Journal of Visualized Experiments

Atomic Force Microscopy Combined with Infrared Spectroscopy as a Tool to Probe Single Bacterium Chemistry --Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video
Manuscript Number:	JoVE61728R2
Full Title:	Atomic Force Microscopy Combined with Infrared Spectroscopy as a Tool to Probe Single Bacterium Chemistry
Corresponding Author:	Kamila Kochan Monash University Clayton, Victoria AUSTRALIA
Corresponding Author's Institution:	Monash University
Corresponding Author E-Mail:	kamila.kochan@monash.edu
Order of Authors:	Kamila Kochan
	Anton Y. Peleg
	Philip Heraud
	Bayden R. Wood
Additional Information:	
Question	Response
Please indicate whether this article will be Standard Access or Open Access.	Open Access (US\$4,200)
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Melbourne, Clayton, Victoria, Australia

1 TITLE:

- 2 Atomic Force Microscopy Combined with Infrared Spectroscopy as a Tool to Probe Single
- 3 Bacterium Chemistry

4 5

AUTHORS AND AFFILIATIONS:

6 Kamila Kochan¹, Anton Y. Peleg^{2,3}, Philip Heraud^{1,2}, Bayden R. Wood¹

7

- 8 ¹Centre for Biospectroscopy and School of Chemistry, Monash University, Clayton Campus,
- 9 Victoria, Australia
- 10 ²Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of
- 11 Microbiology, Monash University, Clayton Campus, Victoria, Australia
- 12 ³Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash
- 13 University, Melbourne, Victoria, Australia

14 15

Corresponding Author:

16 Kamila Kochan (kamila.kochan@monash.edu)

17 18

Email addresses of Co-Authors:

- 19 Anton Y. Peleg (anton.peleg@monash.edu)
- 20 Philip Heraud (phil.Heraud@monash.edu)
- 21 Bayden R. Wood (bayden.Wood@monash.edu)

2223

KEYWORDS:

- 24 AFM-IR, bacteria, antimicrobial resistance, AMR, bacterial cell wall, imaging, Staphylococcus
- 25 aureus, methicillin-resistance, MRSA, vancomycin resistance, VISA, daptomycin non-
- 26 susceptibility

2728

SUMMARY:

- 29 Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR) provides a powerful platform for
- 30 bacterial studies, enabling to achieve nanoscale resolution. Both, mapping of subcellular changes
- 31 (e.g., upon cell division) as well as comparative studies of chemical composition (e.g., arising from
- drug resistance) can be conducted at a single cell level in bacteria.

33 34

ABSTRACT:

- 35 Atomic Force Microscopy-Infrared Spectroscopy (AFM-IR) is a novel combinatory technique,
- 36 enabling simultaneous characterization of physical properties and chemical composition of
- 37 sample with nanoscale resolution. By combining AFM with IR, the spatial resolution limitation of
- 38 conventional IR is overcome, enabling a resolution of 20–100 nm to be achieved. This opens the
- door for a broad array of new applications of IR toward probing samples smaller than several
- 40 micrometers, previously unachievable by means of conventional IR microscopy. AFM-IR is
- 41 eminently suited for bacterial research, providing both spectral and spatial information at the
- 42 single cell and intracellular level. The increasing global health concerns and unfavorable future
- 43 prediction regarding bacterial infections, and especially, rapid development of antimicrobial
- resistance, has created an urgent need for a research tool capable of phenotypic probing at the

single cell and subcellular level. AFM-IR offers the potential to address this need, by enabling detail characterization of chemical composition of a single bacterium. Here, we provide a complete protocol for sample preparation and data acquisition of single spectra and mapping modality, for the application of AFM-IR toward bacterial studies.

INTRODUCTION:

Bacteria are single cell prokaryotic organisms, occurring in various shapes and sizes, typically in the range of several hundred nanometers to micrometers. They exist in a variety of habitats and are essential to the existence of life. Within the human body, the majority of bacteria present in the gut are harmless and many are in fact beneficial. However, several bacterial species are pathogenic and cause a range of infectious diseases. Bacterial infections can lead to the development of sepsis and septic shock: a life-threatening condition, resulting from the body's response to an infection². Sepsis is a global major health threat, with high prevalence worldwide and severe mortality rates. In 2017 alone, an estimated 50 million cases of sepsis were recorded worldwide, with 11 million of those resulting in death (approximately 20%)². Furthermore, a decrease in patient's survival chances, due to delayed therapy, was shown to occur in an hourly manner^{3,4}.

Bacterial infections are treated with antibiotics. The severity of potential consequences of bacterial bloodstream infections (BSIs), together with a clear significance of quick initiation of antimicrobial therapy, prompt the need for immediate antibiotics administration. However, as the current diagnostic approaches used in clinical practice (e.g., blood culturing) require a relatively long time, antibiotics administration often occurs prior to positive BSI diagnosis⁵. This factor leads to extensive overuse of antibiotics, which—together with excessive antibiotic use in other sectors such as agriculture—creates a severe evolutionary pressure towards the development of antimicrobial resistance (AMR)^{6,7}. AMR is currently one of the most pressing global health issues^{7,8} and, by 2050, is predicted to become the leading cause of death⁹. The development of resistance, together with the spread of AMR strains is occurring at an alarming pace^{7–9} and exceeds, by far, the rate of discovery of new antibiotics¹⁰. New resistant phenotypes are continuously emerging worldwide, while research dedicated toward understanding the AMRrelated changes is often slow and limited by available approaches¹¹. In addition, the commonly used methods, such as polymerase chain reaction (PCR) and whole gene sequencing (WGS), focus only on genotypic changes. These are not sufficient to reveal the mechanisms of resistance¹¹, prompting an urgent need for a research tool enabling to understand the chemical composition of bacteria.

Infrared spectroscopy (IR) provides a molecular characterization of the sample and thus is a promising candidate for phenotypic bacterial probing. Since its early applications 12 , a great magnitude of examples of its use was demonstrated in the literature 13,14 . These include phenotypic-based identification of bacteria on genus 15 , species 16 , and strain 17,18 level. However, the spatial resolution of conventional IR is restricted to several microns due to the wavelength diffraction spatial resolution limit 19 . Since the size of majority of bacteria lies below that limit (e.g., $Staphylococcus\ aureus \approx 400\ nm$ in diameter), conventional IR is not applicable for probing at the single-cell or intracellular level.

The spatial resolution limitation was recently overcome by combining IR spectroscopy with Atomic Force Microscopy (AFM-IR). In this instance, the IR absorption is detected indirectly, through thermal expansion of the material^{19–22}. In brief, the absorption of IR radiation results in a local temperature increase. This can be measured either directly²³ or through the measurement of oscillation of the AFM cantilever probe, resulting from force impulse created by IR absorption^{20,21}. The combinatory AFM-IR technique enables to achieve spatial resolution approaching 20 nm, providing simultaneous information about local physical properties of a sample (AFM) and its chemical composition (AFM-IR). Collection of both, single spectra from selected spots and mapping of the intensity of selected wavenumber values within a chosen area are possible.

Considering the achievable spatial resolution of AFM-IR, it is evident that the technique opens the possibility of chemical/phenotypic probing of single bacterium cell and their intracellular composition²⁴. Hitherto, several examples of the application of AFM-IR for single bacteria were demonstrated in the literature^{19–22,25–28}. These involve single spectral analysis^{19,21,22} and mapping at the subcellular level^{19,22,25–28}. For example, the ability to detect intracellular lipid vesicles²⁷ and viruses²⁸ within single bacterium has been described. These results demonstrate the usefulness of AFM-IR for nanoscale studies of single bacteria and clinically relevant pathogens¹⁹.

