient across sample rotor for in-situ monitoring of high-temperature high-pressure chemical
- reactions. Solid State Nuclear Magnetic Resonance. **102**, 31-35 (2019).
- 612 25. Hu, J. Z. et al. A large sample volume magic angle spinning nuclear magnetic resonance
- 613 probe for in situ investigations with constant flow of reactants. *Physical Chemistry Chemical*
- 614 *Physics.* **14** (7), 2137-2143 (2012).
- 615 26. Jiang, Y. et al. In situ MAS NMR-UV/Vis investigation of H-SAPO-34 catalysts partially
- 616 coked in the methanol-to-olefin conversion under continuous-flow conditions and of their
- 617 regeneration. Microporous and Mesoporous Materials. 105 (1-2), 132-139 (2007).
- 618 27. Xu, S., Zhang, W., Liu, X., Han, X., Bao, X. Enhanced In situ Continuous-Flow MAS NMR
- for Reaction Kinetics in the Nanocages. *Journal of the American Chemical Society*. **131** (38),
- 620 13722-13727 (2009).
- 621 28. Graham, T. R. et al. In situ Al-27 NMR Spectroscopy of Aluminate in Sodium Hydroxide
- 622 Solutions above and below Saturation with Respect to Gibbsite. *Inorganic Chemistry.* **57** (19),
- 623 11864-11873 (2018).
- 624 29. Zhang, X. et al. Boehmite and Gibbsite Nanoplates for the Synthesis of Advanced
- 625 Alumina Products. *ACS Applied Nano Materials*. **1** (12), 7115-7128 (2018).
- 626 30. Zhang, X. et al. Transformation of Gibbsite to Boehmite in Caustic Aqueous Solution at
- 627 Hydrothermal Conditions. Crystal Growth & Design. 19 (10), 5557-5567 (2019).
- Hu, J. Z., Jaegers, N. R., Hu, M. Y., Mueller, K. T. In situ and ex situ NMR for battery
- research. Journal of Physics: Condensed Matter. **30** (46) (2018).
- 630 32. Hu, J. Z. et al. Adsorption and Thermal Decomposition of Electrolytes on Nanometer
- Magnesium Oxide: An in situ C-13 MAS NMR Study. ACS Applied Materials & Interfaces. 11 (42),
- 632 38689-38696 (2019).


633

Comments/Description Name of Reagent/ Equipment **Company Catalog Number** 1) Preparation of Solids Samples Gas maniforld **Gas Mass Flow Controllers** Vacuum Pump **Tube Furnace Temperature Controller** Thermocouple Quartz Tube **Isolation Valves** Quartz Wool 2) Loading solid samples into the rotor Dry glove box High-temperature, high-pressure NMR rotor Sample funnel

Sample packing rod Rotor holder

Analytical Balance

Microsyringe

Rotor cap bit

3) Addition of gases to the rotor

NMR loading chamber

Rotor stage and appropriately sized inserts

Vacuum Pump

Gas maniforld

Gas Mass Flow Controllers

Vacuum Pump

Heating Tape

Temperature Controller

Thermocouple

Allen wrench
Threaded rod
Wrenchs
Pressure Gauge
High-pressure syringe pump
Liquid syringe pump

4) Conducting the NMR experiments

MAS NMR probe NMR spectrometer Computer to control the spectrometer

Editorial comments:

Changes to be made by the Author(s):

1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues.

We have reviewed the manuscript and corrected the observed grammatical issues.

2. Please highlight up to 3 pages of the Protocol (including headings and spacing) that identifies the essential steps of the protocol for the video, i.e., the steps that should be visualized to tell the most cohesive story of the Protocol. Remember that non-highlighted Protocol steps will remain in the manuscript, and therefore will still be available to the reader.

We have highlighted ~3 pages of protocol which relates to the essential steps and corresponding video files.

3. Please discuss some limitations of the protocol in the discussion.

Excellent suggestion. We have added the following to the discussion and included additional citations to support our claims

"The use of even smaller rotors (2.5 mm and 1.6 mm) would facilitate even faster spinning rates up to 35 or 45 kHz, respectively, which would be especially beneficial for quadrupolar nuclei. As the rotor sizes become smaller, the challenges to seal, spin, and handle the rotors all become greater. It should also be noted that the rotors described herein were designed to operate in probes compatible with Varian NMR systems, but these same principles could drive the development of similar rotors compatible with Bruker systems, taking care to adhere to physical dimensions of the rotor as well as the tight sealing which would be required of a cap located below the sample."

