Journal of Visualized Experiments An efficient method for adenovirus production -- Manuscript Draft--

Article Type:	Invited Methods Article - Author Produced Video	
Manuscript Number:	JoVE61691R3	
Full Title:	An efficient method for adenovirus production	
Corresponding Author:	Anca Violeta Gafencu, Ph.D. Institute for Cellular Biology and Pathology "N. Simionescu" Bucharest, Bucharest ROMANIA	
Corresponding Author's Institution:	Institute for Cellular Biology and Pathology "N. Simionescu"	
Corresponding Author E-Mail:	anca.gafencu@icbp.ro	
Order of Authors:	Madalina Dumitrescu	
	Violeta Georgeta Trusca	
	Ioana Madalina Fenyo	
	Anca Violeta Gafencu, Ph.D.	
Additional Information:		
Question	Response	
Please indicate whether this article will be Standard Access or Open Access.	Open Access (US\$3000)	
Please specify the section of the submitted manuscript.	Bioengineering	
Please confirm that you have read and agree to the terms and conditions of the author license agreement that applies below:	I agree to the Author License Agreement	
Please provide any comments to the journal here.		

1 TITLE:

An Efficient Method for Adenovirus Production

2 3 4

AUTHORS AND AFFILIATIONS:

Madalina Dumitrescu, Violeta Georgeta Trusca, Ioana Madalina Fenyo, Anca Violeta Gafencu

5 6 7

Institute of Cellular Biology and Pathology "N. Simionescu", Bucharest, Romania

8 9

- Corresponding Author:
- 10 Anca Violeta Gafencu (anca.gafencu@icbp.ro)

11

- 12 E-mail Addresses of Co-authors
- 13 Madalina Dumitrescu (madalina.dumitrescu@icbp.ro)
- 14 Violeta Georgeta Trusca (violeta.trusca@icbp.ro)
- 15 Ioana Madalina Fenyo (madalina.fenyo@icbp.ro)

16 17

KEYWORDS:

Adenovirus, pAdTrack, green fluorescent protein, recombinant selection, titer, adenovirus purification

20 21

22

23

24

SUMMARY:

Here, we present a protocol for adenovirus production using the pAdEasy system. The technology includes the recombination of the pAdTrack and pAdEasy-1 plasmids, the adenovirus packaging and amplification, the purification of the adenoviral particles from cell lysate and culture medium, the viral titration, and the functional testing of the adenovirus.

252627

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

ABSTRACT:

Adenoviral transduction has the advantage of a strong and transient induction of the expression of the gene of interest into a broad variety of cell types and organs. However, recombinant adenoviral technology is laborious, time-consuming, and expensive. Here, we present an improved protocol using the pAdEasy system to obtain purified adenoviral particles that can induce a strong green fluorescent protein (GFP) expression in transduced cells. The advantages of this improved method are faster preparation and decreased production cost compared to the original method developed by Bert Vogelstein. The main steps of the adenoviral technology are: (1) the recombination of pAdTrack-GFP with the pAdEasy-1 plasmid in BJ5183 bacteria; (2) the packaging of the adenoviral particles; (3) the amplification of the adenovirus in AD293 cells; (4) the purification of the adenoviral particles from cell lysate and culture medium; and (5) the viral titration and functional testing of the adenovirus. The improvements to the original method consist of (i) the recombination in BJ5183-containing pAdEasy-1 by chemical transformation of bacteria; (ii) the selection of recombinant clones by "negative" and "positive" PCR; (iii) the transfection of AD293 cells using the K2 transfection system for adenoviral packaging; (iv) the precipitation with ammonium sulfate of the viral particles released by AD293 cells in cell culture medium; and (v) the purification of the virus by one-step cesium chloride discontinuous gradient ultracentrifugation. A strong expression of the gene of interest (in this case, GFP) was obtained

in different types of transduced cells (such as hepatocytes, endothelial cells) from various sources (human, bovine, murine). Adenoviral-mediated gene transfer represents one of the main tools for developing modern gene therapies.

INTRODUCTION:

Adenoviruses are nonenveloped viruses containing a nucleocapsid and a double-stranded linear DNA genome¹⁻³. Adenoviruses can infect a broad range of cell types and infection is not dependent on active host cell division. After infection, the adenovirus introduces its genomic DNA into the host cell nucleus, where it stays epichromosomal and is transcribed together with the genes of the host. Thus, a minimal potential risk for insertional mutagenesis or oncogenes regulation is attained⁴⁻⁶. The adenoviral genome is not replicated together with the host genome and thus, the adenoviral genes are diluted in a dividing cell population. Among the advantages of adenoviral transduction, there are: (i) high levels of transgene expression; (ii) reduced risks related to the integration of the viral DNA into the host genome, due to episomal expression; (iii) transduction of a wide variety of dividing and non-dividing cell types. Most adenoviruses used in biomedical research are non-replicative, lacking the E1 region⁷⁻⁹. For their production, a cell line supplying the E1 sequence (such as HEK293) is required. Besides, a non-essential region for the viral life cycle (E3) was deleted to allow the insertion of a transgene in the viral genome; other regions (E2 and E4) were further deleted in some adenoviruses, but in these cases, a decreased yield of adenoviral production and low expression of the transgene were reported⁷.