Hence, we present a sample preparation and collection method for AFM-IR data of multilayer, monolayer and single cell bacterial samples. The protocol described herein was applied to study different species of bacteria²² and the changes in their chemical composition. In particular, the in vivo development of vancomycin resistance and daptomycin non-susceptibility was investigated in clinical pairs of *S. aureus*¹⁹. Both, vancomycin intermittent resistance and daptomycin non-susceptibility in *S. aureus* (VISA and DpR) emerged relatively recently, following the increased use and introduction of these antibiotics to clinics, constituting a significant medical problem. Furthermore, in particular, the mechanism of daptomycin non-susceptibility still remains elusive, impeding alternative drug development^{19,29}. The presented protocol focuses on provision of reliable AFM-IR spectra of single bacteria, which can further be analyzed using a variety of chemometric approaches, according to the experimental aims. It additionally includes the mapping approach, which is applicable for intra-cellular studies.

PROTOCOL:

All work conducted with pathogenic bacteria should be undertaken with appropriate safety measures in place. These include working in a laboratory with adequate biosafety level and in a biosafety cabin (PC2) as well as careful decontamination of work area with an appropriate disinfectant, e.g., 80% ethanol solution. Appropriate PPE must be worn all the time.

1. Preparation of solvents and materials

1.1. Solvents: Use ultrapure water as a solvent. Use purified water, autoclaved prior to the experiment to avoid any potential cross-contamination.

- 1.2. Substrate: Use any of these substrates for AFM-IR, e.g., ZnSe, CaF₂, BaF₂, etc. Since AFM-IR is, in principle, a non-destructive technique, one can apply a variety of other research tools to the same sample post AFM-IR analysis. For instance, correlation of the results with Raman spectroscopy can be performed if Raman grade CaF₂ or BaF₂ slides are used.
- 138 1.3. Use glass vials instead of plastic tubes as plastic can contaminate the sample.

2. Sample preparation for AFM-IR

142 2.1. Growth/incubation of sample

2.1.1. Grow bacteria in liquid media or on solid plates. Select the type of medium, growth conditions (e.g., temperature, availability of oxygen) and growth time according to the specific requirements of the species of bacteria under investigation. For example, for *S. aureus* Heart Infusion (HI) agar plates can be used, with growth for 16 h in 37 °C in aerobic conditions.

NOTE: To achieve the best results, the growth/incubation should yield enough bacteria that would allow the collection of a micro-pellet of sample. The specific number of colony forming units or bacterial cells depend on the type and size of the bacterium.

2.2. Sample deposition

2.2.1. Using a sterile loop, carefully collect bacteria from the colonies on the agar plate and transfer them to a glass tube. Collect bacteria only from the top of the colonies. If collecting samples from a liquid culture, using a pipette, transfer approximately 1 mL of the bacterial suspension to a glass tube. The volume can be modified depending on the bacterial load.

NOTE: It is important to attempt to not collect (or minimalize as much as possible the collection of) any medium from underneath the colony. The subsequent steps of sample preparation aim to remove any potential residual of media. Minimization of the potential medium residual from the beginning enables the spectral acquisition of data from purified bacterial cells. Steps 2.2.2 and 2.2.3 apply to samples prepared from agar plates. For samples prepared from liquid media, move to step 2.2.4.

- 2.2.2. Add 1 mL of ultrapure water to the tube. Vortex until the collected bacterial pellet are no longer visible at the bottom of the tube (typically 1–2 min).
- 2.2.3. Estimate the rough turbidity of the solution using, e.g., McFarland standards by visual comparison (visual comparison³⁰) between the prepared solution and McFarland standards. If the turbidity of bacterial suspension appears to be very low, add more bacteria from the plate using a sterile loop and vortex again. Repeat until the rough turbidity of the solution is comparable to McFarland standards 0.5 and 1. This will generally yield a good amount of bacterial pellet.

2.2.4. Centrifuge the bacterial suspension at 3, 000 x g for 5 min to obtain a pellet.

178

NOTE: Centrifugation parameters can be modified to obtain bacterial pellet. Caution should be taken if increasing the g-force, to not induce breakage of bacteria (especially in case of Gramnegative bacteria).

182

2.2.5. Using a pipette, gently remove the supernatant from above the pellet. Add 1 mL of ultrapure water to the tube and vortex to re-suspend the pellet. Subsequently, centrifuge the sample as was done in step 2.2.4.

186

2.2.6. Repeat the washing procedure (steps 2.2.2 and 2.2.4) at least three times. In case of collection of the initial sample from liquid media, repeat the procedure at least four times (media removal followed by three washes).

190

2.2.7. After the final wash, remove the supernatant, add ultrapure water and vortex for at least
 2 min. Subsequently, deposit 5 μL of the sample on the substrate (e.g., Raman grade CaF₂).

193

2.2.8. If the desired thickness of the sample is a multilayer of bacteria, leave the sample to airdry.

196

197 2.2.9. If the desired thickness is monolayer or individual bacteria, immediately after depositing
 198 the sample (step 2.2.7) add between 20–100 μL of ultrapure water and mix gently with a pipette
 199 tip. Leave to air-dry.

200201

202

203

204

205

NOTE: The exact volume of water can vary between experiments as it is dependent on many factors (e.g., size of the organism, density of the pellet, etc.) and is, therefore, best determined empirically. Preparation of a series of samples with varying volumes of ultrapure water added enables one to select a sample with the desired thickness/density of bacteria. The thickness/density of bacteria can be easily visualized via AFM in the subsequent stages. Examples of AFM images from monolayer and single cell samples are shown in **Figure 1A–H**.

206207208

2.2.10. Mount the substrate on an AFM metal specimen disk using double-sided adhesive tape.

209210

3. Instrument preparation

211212

NOTE: The instrumental procedures described here are for the instrument listed in the **Table of Materials**. The detail instrumental procedure may differ slightly from the one described here if using a newer model of the AFM-IR instrument.

214215

213

3.1. Switch on and initialize the instrument by pressing the **Initialize** button. Ensure that the laser shutter is in the **Open** position for the laser test.

218

219 3.2. If a purging system in included, purge the instrument with N₂ by turning on the flow of N₂. Adjust the nitrogen purge to achieve a stable humidity level (for example, 20%). Ensure that

the humidity does not fluctuate during measurements and between background and sample data collection. Allowing approximately 20 min for the humidity levels to stabilize is recommended.

3.3. Load the sample into the sample chamber by pressing the **Load** button. Sample loading is conducted through the software wizard. While operating the software wizard, first focus on the tip, using arrows to move the microscope stage in the Z-direction and click on **Next**. Secondly, adjust the data collection spot, using arrows guiding the in-plane movement and align the AFM laser and AFM detector using the knobs on the top of the AFM head. Subsequently, focus on the sample surface by moving the microscope stage in Z-direction.

NOTE: Detailed illustrations of each step of sample loading are provided in the software manual³¹. Focusing on the sample should be conducted with care. When approaching the sample surface in the Z-direction, use a slow motor speed.

3.4. Approach the sample without engaging by clicking on the **Approach** button.

4. Data collection

239 4.1. Background

4.1.1. Prior to data acquisition, collect the background. For background collection, ensure that the laser shutter is in the **Open** position. Select the spectral range and resolution (depending on the aim of the analysis) and the number of scans and number of co-averages of background. These are generally recommended to be high (e.g., 1024 scans and 3 co-averages).

NOTE: In general, spectral resolution of 4 cm⁻¹ or 8 cm⁻¹ and spectral ranges of 3,200 cm⁻¹–2,800 cm⁻¹ and 1,800 cm⁻¹–900 cm⁻¹ are recommended.

4.1.2. After acquisition of the background, save the background file. The file is not stored automatically. Change the laser shutter position to **Close**.

4.2. Sample – single spectra

4.2.1. Press the **Engage** button to engage to the sample. The system will begin to approach the sample surface, until direct contact is detected.

NOTE: Set point used in this work ranged between 0.15–2 V and the feedback gains (I Gain and P Gain) would typically be set to 3 and 10. NIR2 contact probes are commonly used with nanoIR2 system (model: PR-EX-nIR2-10, resonance frequency (kHz): 13 +/–4 kHz, spring constant (N/m): 0.07–0.4 Nm⁻¹).

4.2.2. Collect an AFM image to visualize the surface. In the first instance, scan a larger area (e.g., $50 \times 50 \mu m$) with lower spatial resolution (e.g., $200 \times 200 \mu m$) (Figure 1).