And

"While flexible, the application of this method is limited by several attributes. Chief among these limitations is the resource requirements to operate the NMR instrument in under conditions of high temperature and pressure. The specialized loading chamber and all-zirconia rotors are custom devices which are not readily available nor easily fabricated; however, an alternate high-temperature, high-pressure design, which offers less flexibility given the nature of plastic snap-in bushings and a minimum operating pressure exceeding ambient, is commercially available in 5 mm and 7.5 mm rotor diameters. Another limitation is that, while the pressure range is quite large (vacuum to more than 100 bar), the temperature range is limited to around 250°C by commercially available NMR probes. Current efforts are underway to expand this range by the design of novel NMR probes. Indeed, one such effort has resulted in MAS NMR data acquisition at 325°C and 60 bar. Many reactions in catalysis require even higher temperatures, limiting what can be studied by the technique. Further, spinning at such temperatures can sometimes create instabilities in the rotation of the sample, causing the potential for a rotor crash. At temperatures substantially lower than 0°C, rotor spinning is also complicated by the contraction of the plastic spin tip, which may unseat and crash the rotor as well. Spinning challenges

such as these are quite common for mixtures of solids and liquids, which result in a sample with the consistency of a slurry. When such a sample is prepared, it is easy to distribute the weight heterogeneously within the rotor volume, which causes great difficulty in spinning. In practice, we have found it useful to, when possible, load the solid sample alone and spin it at rates comparable to the MAS NMR experiment. This takes advantage of the centrifugal force to evenly spread the solid material. The rotor can then be removed from the magnet, reopened in an inert environment, and the liquid can be slowly injected into the bottom of the central axis to promote an even weight distribution. Once the sample successfully spins, the chemical constituents will naturally approach an equilibrium distribution over time. Finally, another important limitation to this method is the requirement that the system operate in a batch reactor-type of mode. There is a strong drive to have flowing cells to mimic the conditions of fixed-bed reactors, however the successful implementation of such a system that enables spinning, minimizes leaking, and prevents channeling is of great difficulty. Some efforts have been made on this front to varying degrees of success. To do so at high pressures and temperatures brings further challenges to the endeavor."

Reviewers' comments:

Reviewer #1:

Manuscript Summary:

The authors presented a very useful technology for in situ NMR study under high temperature and high pressure. This manuscript will promote the application of nuclear magnetic technology, especially for catalytic characterization. I recommend accepting the work with a few minor concerns.

Thank you very much for the positive assessment and helpful feedback. Please find our responses below.

(1) Please provide the data of tightness and pressure resistance of the rotor, especially the small molecule of hydrogen.

Great question, we have tested the rotor under conditions from slight vacuum (~0.5 bar) to 100 bar and the rotor withstands these conditions well. We expect higher and lower pressures are possible, but we have not had a need to exceed this range yet and we regard the rotors too resource-intensive in construction to warrant a stress test intended to induce failure (destruction of the rotor). In each instance, the rotor cap was tightened to approximately "finger tight" due to the use of a holder which will cause the rotor to spin if the force of tightening the cap exceeds the force holding the rotor on the stage from spinning. This holder is only tightened onto the rotor by hand and we find that with the o-rings, this is a sufficient seal. For hydrogen gas charging, we have only employed H₂ pressures up to 150 psig (~11.3 bar), doing so on two occasions for experiments not described herein. In one instance, the experiment needed to be repeated since hydrogen was leaking from the rotor. This was resolved by replacing the o-ring and we have found, in practice, that it is advisable to use a fresh o-ring when using hydrogen. To share this information, we have added the following to the manuscript:

"2.9) Seal the rotor by placing the cap onto the top and turning it counterclockwise with the rotor cap bit to engage the O-ring between the rotor and cap. *Note that a new O-ring may been periodically requireded to prevent leaking, especially if using chemically abrasive mixtures or small gases such as hydrogen."

And

"3.1) Place the sealed NMR rotor into the rotor stage, ensuring the size of the stage insert is compatible with the rotor size, and tighten the nut by hand to secure it in place. Note that the tightness of the rotor in the holder in this step will determine the tightness of the cap seal."

And

"Another limitation is that, while the pressure range is quite large (vacuum to more than 100 bar), the temperature range is limited to around 250°C by commercially available NMR probes. Current efforts are underway to expand this range by the design of novel NMR probes. Indeed, one such effort has resulted in MAS NMR data acquisition at 325°C and 60 bar."

(2) Is it possible to achieve high temperature and high pressure for the NMR rotor using on Bruker probe?

Excellent question. In principle, this technology can be applied to Bruker probes as well. We have dedicated some time designing them to be compatible with Bruker systems too, however, we have not yet developed this technology. The same basic design used on the Varian systems can be applied to the Burker style by modifying the exterior dimensions to conform with the Bruker probe design and taking care to consider the wall thickness as well as the importance of tight sealing of the cap since gravity will assist with the potential for leaking. We have added the following to the manuscript:

"It should be noted that the rotors described herein were designed to operate in probes compatible with Varian NMR systems, but these same principles could drive the development of similar rotors compatible with Bruker systems, taking care to adhere to physical dimensions of the rotor as well as the tight sealing which would be required of a cap located below the sample."

Reviewer #2:

Manuscript Summary:

This manuscript describes a high-pressure NMR cell for performing MAS NMR studies of different small molecules. This is useful because the In addition to applications in catalysis, previous use has spanned across some fields. The authors describe the design of their probehead and high pressure equipment in some detail, however, this emphasis on instrument

design exacerbates a referencing problem I note below. I do not have any major scientific criticisms, though someone who is more well versed in the catalysis should review the results.

Thank you for recognizing the useful nature of this manuscript and the suggestion to include a more diverse pool of citations. We seek to address the referencing concerns below and will include the requested citations, though do not believe these directly relevant to the methods we employ (solids vs liquids), which is described below in greater detail.

Major Concerns:

There has been a lot of work on the system and probe to perform high resolution, high pressure NMR experiments in recent years. For example, there is a specialized high-pressure liquids head developed by Bill Casey's group at UC Davis and the high pressure NMR system developed at Russian Academy of Science (Dr. Khodov and Prof. Kiselev) and anather the high resolution high pressure NMR system at Technische Universität Dresden (Prof. Eike Brunner). As far as I know, all such designs could be used to look at the molecular structures and dynamics of solids, liquids, gases, and mixtures, and I think Bill Casey, Ilya Khodov and Eike Brunner have done some work looking at this area. None of that work seems to be cited here, but there are a lot of self citations. I'd rather see a broader sampling of the existing work appear in the references and think this is a pretty significant issue.

Thank you for bringing these researchers to our attention. We recognize that other groups have conducted MAS NMR experiments at elevated temperatures and pressures, and these efforts are already cited since they directly led to the current methods and they are briefly evaluated within the scope of a JoVE article with references to more thorough discussion on the topic. We are also aware of the efforts of groups to utilize high-pressure NMR for a variety of applications on liquids systems, as you mentioned above. We feel that the efforts for MAS NMR described herein are inherently guite different since these are conducted with solid-state MAS NMR which requires that the sample spin several thousand times a second at the magic angle. We recognize that the mentioned designs could likely be used to look at the wide-line spectra of solids (and certainly of fluids), but respectfully disagree that these designs would be optimal for solids owning to the advantages that MAS provides. Such advantages are briefly explained in the manuscript and expanded upon at the request of reviewer #3. The magnitude of selfcitations and citations from groups at our institute stem from the limited external utilization of this technique to date. Indeed, by providing this information, we hope to alleviate some of the barriers which prevent other research groups from utilizing these techniques. To note the efforts in liquids NMR, we will include these citations, but as they are not directly applicable to the procedures we are outlining herein, the specifics will not be detailed. It would, however, be an excellent topic for a future JoVE article either by one of the mentioned scientists or others at our institute who do similar work.

We have included citations for these mentioned groups' efforts on liquid-state high-pressure NMR with the following statement:

"A number of efforts have successfully adapted liquid-state NMR technologies to conduct high-temperature, high-pressure NMR, however commercial rotor caps used for solid-state MAS NMR may be expelled from the rotor at high pressures, causing significant damage to the equipment."

Reviewer #3:

Manuscript Summary:

The contribution of Jaegers et al. describes a method to perform high-pressure and high-temperature magic-angle spinning experiments. The basic idea is a special rotor design that can with withstand such conditions and that can be packed under controlled environments. Indeed this is an interesting and important contribution.

We thank the reviewer for the positive feedback and the excellent suggestions below which have helped improve our manuscript.