NOTE: AFM-IR data is always collected in contact mode, however, the AFM data can be collected in contact or tapping mode.

4.2.3. From the AFM height/deflection image, select a specific area of interest and re-image it with higher spatial resolution (**Figure 1J–K**). Ensure that the speed of data collection is appropriate, with slow tip movement (e.g., Scan Rate 0.2–0.4 Hz).

4.2.4. Select the measurement spot (e.g., single bacterium) and move the tip to the spot.

4.2.5. Align the IR laser. For this purpose, use a wavenumber at which the sample will absorb. For biological materials this can be, e.g., amide I (1655 cm⁻¹). Make sure that the **Band Pass Filter** is off and click on **Start IR**. The right graph in the nanoIR meter (FFT of the deflection displayed as amplitude vs. frequency) should show at least one clear peak and the left graph (deflection vs. time) should have a periodic waveform. If this is not the case, proceed to optimize the IR spots.

NOTE: Even if the Fast Fourier Transform (FFT) and deflection show expected profile, it is recommended to conduct the optimization of IR spots for at least several wavenumbers, where bands are expected.

4.2.6. Optimize the hot spots for the IR data collection using the selected wavenumber values. It can be helpful to use a conventional IR spectrum of the bacteria (e.g., ATR spectrum of bacterial pellet) to identify the positions of the bands and use them to optimize the hot spots. Select various wavenumber values (e.g., 8–10) from various spectral regions.

NOTE: If conventional IR spectrum of bacteria of interest could not be collected prior to AFM-IR data collection, bacterial spectra available in the literature can be used as a rough guidance. The outcome of the optimization of an IR spot is an image, that presents a map of the FFT magnitude signal at each x and y location. The location with largest signal is selected automatically. Examples of such images are given in software manual³¹.

4.2.7. After optimizing the IR spots for selected wavenumber values, define the parameters of spectral data collection: spectral region, spectral resolution, number of scans, and applied power and input these into the appropriate windows in the software. The spectral resolution should match the background resolution and the spectral region should be within the spectral region for which background was collected.

NOTE: A generic initial set of parameters could be: spectral range: 3200 cm⁻¹–2800 cm⁻¹ and 1800 cm⁻¹–900 cm⁻¹, spectral resolution: 4 cm⁻¹ or 8 cm⁻¹, number of scans: 512–2048.

4.2.8. If needed, adjust the laser power depending on the signal. In general, values between 8%–10% of laser power should be sufficient for good quality of signal. Higher values can be used with caution, as they may result in sample damage.

NOTE: The percent laser power can vary depending on the type of IR laser. The percent values given here are for OPO laser.

310311

4.2.9. Click on **Acquire** to collect AFM-IR spectrum.

312

4.2.10. Re-collect the AFM data from the same area after collection of the AFM-IR spectrum. This is highly recommended as it will reveal any potential drift and/or destructive influence on the sample.

316

4.2.11. If the AFM-IR spectrum is satisfactory and no destructive influence on the sample is observed, proceed with data collection. If needed, define a series of points for data collection using the **Array** option and collected AFM height or deflection image. This option allows to collect spectra consecutively from each point with the same spectral parameters as defined for a single spectrum.

322

4.2.12. If the AFM image collected after collection of AFM-IR spectrum reveals destructive influence on the sample (typically a burned spot), reduce the power; select a different spot and repeat steps 4.3.8–4.3.11.

326

4.2.13. If the signal in AFM-IR spectrum is not satisfactory, check the correctness of optimization of IR spots (step 4.3.6). If it is correct, increase the laser power slightly and repeat steps 4.3.7–4.3.11. This can be repeated until satisfactory signal is achieved.

330 331

4.3. Sample – imaging approach

332333

NOTE: It is highly recommended to record a single AFM-IR spectrum of the bacterium prior to collecting an intensity distribution image for a selected wavenumber value.

334335336

337338

4.3.1. Record an AFM image of the chosen sample area. To do this, first collect AFM image of a larger area with lower spatial resolution (e.g., $50 \times 50 \mu m$, $200 \times 200 \text{ points}$), then select a region of interest and collect an AFM image with increased spatial resolution (as illustrated in **Figure 1I–K**).

339 340

341 4.3.2. Select the wavenumber values for AFM-IR imaging.

342

4.3.3. Ensure that the IR spot of the laser is optimized for the selected wavenumber values (step
 4.3.6). If the IR spot is not optimized for some wavenumbers (no clear maximum), optimize it for
 them.

346 347

4.3.4. Define the parameters of the imaged area: the width and height, number of data points in X and Y direction.

348 349

NOTE: If the consecutive selection of spots from the previous AFM images is applied (as demonstrated in **Figure 1I–K**), the width and height fields will be automatically filled up, upon

352 marking of the area.

4.3.5. Define the parameters of spectral signal acquisition: the wavelength, number of scans, and laser power.

NOTE: The number of scans needs to be kept within reason. 64 or 32 scans will typically allow a sufficient amount of signal.

4.3.6. Define the parameters of AFM tip movement by clicking on the **Scan Rate**. Higher the number of scans in the previous step and higher the number of data points in X direction, slower will the tip movements need to be. Lack of adjustment between these parameters will result in too fast movement of the tip, preventing the actual acquisition of defined number of scans from each point.

NOTE: For example, for an appropriate collection of IR signal with 64 co-additions and 200 points, set the Scan Rate as 0.07 kHz.

4.3.7. Make sure that the **Enable IR imaging** box is ticked.

4.3.8. Begin imaging. AFM-IR of the intensity of signal at the selected wavenumber will be collected simultaneously with the AFM data from that area.

NOTE: When the OPO laser is used, it is possible to additionally collect simultaneously contact resonance peak frequency image. This can be used to obtain information about the relative stiffness of the sample at different locations.

4.3.9. Use the **Capture Sequence** window to set a consecutive collection of AFM-IR data from the same area with the same parameters, but for different wavenumber values. To do that, open the **Capture Sequence** window, type in each wavenumber, and define the applied laser power (for each wavenumber).

4.3.10. Export the collected data (AFM and AFM-IR, single spectra and imaging) into various formats and analyze it using methods adequate for specific research aims.

REPRESENTATIVE RESULTS:

The described protocol enables to obtain a range of types of cell distributions of bacteria on the substrate, depending on the initial concentration of sample and the amount of water added.

Figure 1 illustrates the examples of AFM images (height and deflection) recorded from monolayers and single-cell samples prepared using the described protocol from Gram-positive (S. aureus) and Gram-negative (Escherichia coli) bacteria.

The protocol described here can be utilized for AFM-IR imaging of intra- and extra-cellular structures of single bacteria. An example of this application is shown in **Figure 2**, which demonstrates the results of monitoring the spatially localized chemical changes occurring during

division of an *S. aureus* cell. Although air-drying is commonly considered as a fixation approach for bacterial preparation, bacteria, by nature, show very high resistance to external factors such as temperature and were reported to survive dehydration³². The results presented here were acquired from an air-dried sample. The formation of a septum, occurring prior to cell division was observed and monitored via AFM imaging (**Figure 2A–D**) by collection of 12 images of the same area consecutively (collection of a single image ≈ 20 min). **Figure 2A–D** shows 4 selected AFM images, with time between collection of each image of approximately 40 min. The formed structure (septum) is 45 nm high. The formed septum is clearly visible in AFM height and deflection images (**Figure 2E–F**). The AFM-IR spectra recorded from the cell and septum area (**Figure 2G**, points of origin marked in **Figure 2F**) were normalized to the amide I band prior to comparison, to minimalize the influence of varying sample thickness between points of data collection. The AFM-IR spectrum of the septum is characterized by higher relative intensity of bands at 1240 and 1090 cm⁻¹ compared to AFM-IR spectrum collected from cell area. These are attributed to carbohydrate and phosphodiester groups of cell wall components (including e.g., peptidoglycan and teichoic acid)²².