1. In the second paragraph of the introduction, the authors state that "Radio waves of corresponding frequencies can be used to excite the nuclei to a higher energy state, stimulating an alignment dissimilar to the external field." Since the signal (or the different alignment) comes from super-position states (coherences) perhaps this should also be mentioned here. Exciting nuclei to higher energies is the equivalent of 180 degree pulse, which does not give a signal, or "a new magnetic alignment"

Thank you for pointing out this inaccurate description of excitation. We have updated the text to be more precise according to your suggestion:

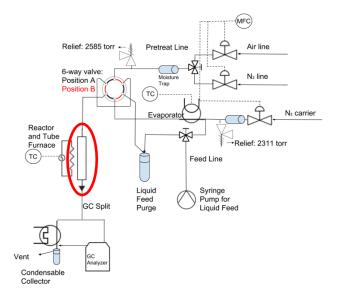
"Radio waves of corresponding frequencies can be used to excite the nuclei, which generates a transverse magnetization due to spins gaining phase coherence as longitudinal magnetization (based on the population of spins in parallel and anti-parallel states) is decreased. As the nuclei continue precessing about the axis of the magnetic field, the rotating magnetic movement creates a magnetic field that is also rotating and generating an electric field."

2. Third paragraph: "In MAS NMR, the samples are quickly rotated (several kilohertz) at an angle of 54.7356° with an external spinning mechanism". Please insert after 54.7 "with respect to the external magnetic field" and complete the sentence accordingly.

Thank you for pointing out this lack of context. We have added the suggested phrase.

3. Same paragraph: "This substantially narrows the NMR features and enhances the spectral resolution". I think at least two important cases have to be addressed, that are not efficiently averaged by MAS - 1H MAS NMR due to strong homonuclear couplings, and quadrupolar nuclei that are left with a second order lineshapes, and cannot be completely averaged this way.

Thank you for pointing out this omission. Our previous explanation was too simplistic and this detail gives the reader a better sense of the limitations in how this method could be applied in practice. We have added the following:


"This substantially narrows the NMR features and enhances the spectral resolution by averaging the orientation-dependent terms of the chemical shift anisotropy, dipolar interactions, and quadrupolar interactions. Two notable exceptions do hinder the line narrowing abilities of MAS NMR. The first is strong homonuclear coupling sometimes present in ¹H NMR which requires high spinning speeds (~70 kHz) to remove. However, the significantly elevated temperatures of the high temperature applications will greatly suppress the ¹H homonuclear interaction by imparting enhanced thermal motion such that a much reduced sample spinning rate can be utilized for significantly enhanced spectral resolution. Furthermore, with the technology continuously evolving, rotors with smaller diameters can now be fabricated to achieve spinning rates far exceeding 5 kHz which helps to further suppress the ¹H homonuclear dipolar interactions. The second exception is residual second-order quadrupolar interactions for nuclei with spin that exceeds one-half since only the first order term is eliminated at the magic angle, leaving more complex lineshapes which can only be improved by stronger external magnetic fields. It should be emphasized that 2D MQMAS techniques can be readily incorporated into the current technology so that a true isotropic chemical shift spectrum can be obtained in a similar way as to the standard MQMAS experiments."

4. Page 3: "the rotation of the device imparts centrifugal force which has its own contribution to the total system pressure, PT, by equation 2" - A reference is required here.

We have added this citation of an existing reference.

5. "Pretreating solid samples": Not sure it is entirely clear what this tube is, but I assume in the movie it will be shown. A figure here could help the text at least

The tube is just any tube which can hold sample and be connected to a pretreatment system. In our case for flowing systems, it is just a reactor tube used for fixed-bed reactions. It will be shown in the movie, but since it is of minimal significance we do not feel it warrants its own figure in the manuscript. If the reviewers and editors disagree with our assessment, we can incorporate a system diagram to help explain this better. We have attached it here, for your reference, with the tube in question circumscribed. Further, we have added "place the solid sample into a quartz sample tube used for treating materials in a furnace system" into the manuscript to help provide clarity.

6. Page 8, Eq 3: This is a bit of a strange definition. The ppm scale is with respect to a reference material (f-fref)/SF, and should be multiplied by 10^6. Similarly, In figure 3 in the x-axis, the actual nucleus being detected is missing (e.g 13C shift/ppm).