The described protocol can also be used for comparison of a single spectra between a number of different samples. An example of this application together with the results is shown in **Figures 3** and **Figure 4**. The aim of the study is to determine the chemical changes occurring as a result of in vivo development of vancomycin intermittent resistance in *S. aureus* (VISA). For this purpose, clinical pairs of samples were collected from patients, with the parent strain isolated upon admission to the hospital and prior to antibiotic therapy (vancomycin susceptible *S. aureus*, VSSA) and the daughter strain isolated from the same patient after admission of antibiotics and clinical failure. Samples were further grown on agar medium and prepared according to the protocol (**Figure 3A–B**). The AFM-IR spectra were collected from multiple single bacteria (and multiple samples) for VSSA and VISA and subsequently analyzed using several chemometric approaches (**Figure 3C**).

No morphological differences were observed between VSSA and VISA cells (**Figure 4A–C**). However, the AFM-IR spectra (**Figure 4D,F**) and their second derivatives (**Figure 4E,G**) demonstrated a clear difference in the chemical composition between resistant and susceptible strains. The relative intensity of the bands associated with carbohydrate and phosphodiester groups from cell wall components (in particular, the band at 1088 cm⁻¹) clearly increased in the resistant strain, compared to the susceptible counterpart. Of note is the fact that all recoded spectra (VISA: 81, VSSA: 88) show a small standard deviation. This demonstrates good reproducibility of data recorded from various samples prepared from the same strain, as no discrimination was possible between spectra recorded from different samples of the same strain. The observed differences indicated an increased thickness of the cell wall in resistant strains, compared to the susceptible counterpart, which remains in agreement with other literature reports^{33,34}.

FIGURE AND TABLE LEGENDS:

Figure 1: Representative AFM images of various bacterial samples for AFM-IR measurements.

Depending on the dilution on substrate, the protocol allows one to obtain multilayers and monolayers of bacteria as well as single-cell samples. Representative AFM images of: (A–D) monolayer and (E–H) single-cell sample for (A,B,E,F) Gram-positive (S. aureus) and (C,D,G,H) Gram negative (E. coli) bacteria. (E,C,E,G) demonstrate height images and (B,D,F,H) show corresponding deflection images. Size of imaged areas: (A,D,G,H) 20 x 20 μ m, (E,F) 50 x 50 μ m. (I–K) consecutive selection of an area for AFM-IR mapping. This is achieved using AFM imaging with increasing spatial resolution in the example of a single S. aureus cell. Each image is collected by sampling 200 x 200 points, with increasing spatial resolution due to the reduction in the size of the imaged area. Size of imaged areas: (I) 40 x 40 μ m, (J) 20 x 20 μ m and (K) 2.24 x 2.24 μ m. The black square in (I) marks the area imaged in (J). The black square in (J) marks the area imaged in (K).

Figure 2: Monitoring *S. aureus* cell division via AFM-IR. (A–D) AFM images of *S. aureus* cell showing the formation of septum preceding cell division. Size of imaged area: $2 \times 2 \mu m$. The images were selected from a larger series (12 images recorded every 20 min) and represent data recorded every 40 min. (E–F) AFM height and deflection image recorded at the end of cell septum formation with marked points of collection of AFM-IR spectra. Size of the imaged area $1.17 \times 1.15 \mu m$. The height of the newly formed structure is 45 nm. (G) AFM-IR spectra recorded from cell area (black) and septum area (red) (marked in (F)), in the range $1400-900 \, \text{cm}^{-1}$. Both spectra were normalized to the amide I band and demonstrate an increase in the relative intensity of cell wall components from the septum. This figure has been modified from K. Kochan et al.²².

Figure 3: An overview of the experimental design for AFM-IR study of antimicrobial resistance. (A) Sample origin and initial preparation: susceptible parent strain was collected from a patient prior to antibiotic therapy and the daughter resistant strain was sourced from the same patient after antibiotic therapy and clinical failure (in vivo resistance development). Bacteria were isolated and cultured on Heart Infusion (HI) agar for 16 h in 37 °C. (B) Subsequent sample preparation for AFM-IR, including collection of the sample followed by washing of bacterial pallet (3×) and sample deposition. (C) AFM-IR data collection and analysis: AFM height and AFM-IR spectrum (1800–900 cm $^{-1}$). Size of the AFM imaged area: 1.7 x 1.4 μ m. The AFM-IR spectrum was collected from the middle of the cell. The data was subsequently analyzed using chemometric approaches, including hierarchical cluster analysis. This figure has been modified from K. Kochan et al. ¹⁹.

Figure 4: AFM and AFM-IR results of study of chemical changes in vancomycin intermediate *S. aureus* (VISA) compared to vancomycin susceptible *S. aureus* (VSSA) in clinical pairs. AFM images of (A–B) VISA and (C) VSSA single-cell samples. Size of the imaged areas: (A,C) $40 \times 40 \mu m$, (B) $2.56 \times 2.45 \mu m$. (D–E) Average AFM-IR spectra and their (F–G) second derivatives for: (D,F) VISA and (E,G) VSSA cells, in the spectral range $1800-900 \text{ cm}^{-1}$. The spectra presented are an average of 81 (VISA) and 88 (VSSA) individual spectra and are presented together with standard deviation (SD). The averaging was conducted after normalization of all individual spectra together. The major bands are marked in (F–G). This figure has been modified from K. Kochan et al. 19 .

Figure 5: Image drift over consecutive registration of AFM-IR maps at selected wavenumber values for the *S. aureus* cell. (Top row): AFM images were recorded simultaneously with the corresponding (bottom row) AFM-IR maps based on the intensity of the IR signal at selected wavenumber values. The wavenumber values (966, 1055, 1079, 1106, 1234, 1398, 1454, 1540, 1656, 1740 cm⁻¹) are annotated above the bottom row. Each set (AFM image and AFM-IR map) was recorded directly after the previous image (approximately 40 min per set). The size of the imaged/mapped area: $1.54 \times 1.57 \mu m$. A clear drift is visible between the images.

DISCUSSION:

The usefulness of IR spectroscopy for characterization of a broad range of biological samples in the context of their chemical composition is well established. Over the past decade, IR spectroscopy has emerged as a promising tool for bacterial studies ^{12–17}. It continues to attract substantial interest in the field of microbiology, as one of the few techniques enabling a phenotypic characterization through the chemical composition. In this context, the major drawback of conventional FTIR microscopy lies in limited spatial resolution, preventing single cell and subcellular studies of bacteria. In fact, the small size of bacteria represents an impediment not only for IR, but for the vast majority of techniques. Thus, the available research tools for single cell and subcellular studies of bacteria are significantly limited. The combination of AFM with IR enables the spatial resolution limitation of IR spectroscopy to be overcome, providing a novel tool for bacterial research, capable of nanoscale probing of the chemical composition.

The technique is not limited to single cell studies and allows one to probe a variety of samples, ranging in thickness. Undoubtedly, clean, and careful sample preparation is critical to achieving high quality images. The protocol herein provides a method to prepare multilayer, monolayer, and/or single cell samples of various bacteria (**Figure 1**). The prepared sample depends on several factors, including the initial bacterial load, post-washing dilution as well as further dilution on the substrate. The amount of sample obtained after diluting the washed pellets and prior to deposition on the substrate typically allows the preparation of numerous samples. Therefore, to obtain the desired distribution of the sample on the substrate, it is often beneficial to prepare a series of samples, ranging in their dilution. For studies aiming at collection of AFM-IR spectra rather than subcellular imaging, modifying the amount of sample (e.g., from monolayer to multilayer) may be beneficial to increase the intensity of the signal.

Another critical aspect in sample preparation is appropriate removal of medium residuals. Depending on the selected sample culturing methods, the sample is collected either from liquid medium or from an agar plate. In both cases, the medium residual is likely to be present in the sample, although to a much lesser extent upon collection from agar plates. As bacterial growth media contain an abundance of various biological components, it is critical to ensure appropriate removal of medium. We recommend three washes with ultrapure water for agar plate samples and at least four washes for samples collected from medium. The number of washes can be increased, if needed; however, for comparison between various samples, it is important to keep it consistent between samples. The demonstrated protocol utilizes water, rather than solvents such as phosphate buffer solution (PBS) or saline. Both PBS and saline lead to formation of crystals upon air-drying, which can damage the bacteria. In addition, both are a source of intense

IR bands, with PBS, in particular, containing multiple bands in the fingerprint region. The lack of ability for the use of saline or PBS, currently represents an important limitation for the technique. Typically, the use of water for washing does not cause any destructive influence on the bacteria; however, care should be taken, and if possible, the time of water exposure should be limited. If the sample preparation protocol needs to be paused at the stage of washing, it is recommended to leave the sample in pelletized form after removing the water. This is of particular importance for Gram-negative bacteria, containing a thinner cell wall as they are more prone to rupture.

534535536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

528

529

530

531

532

533

To ensure proper and high-quality AFM-IR data, several aspects in data collection protocol are of critical importance. Firstly, the correct collection of background is essential for data acquisition. In particular, maintenance of stable humidity levels throughout background collection as well as between background and sample collection is necessary. To ensure this, we recommend purging the instrument with nitrogen and maintaining the humidity levels not higher than 25%. Lack of purging can impose a significant limitation, particularly in places with high humidity. Secondly, the importance of proper optimization of IR spots should be highlighted. For best results, a priori knowledge about the position of band maxima can be beneficial. For example, a conventional IR spectrum of bacterial pellet can be used to determine positions of bands expected from a sample. If that is not possible to acquire, as an alternative approach, the user can utilize IR spectra available in literature or begin the optimization using a band position that is reasonable to expect in the bacterium (e.g., amide I and amide II). Thirdly, for data collection, it is important to highlight the significance of careful power selection (allowing to achieve a good S/N ratio), as it can have a destructive effect. The advised power depends on the thickness of the sample, with rough guidance available in the instrument manual³¹. We recommend to empirically test the state of the sample post-measurement by collection of an AFM image, as it will reveal any destructive influence. Furthermore, the collection of AFM images from the same area before and after collection of AFM-IR spectra serves as a good confirmation that no drift has occurred and the spectra indeed originate from the selected point in the cell. The possibility of drift is particularly important when applying the imaging modality, through consecutive imaging of IR intensity at selected wavenumber values. An example of this is illustrated in Figure 5. The imaged area was defined at the beginning of the experiment and is meant to be consistent for all wavenumber values. However, a clear drift is visible between each AFM height (and the corresponding IR wavenumber intensity) image, with acquisition time of each map of approximately 40 min. Due to this, for users collecting imaging data, we recommend to always select an area slightly larger than the sample of interest, to ensure that even upon existence of drift, the sample of interest will remain within the imaged area.

562563564

565

566

567

568

569

570

571

The potential limitations of the protocol include the lack of ability to collect data in a hydrated state in physiological solutions (e.g., saline or PBS) described above. Moreover, especially in high humidity areas, there is often a need for nitrogen purge. Furthermore, the protocol enables to probe organisms down to 100 nm in size, excluding the possibility of its use for smaller structures. Although this can be overcome using a different laser (e.g., quantum cascade laser allowing to achieve the spatial resolution of 20 nm), it is also associated with limited spectral range as well as difficulties in obtaining a good signal to noise ratio. Finally, probing of soft surfaces may present a challenge with the tip not detecting the surface properly and proceeding beyond the

point of contact, until breakage. Although this is typically not an issue with bacterial samples, it may occur upon measurements of softer samples. In such cases, it is recommended to attempt to engage on clean surface of the substrate in proximity to the sample.

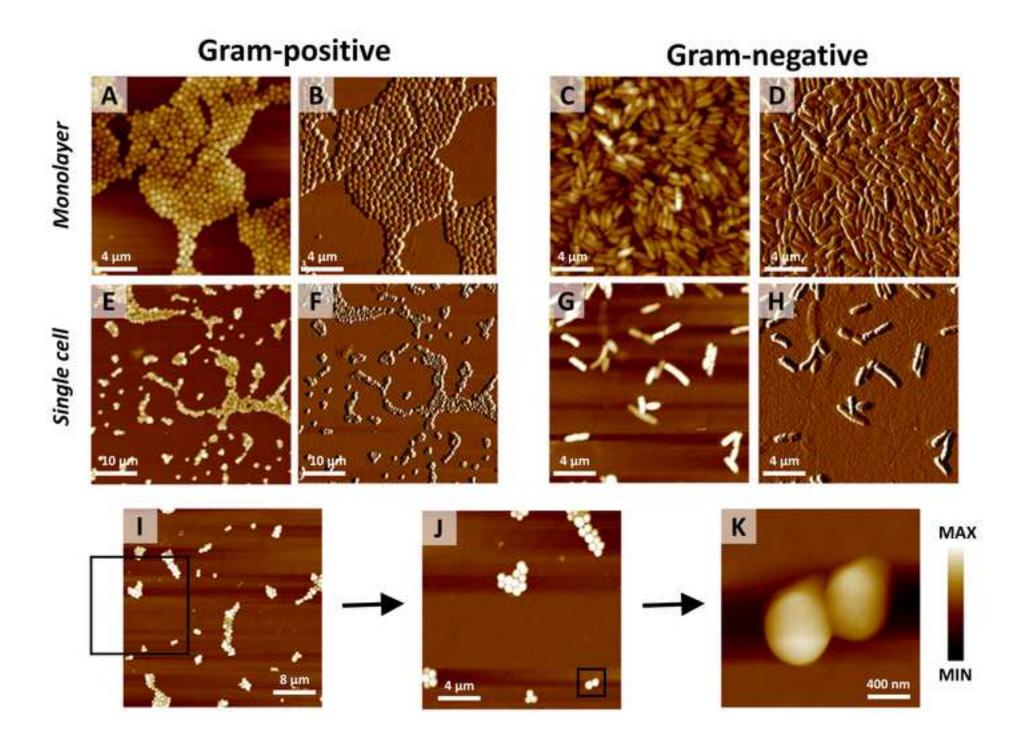
The described protocol can be utilized for numerous types of bacterial research, including comparative studies between various samples as well as subcellular examination. The data can be analyzed using chemometric approaches for single spectra and imaging modalities³⁵, depending on the aim of the research. Furthermore, the protocol can also be modified for application to other biological material (such as fungi, yeast, cells, etc.), through addition of fixation.

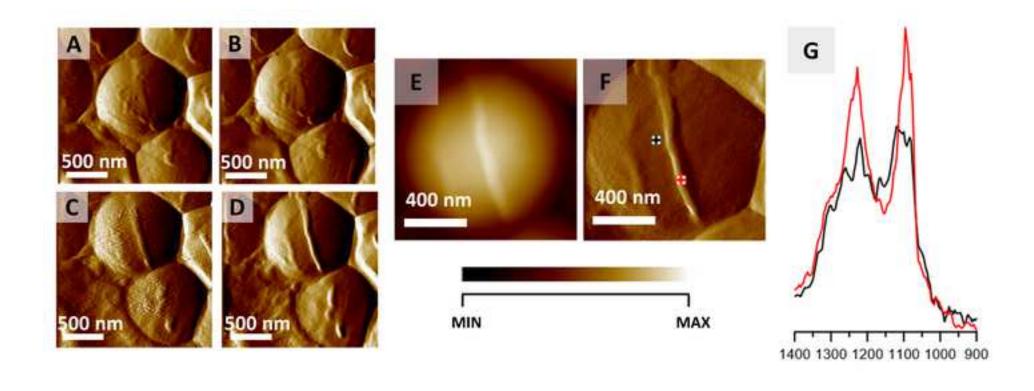
ACKNOWLEDGMENTS:

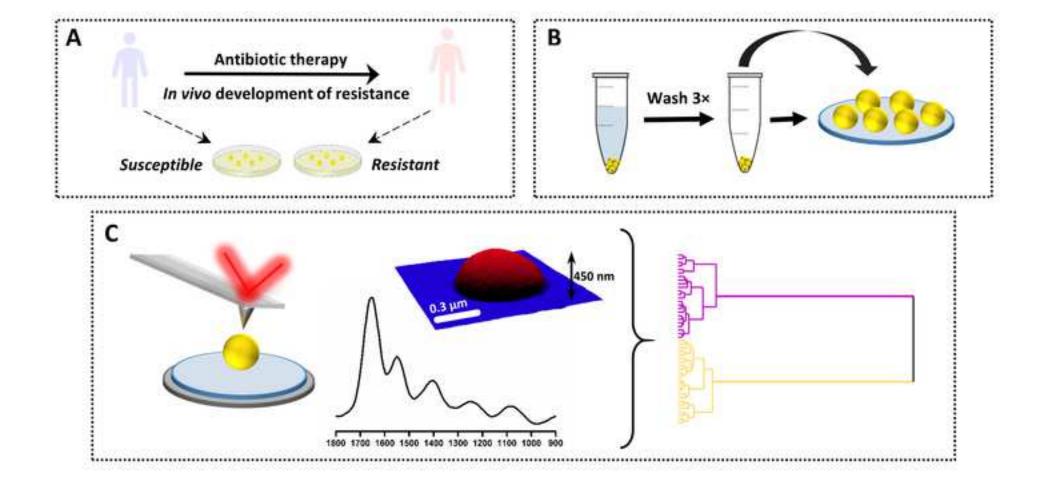
We would like to acknowledge Bruker for their support. This work was supported by Monash University Advancing Women's Success Grant (K. Kochan). A.Y.P acknowledges support from an Australian National Health and Medical Research Council Practitioner Fellowship (APP1117940). This work was funded by an Australian Research Council Discovery Project DP180103484. We would like to thank Mr. Finlay Shanks for his instrumental support and Ms. Xenia Kostoulias for her technical assistance with the samples.

DISCLOSURES:

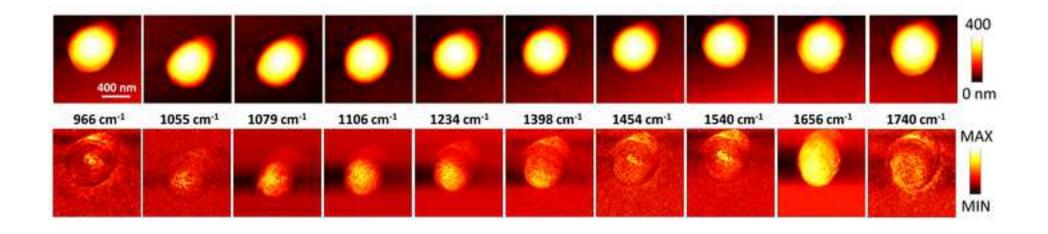
We would like to acknowledge Bruker for the payment of publication fee. KK, BRW, AP, and PH are inventors on an international patent (PCTIB2020/052339), which describes some of the fundamental aspects of the approach.


REFERENCES:


- 598 1. Sears, C. L. A dynamic partnership: celebrating our gut flora. *Anaerobe*. **11** (5), 247–251 (2005).
- 2. Rudd, K. E. et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. *The Lancet (London, England)*. **395** (10219), 200–211 (2020).
- Seymour, C. W. et al. Time to treatment and mortality during mandated emergency care for sepsis. The *New England Journal of Medicine*. **376** (23), 2235–2244 (2017).
- Weiss, S. L. et al. Delayed antimicrobial therapy increases mortality and organ dysfunction duration in pediatric sepsis. *Critical Care Medicine*. **42** (11), 2409–2417 (2014).
- 5. Peker, N., Couto, N., Sinha, B., Rossen, J. W. Diagnosis of bloodstream infections from positive blood cultures and directly from blood samples: recent developments in molecular approaches. *Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases.* **24** (9), 944–955 (2018).
- 6. Aminov, R. I. The role of antibiotics and antibiotic resistance in nature. *Environmental Microbiology*. **11** (12), 2970–2988 (2009).
- 7. Levy, S. B., Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. *Nature Medicine*. **10** (12 Suppl), S122–129 (2004).
- 8. Roca, I. et al. The global threat of antimicrobial resistance: science for intervention. New


- 616 *Microbes and New Infections*. **6**, 22–29 (2015).
- 617 9. O'Neill, J. The review on antimicrobial resistance. Tackling drug-resistant infections
- 618 globally: final report and recommendations. Wellcome Trust. (2016).
- 619 10. Perry, J. A., Westman, E. L., Wright, G. D. The antibiotic resistome: what's new? Current
- 620 *Opinion in Microbiology*. **21**, 45–50 (2014).
- 621 11. Piddock, L. J. Assess drug-resistance phenotypes, not just genotypes. Nature
- 622 *Microbiology*. **1** (8), 16120 (2016).
- 623 12. Naumann, D., Helm, D., Labischinski, H. Microbiological characterizations by FT-IR
- 624 spectroscopy. *Nature*. **351** (6321), 81–82 (1991).
- 625 13. Zarnowiec, P., Lechowicz, L., Czerwonka, G., Kaca, W. Fourier Transform Infrared
- 626 Spectroscopy (FTIR) as a tool for the identification and differentiation of pathogenic bacteria.
- 627 *Current Medicinal Chemistry.* **22** (14), 1710–1718 (2015).
- 628 14. Quintelas, C., Ferreira, E. C., Lopes, J. A., Sousa, C. An overview of the evolution of infrared
- spectroscopy applied to bacterial typing. *Biotechnology Journal.* **13** (1), 1700449 (2018).
- 630 15. San-Blas, E., Cubillán, N., Guerra, M., Portillo, E., Esteves, I. Characterization of
- 631 xenorhabdus and photorhabdus bacteria by Fourier transform mid-infrared spectroscopy with
- attenuated total reflection (FT-IR/ATR). Spectrochimica Acta. Part A, Molecular and Biomolecular
- 633 *Spectroscopy*. **93**, 58–62 (2012).
- 634 16. Sousa, C. et al. Discrimination of the acinetobacter calcoaceticus-acinetobacter
- baumannii complex species by Fourier transform infrared spectroscopy. European Journal of
- 636 *Clinical Microbiology & Infectious Diseases.* **33** (8), 1345–1353 (2014).
- 637 17. Rodriguez-Saona, L. E., Khambaty, F. M., Fry, F. S., Calvey, E. M. Rapid detection and
- 638 identification of bacterial strains by Fourier transform near-infrared spectroscopy. Journal of
- 639 Agricultural and Food Chemistry. **49** (2), 574–579 (2001).
- 18. Dawson, S. E. et al. Implementation of Fourier transform infrared spectroscopy for the
- 641 rapid typing of uropathogenic Escherichia coli. European Journal of Clinical Microbiology &
- 642 Infectious Diseases. **33** (6), 983–988 (2014).
- 643 19. Kochan, K. et al. Detection of Antimicrobial Resistance-Related Changes in Biochemical
- 644 Composition of Staphylococcus aureus by Means of Atomic Force Microscopy-Infrared
- 645 Spectroscopy. *Analytical Chemistry*. **91** (24), 15397–15403 (2019).
- 646 20. Dazzi, A., Prater, C. B. AFM-IR: Technology and Applications in Nanoscale Infrared
- Spectroscopy and Chemical Imaging. *Chemical Reviews*. **117** (7), 5146–5173 (2017).
- 648 21. Dazzi, A. et al. AFM-IR: combining atomic force microscopy and infrared spectroscopy for
- nanoscale chemical characterization. *Applied Spectroscopy*. **66** (12), 1365–1384 (2012).
- 650 22. Kochan, K. et al. In vivo atomic force microscopy-infrared spectroscopy of bacteria.
- 651 Journal of the Royal Society, Interface. **15** (140) (2018).
- 652 23. Katzenmeyer, A. M. et al. Mid-infrared spectroscopy beyond the diffraction limit via direct
- measurement of the photothermal effect. *Nanoscale*. **7** (42), 17637–17641 (2015).
- 654 24. Bruker Life Science Applications, https://www.bruker.com/products/surface-and-
- dimensional-analysis/nanoscale-infrared-spectrometers/nanoscale-ir-spectroscopy-
- 656 applications/life-sciences.html (2020).
- 657 25. Mayet, C., Dazzi, A., Prazeres, R., Ortega, J. M., Jaillard, D. In situ identification and imaging
- of bacterial polymer nanogranules by infrared nanospectroscopy. Analyst. 135 (10), 2540–2545
- 659 (2010).