Thank you for this feedback. We have altered equation 3 and the x-axis title of figure 3 to adhere to the typical representations. We modified the abscissa in figures 4 and 5 as well.

7. Page 9: second paragraph regarding 1H NMR: The really large water signal is ignored. I think at least this should be discussed and solutions to its removal can be made (water suppression? Is it possible?).

Thank you for pointing out this confusion. While water is present as the reaction proceeds (due to unwanted acid-catalyzed side dehydration of ethanol), the abundance is not as significant as it might seem from the figure. This large feature centered at 4.35 is actually from the hydrogen gas charged into the rotor. To clarify this, we have modified the description to state that hydrogen is present and is "a reactant with a broad resonance at 4.35 ppm". The system described is complex with many subtle features. We have chosen a selection of key and obvious points to discuss which we feel highlights a unique advantage of the method and refer the reader to a published summary of the work in *ACS Catalysis*. An original work which covers these results in greater detail is in preparation and some relatively raw results can be found in the appendix of a dissertation by Jaegers. These last two can be cited if requested, but we feel the currently cited article is sufficient.

8. Same topic - what is the form of the sample. Solid-like? liquid-like? slurry? Narrow proton lines suggest a liquid-like sample, thus is MAS really required here?

In this particular case, the same consistency was that of a wet solid due to the ratio of solid catalyst to reacting alcohol employed. The balance of the rotor space was filled with hydrogen gas. We have also conducted experiments on samples that resemble pastes and slurries. In some cases, similar information could be extracted from liquid-state NMR (such as measuring

the distribution of a chemical constituent inside and outside the confines of a porous solid as have been reported for both MAS and liquid NMR. We have tried to select examples which showcase the unique strengths of MAS NMR. In this case, where the sample is a wet solid, we can identify species we believe to be anchored and interacting with the surface such as adsorbed olefins, adsorbed aldehydes, hydrides, etc. While these full details are not shown in this JoVE article, further details are available in published literature (see question above). We have added mention of the observation of adsorbed olefins in the text, which already mentions other surface species observed. We also added in mention of the physical state of the sample as a wet solid.

9. Maintaining spinning stability must be an issue in such systems, in particular when mixing solids and liquids. Can the authors discuss this? perhaps show the stability of spinning at different temperatures/pressures?

This is of great practical importance. The stability of the spinning is typically only an issue when trying to initiate spinning or during a temperature increase under some conditions. Initiating spinning especially can be an issue with much efforts spent to minimize the challenges associated with spinning slurry-like samples. To address this in the manuscript, we have added the following to the manuscript which we hope others find useful.

"Spinning challenges such as these are quite common for mixtures of solids and liquids, which result in a sample with the consistency of a slurry. When such a sample is prepared, it is easy to distribute the weight heterogeneously within the rotor volume, which causes great difficulty in spinning in a slurry sample which provides notable weight imbalances and resistance to movement. In practice, we have found it useful to, when possible, load the solid sample alone and spin it at rates comparable to the MAS NMR experiment. This takes advantage of the centrifugal force to evenly spread the solid material. The rotor can then be removed from the magnet, reopened in an inert environment, and the liquid can be slowly injected into the bottom of the central axis to promote an even weight distribution. Once the sample successfully spins, the chemical constituents will naturally approach an equilibrium distribution over time."

10. What happens in the high-field (low frequency) portion of the spectra - for example, methyl groups can also be an indication of the reaction, but are now shown in Figure 4.

There are substantial changes in this region as products and side-products form. We also see the formation of surface hydrogen species (mentioned) and gas-phase water. This section is available in the future work, the published dissertation previously mentioned, and crudely shown in the recently published article (cited), but is not shown here for clarity purposes since that region is quite complex with numerous overlapping signatures. Again, we will cite the two other works if requested, however we feel the current depiction is most suitable for this manuscript due to the complexity of the full series. We will, however, note these observed changes in the manuscript text for completeness.

11. Figure 5 (caption/text): What is the experiment here? single-pulse carbon excitation? what is

the spinning speed? The compounds detected are liquids. Why is MAS required at all? Is there any 1H decoupling here? In short - missing many experimental details. There must be a great variation in relaxation delays between the different species. Was that accounted for? How many scans are typically required for such experiments?