- 660 26. Baldassarre, L. et al. Mapping the amide I absorption in single bacteria and mammalian
- cells with resonant infrared nanospectroscopy. *Nanotechnology*. **27** (7), 075101 (2016).
- 662 27. Vitry, P. et al. Combining infrared and mode synthesizing atomic force microscopy:
- Application to the study of lipid vesicles inside Streptomyces bacteria. Nano Research. 9 (6),
- 664 1674–1681 (2016).
- Dazzi, A. et al. Chemical mapping of the distribution of viruses into infected bacteria with
- a photothermal method. *Ultramicroscopy.* **108** (7), 635–641 (2008).
- Steenbergen, J. N., Alder, J., Thorne, G. M., Tally, F. P. Daptomycin: a lipopeptide antibiotic
- 668 for the treatment of serious Gram-positive infections. The Journal of Antimicrobial
- 669 *Chemotherapy.* **55** (3), 283–288 (2005).
- 670 30. Garcia, L. S. MacFarlan Standards, in Clinical Microbiology Procedures Handbook, 3rd
- 671 Edition. *American Society of Microbiology*. 5.14.1 (2010).
- 672 31. Anasys Instruments, NanoIR-2 System Manual.
- 673 https://www.anasysinstruments.com/downloadpr/nanoIR2 s System Manual.pdf
- 674 32. Whelan, D. R. et al. Detection of an en masse and reversible B- to A-DNA conformational
- transition in prokaryotes in response to desiccation. Journal of the Royal Society, Interface. 11
- 676 (97), 20140454 (2014).


- 677 33. McGuinness, W. A., Malachowa, N., DeLeo, F. R. Vancomycin Resistance in
- 678 Staphylococcus aureus. The Yale Journal of Biology and Medicine. **90** (2), 269–281 (2017).
- 679 34. Howden, B. P., Peleg, A. Y., Stinear, T. P. The evolution of vancomycin intermediate
- 680 Staphylococcus aureus (VISA) and heterogenous-VISA. Infection, Genetics and Evolution: Journal
- of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases. **21**, 575–582 (2014).
- 682 35. Perez-Guaita, D. et al. Multispectral Atomic Force Microscopy-Infrared Nano-Imaging of
- Malaria Infected Red Blood Cells. *Analytical Chemistry*. **90** (5), 3140–3148 (2018).

<u>*</u>

Name of Material/Equipment	Company	Catalog Number	Comments/Description
AFM metal specimen disc	PST ProSciTech Pty Ltd	GA530-15	Recommended 15 mm
Anasys AFM-IR nanoIR2	Anaysys Instruments	0	model: nanoIR2
Contact mode NIR2 Probes for nanoIR 2	Bruker / Anasys Instruments	-	Model: Model: PR-EX-NIR2
Heraeus Pico 17 Microcentrifuge	Thermo Scientific	-	-
Matlab	Mathworks Inc	-	Multivariate data analysis software
Micro-centrifuge tubes, 1.5 mL	Heathrow Scientific	HEA4323	Can be replaced with any other micro-centrifuge tube
NanoIR 2 instrument	Bruker / Anasys Instruments	-	-
PLS toolbox	Mathworks Inc	-	GUI for Matlab
Selected bacterial medium (e.g. HBA Columbia Plates)	Thermo Fisher	PP2001	Provided type of medium is an example and can be replaced by others, depending on the type of experiment
Selected bacterial strain	-	-	The source depends on the aim of research (patient isolates, ATCC strains, etc.)
Substrate (e.g. Raman grade CaF ₂)	Crystran	CAFP13-2R	Recommended size: 13 mm Ø x 2.0 mm
Tip pipette 1000 μl	Axygen	T-1000-B	-
Tip pipette 200 μl	Axygen	T-200-C	-
Tip pipette 0.5-10 μl	Axygen	T-300-R	-
Ultrapure water	-	-	-

August 19, 2020

Vineeta Bajaj, Ph.D. Review Editor Journal of Visualized Experiments

Re: Atomic Force Microscopy Combined with Infrared Spectroscopy as a Tool to Probe Single Bacterium Chemistry

By Kamila Kochan, Anton Y. Peleg, Philip Heraud and Bayden R. Wood

Dear Dr Bajaj,

Please find the manuscript with responses to Editorial comments, included as replays to comments directly in the manuscript file. The changes were made in "Track changes" mode and highlighted in green to assist the editorial process (in addition to yellow highlighting for filming).

Yours sincerely,

Kamila Kochan PhD,

Postdoctoral Researcher, Centre for Biospectroscopy, School of Chemistry, Faculty of Science, Monash University,

Lamila Kochan

Tel: +61 3 9905 1407

Email: kamila.kochan@monash.edu

Figure 1: ORIGINAL

Figure 2: parts reproduced from Kochan, K. et al. In vivo atomic force microscopy-infrared spectroscopy of bacteria. Journal of the Royal Society Interface 15 (140), (2018).

Authors can reuse their free of charge and without the need to request permission. Link to the policy: https://www.rsc.org/journals-books-databases/journal-authors-reviewers/licences-copyrightpermissions/

In that policy, section: Author reusing their own work published by the Royal Society of Chemistry

You do not need to request permission to reuse your own figures, diagrams, etc, that were originally published in a Royal Society of Chemistry publication. However, permission should be requested for use of the whole article or chapter except if reusing it in a thesis. If you are including an article or book chapter published by us in your thesis please ensure that your co-authors are aware of this.

Reuse of material that was published originally by the Royal Society of Chemistry must be accompanied by the appropriate acknowledgement of the publication. The form of the acknowledgement is dependent on the journal in which it was published originally, as detailed in 'Acknowledgements'.

Figure 3 and Figure 4: parts reproduced from Kochan, K. et al. Detection of Antimicrobial Resistance-Related Changes in Biochemical Composition of Staphylococcus aureus by Means of Atomic Force Microscopy-Infrared Spectroscopy. Analytical Chemistry. 91 (24), 15397-15403, (2019).

Reuse of own figures is permitted free of charge. Please see below a print screen from RightsLink:

PERMISSION/LICENSE IS GRANTED FOR YOUR ORDER AT NO CHARGE

This type of permission/license, instead of the standard Terms & Conditions, is sent to you because no fee is being charged for your order. Please note the following:

- Permission is granted for your request in both print and electronic formats, and translations.
- If figures and/or tables were requested, they may be adapted or used in part.
 Please print this page for your records and send a copy of it to your publisher/graduate school.
- Appropriate credit for the requested material should be given as follows: "Reprinted (adapted) with permission from (COMPLETE REFERENCE CITATION). Copyright (YEAR) American Chemical Society." Insert appropriate information in place of the capitalized words
- One-time permission is granted only for the use specified in your request. No additional uses are granted (such as derivative works or other editions). For any other uses, please submit a new request.

If credit is given to another source for the material you requested, permission must be obtained from that source.

BACK CLOSE WINDOW

Figure 5 - ORIGINAL

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	" MONIC FORCE NICEOSCOPA - INFRANCE SPECTROSCOPY:	
A+b.) =/ c.\.	A NOVEL TOOL FOR PROBING CHITISTRY OF SINGLE BACTERIA	P
Autiloi(s):	abochious known to (on behalf of outhours)	
tem 1: The	tem 1: The Author elects to have the Materials be made available (as described at	at
http://www.jov	http://www.jove.com/publish) via:	
Standard Access	ard Access Mopen Access	
tem 2: Please so	tem 2: Please select one of the following items:	
The Aut	The Author is NOT a United States government employee.	

JThe Author is a United States government employee and the Materials were prepared in the course of his or her duties as a United States government employee.

The Author is a United States government employee but the Materials were NOT prepared in the course of his or her duties as a United States government employee

ARTICLE AND VIDEO LICENSE AGREEMENT

License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article http://creativecommons.org/licenses/by-nc-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: contributions, constituting separate and independent entirety in unmodified form, along with a number of other anthology or encyclopedia, in which the Materials in their means the author who is a signatory to this Agreement; associated materials such as texts, figures, tables, artwork, "Author" specified on the last page of this Agreement, including any works in themselves, are assembled into a collective whole; "Collective Work" means a work, such as a periodical issue License" means the Creative Commons Attribution-Defined Terms. As used in this Article and Video conditions of found at:

Author or any other parties, incorporating all or any portion affiliates or agents, individually or in collaboration with the in conjunction with any other parties, or by JoVE or its "Video" means any video(s) made by the Author, alone or and / or the Video; "Parties" means the Author and JoVE; of Visualized Experiments; "Materials" means the Article Massachusetts corporation and the publisher of The Journal which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a the institution, listed on the last page of this Agreement, by be recast, transformed, or adapted; "Institution" means condensation, or any other form in which the Materials may dramatization, fictionalization, motion picture existing works, such as a translation, musical arrangement, upon the Materials or upon the Materials and other prend/3.0/legalcode; "Derivative Work" means a work based recording, art reproduction, abridgment,

of the Article, and in which the Author may or may not

- to the Article and the Video. in this Agreement the respective rights of each Party in and furtherance of such goals, the Parties desire to memorialize and create and transmit videos based on the Article. of the Article, desires to have the JoVE publish the Article Article, in order to ensure the dissemination and protection Background. The Author, who is the author of the
- CRC License. subject to all limitations and requirements set forth in, the to the public all such rights in the Article as provided in, but checked in Item 1 above, JoVE and the Author hereby grant as are technically necessary to exercise the rights in other all media and formats, whether now known or hereafter or all of the above. The foregoing rights may be exercised Works or Collective Works and(c) to license others to do any translations, adaptations, summaries, extracts, Derivative and exercise all of the rights set forth in (a) above in such adaptations, summaries or extracts of the Article or other media and formats. If the "Open Access" box has been devised, and include the right to make such modifications or Collective Works based on all or any portion of the Article Derivative Works (including, without limitation, the Video) digital and electronic form) throughout the world, hereafter developed (including without limitation in print, in all forms, formats and media whether now known or publish, reproduce, distribute, display and store the Article Article, including any extensions thereto) license royalty-free, perpetual (for the full term of copyright in the JoVE, subject to Sections 4 and 7 below, the exclusive, agreeing to publish the Article, the Author hereby grants to Grant of Rights in Article. In consideration of JoVE the Article into other languages,

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- Section 5 applies if the "Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- requirements set forth in, the CRC License. Video as provided in, but subject to all limitations and the Author hereby grant to the public all such rights in the For any Video to which this Section 6 is applicable, JoVE and necessary to exercise the rights in other media and formats whether now known or hereafter devised, and include the foregoing rights may be exercised in all media and formats, and (c) to license others to do any or all of the above. The summaries, extracts, Derivative Works or Collective Works forth in (a) above in such translations, any portion of the Video and exercise all of the rights set other Derivative Works or Collective Works based on all or create adaptations, summaries or extracts of the Video or the world, (b) to translate the Video into other languages, limitation in print, digital and electronic form) throughout now known or hereafter developed (including without store the Video in all forms, formats and media whether copyright in the Article, including any extensions thereto) the exclusive, royalty-free, perpetual (for the full term of Author hereby grants to JoVE, subject to Section 7 below, to produce, display or otherwise assist with the Video, the checked in Item 1 above. In consideration of JoVE agreeing Section 6 applies only if the "Open Access" box has been to make (a) to publish, reproduce, distribute, display and Grant of Rights in Video - Open Access. This such modifications as are technically adaptations,
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. Protection of the Work. The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- institutional, laboratory, hospital, Author represents and warrants that it has and will continue to comply with all government, institutional and intellectual property or other rights of any third party. The infringe and/or misappropriate the patent, trademark, performance or display, and/or modification of all or any that the use, reproduction, distribution, public or private had been a party hereto as an Author. The Author warrants authorized by each of the other such authors to execute this represents and warrants that the Author has entered into a at the top of this Agreement and if any such author has not authors of the Materials. If more than one author is listed author(s) listed at the top of this Agreement are the only other party. The Author represents and warrants that the been assigned, licensed, or otherwise transferred to any of this Agreement, by such authors collectively) and has not published, that the copyright interest is owned by the warrants that the Article is original, that it has not been review board. has been approved by the Author's relevant institutional and that all research involving human and animal subjects laws, procedures or guidelines, applicable to the Materials, animal treatment, privacy, and all other rules, regulations, portion of the Materials does not and will not violate, respect to the terms of this Agreement as if each of them Agreement on his or her behalf and to bind him or her with Agreement with JoVE relating to the Materials, the Author Author (or, if more than one author is listed at the beginning regulations, Author Warranties. The Author represents and separate Article and Video License including, without ethical, limitation human and <u>a</u>
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

ARTICLE AND VIDEO LICENSE AGREEMENT

author. JoVE reserves the right, in its absolute and sole length, quality, content and the like. including, whether actually published or not. JoVE has sole discretion the Author's institution as necessary to make full, unfettered access to the facilities of the Author or of employees, agents and independent contractors shall have accept or decline any work submitted to JoVE. JoVE and its discretion and without giving any reason therefore, Article and Video License Agreements from each such Article until such time as it has received complete, executed discretion, elect not take any action with respect to the as to the method of making and publishing the Materials, lighting, filming, timing of publication, without limitation, to all decisions regarding the Video, if any,

JoVE, making of videos by JoVE, or publication in JoVE damages related in any way to the submission of work to animal treatment, privacy or other rules, regulations, laws, of institutional, laboratory, hospital, ethical, human and experiments, property damage, personal injury, violations allegations or instances of violation of intellectual property agrees to indemnify and hold harmless JoVE from fees, arising out of any breach of any warranty or other sterilization, lack of cleanliness or by contamination due to shall hold JoVE harmless from, damages caused by lack of elsewhere by JoVE. The Author shall be responsible for, procedures or guidelines, liabilities and other losses facilities, fraud, libel, defamation, research, equipment, rights, damage to the Author's or the Author's institution's any representation or warranty contained herein or from attorney's fees, resulting from the breach by the Author of against any and all claims, costs, and expenses, including representations contained herein. The JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's Indemnification. The Author agrees to indemnify Author further and Q Q

> employees, agents or independent contractors. or in connection with, acts or omissions of harmless shall include such losses or damages incurred by, losses or damages. shall include JoVE's attorney's fees and costs related to said Author's expense. All indemnifications provided herein responsibility of the Author and shall be undertaken at the decontamination independent contractors. All sterilization, cleanliness the making of a video by JoVE its employees, agents or procedures Such indemnification and holding shall solely JoVE, its 9

- Materials will be suspended until payment is received. completion of filming, production and publication incurred by JoVE. result in a US\$1,200 fee to cover pre-production expenses submitted Materials after final peer review approval will returned to the Author. Withdrawal by the Author of any editorial or production decision, invoice. Should the Materials not be published due to an publication the Materials. Payment is due in 21 days of JoVE must Fees. To cover the cost incurred for publication, receive payment before If payment is not received by the these funds will production and of the
- of this Agreement. the same legal effect as delivery of an original signed copy means of of this Agreement delivered by facsimile, e-mail or other deemed to me one and the same agreement. A signed copy deemed an original, but all of which together shall be may be executed in counterparts, each of which shall be any conflict of law provision thereunder. This Agreement Commonwealth of Massachusetts without giving effect to governed and JoVE's successors and assignees. This Agreement shall be assigned by JoVE and shall inure to the benefits of any electronic transmission shall be deemed to have Transfer, Governing Law. This Agreement may be construed by the internal laws of the ౸

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDING AUTHOR

Title: Signature: Institution: Name: Department: 5 entic 00057 NOT COSSOPHINGSOND, 2310 200 5 Date: 0 kg 500,00 0 9 MOMI

Please submit a signed and dated copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- Fax the document to +1.866.381.2236
- Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140