Thank you for the note on the missing information. We have added to the caption that this is a single pulse carbon experiment with ${}^{1}H$ decoupling. The spectral parameters were a $\pi/4$ pulse width, 400 ms acquisition time, and a 4 s recycle delay over a few thousand repetitions. We tried to minimize relaxation delays by using a 45° tip angle and compared spectra collected with different recycle delays to note any change. We believe the parameters used capture the species present based on these tests. This series of experiments also included trials with simulated e-cigarette coils within the NMR rotor where we hoped to observe adsorbed species. It should be noted that the e-liquid applications involves a heterogeneous sample system containing liquid and gas phases as well as an interface between the two in order to simultaneously capture the species in the liquid and gases phases at the reaction temperature. The air cavities inside the sample cell space will noticeably broaden the NMR peaks in a way that cannot be eliminated by using a liquid probe (evidence exists for this observation). A liquid probe or NMR system only produces high resolution NMR peaks on homogeneous samples of either homogenous liquid or gaseous systems, but not the two phases together. For this spectrum, similar results could not be obtained from a liquids probe. We have added the missing experimental details in the figure caption.

12. Line 5 in the introduction - "magnetism" - replace with "magnetic moment" Corrected.

13. If the idea of jove is the ability to reproduce the data, can the authors provide a schematics for constructing such rotors? How is the rotor inner slave made and what is the sample chamber made of?

This is an excellent suggestion. We can provide such schematics, which are actually quite similar to Figure 1. A number of rotor designs were patented by Battelle Memorial Institute in 2015 which include detailed instructions on how to manufacture these rotors. The rotor designs vary somewhat with each iteration, but the basic principles are the same. This patent citation will be included for others to review and understand how these rotors are made.

Title of Article: High Temperature and High Pressure In Situ Magic Angle Spinning Nuclear Magnetic Resonance spectroscopy Author(s): Nicholas R. Jaegers*, Wenda Hu^, Yong Wang^, Jian Zhi Hu* Item 1: The Author elects to have the Materials be made available (as described at http://www.jove.com/publish) via: X Standard Access Open Access Item 2: Please select one of the following items: The Author is **NOT** a United States government employee. IThe Author is a United States government employee and the Materials were prepared in the course of his or her duties as a United States government employee. The Author is a United States government employee but the Materials were NOT prepared in the

ARTICLE AND VIDEO LICENSE AGREEMENT

course of his or her duties as a United States government employee.

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-
- nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion

- of the Article, and in which the Author may or may not
- 2. Background. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and(c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

- 4. **Retention of Rights in Article.** Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. **Grant of Rights in Video Standard Access.** This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video - Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this **Section 6** is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. **Protection of the Work.** The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. **Likeness, Privacy, Personality.** The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 13. **Fees.** To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 14. **Transfer, Governing Law.** This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDING AUTHOR

• •					
Name:	David R. Long, Authorized Agent Batt	telle Memo	orial Institute*		
Department:					
Institution:					
Title:	Authorized Agent signing for Battelle Memorial Institute authors only*				
		ı			
Signature:	David R. Long	Date:	25 June 2020		

Please submit a **signed** and **dated** copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

VISUALIZE	JOURNAL OF EXPERIMENTS	1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

itle of Article:	Resonance spectroscopy				
Author(s):	Nicholas R. Jaegers*, Wenda Hu^, Yong Wang^, Jian Zhi Hu*				
nttp://www.jove	Author elects to have the Materials be made available (as described at e.com/publish) via:				
X Standard	d Access				
tem 2: Please se	elect one of the following items:				
X The Auth	nor is NOT a United States government employee.				
	hor is a United States government employee and the Materials were prepared in the f his or her duties as a United States government employee.				
	nor is a United States government employee but the Materials were NOT prepared in the f his or her duties as a United States government employee.				

ARTICLE AND VIDEO LICENSE AGREEMENT

Defined Terms. As used in this Article and Video 1. License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-

nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not

- 2. Background. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and(c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

- 4. **Retention of Rights in Article.** Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. **Grant of Rights in Video Standard Access.** This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video - Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this **Section 6** is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. **Protection of the Work.** The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. **Likeness, Privacy, Personality.** The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 13. **Fees.** To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 14. **Transfer, Governing Law.** This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDING AUTHOR

• •					
Name:	David R. Long, Authorized Agent Batt	telle Memo	orial Institute*		
Department:					
Institution:					
Title:	Authorized Agent signing for Battelle Memorial Institute authors only*				
		ı			
Signature:	David R. Long	Date:	25 June 2020		

Please submit a **signed** and **dated** copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140