Here, we present an improved protocol for constructing, packaging, and purifying the adenoviruses using the AdEasy System. These improvements allowed the packing of the adenovirus in a faster and more economical way as compared to the original method developed by Bert Vogelstein^{2,10}, due to the following advantages: (i) the recombination in BJ5183-containing pAdEasy-1 by chemical transformation of bacteria; (ii) the selection of the recombinant clones by PCR; (iii) the transfection of AD293 cells using the K2 transfection system for adenoviral packaging; (iv) the precipitation of adenoviral particles from culture medium after viral packaging and amplification; (v) the adenoviral purification using one-step cesium chloride (CsCl) gradient ultracentrifugation.

The protocol for adenovirus production using the AdEasy system (**Figure 1**) comprises the following steps:

- (1) Recombination of pAdTrack-GFP with pAdEasy-1 in BJ5183 bacteria
- 79 (2) Packaging the adenoviral particles
- 80 (3) Amplification of the adenovirus
- 81 (4) Purification of the adenoviral particles from cell lysate and culture medium
- 82 (5) Adenovirus titration.

[Place Figure 1 here]

In this protocol, we exemplified the technology for the production of the adenovirus, which can induce the expression of GFP in the host cells. GFP is already inserted in the backbone of the pAdTrack-CMV shuttle vector (Addgene #16405), under a second CMV promoter and is used as

a reporter gene (**Figure 1**). For this reason, here we designated the pAdTrack-CMV vector as pAdTrack-GFP and we assessed the expression of GFP for demonstrative purposes. Besides GFP expression, the system can be used to overexpress a gene of interest, which may be cloned in the multiple cloning sites of the pAdTrack-CMV. A gene or a minigene cloned in the pAdTrack-CMV is usually more efficient for expression induction as compared with the cDNA¹¹. The data showed a strong GFP expression in transduced cells (such as hepatocytes, endothelial cells) from various sources (human, bovine, murine). Adenoviral-mediated gene transfer represents one of the main tools for developing modern gene therapies.

PROTOCOL:

Safety Note: In general, adenoviruses are classified as biosafety level 2 organisms and thus, all manipulations must be done in a Class II biosafety cabinet by a trained person, wearing biohazard protective equipment (including gloves, face-mask for biological aerosols, lab coat, etc.). All solid materials contaminated with the adenovirus must be disinfected with a 10% bleach solution for 30 min and autoclaved for 30 min at 121 °C and 1 bar. Depending on the gene inserted, the adenovirus created may have dangerous potential and may be classified in other biosafety levels.

1. Experimental preparation

1.1. Use a separate cell culture hood for adenoviral manipulations, and a separate incubator for each adenovirus type. Use T flasks with filter caps for viral packaging and amplification; avoid as much as possible transduction experiments in vented Petri plates.

113 1.2. Empty the cell culture hood after each use and expose it to UV for 15 min.

1.3. Autoclave periodically the pipette aid, pipettes, and other utensils. If possible, culture in a separate cell culture laboratory/hood the cells for adenoviral packaging (AD293 cells) and the cells to be used in transduction experiments. Batches of different adenoviruses amplified in the same period should be checked for cross-contamination by PCR.

120 1.4. Prepare the following solutions.

1.4.1. Prepare SOB (Super Optimal Broth) medium: 20 g of tryptone, 5 g of yeast extract, 0.5 g of NaCl (10 mM final concentration), 2.5 mL of 1 M KCl (2.5 mM final concentration), amd H₂O to 1 L. After autoclaving at 121 °C, add the following sterile solutions: 5 mL of 1 M MgCl₂ and 5 mL of 1 M MgSO₄.

1.4.2. Prepare SOC (Super Optimal broth with Catabolite repression) medium: in 1 L sterile SOB
 add the following sterile solutions: 20 mL of 1 M glucose, 5 mL of 1 M MgCl₂, and 5 mL of 1 M
 MgSO₄.

- 1.4.3. Prepare precipitation solution: dissolve 29.5 g of potassium acetate in 60 mL of H₂O, add
- 132 11.5 mL of acetic acid, and H_2O to 100 mL.

133 1.4.4. Prepare resuspension buffer: 95 mL of 20% glucose, 5 mL of 1 M Tris-Cl pH 8, 4 mL of 0.5 134 135 M EDTA pH 8, and add H₂O to 200 mL. 136 137 1.4.5. Prepare lysis solution: 4.8 mL of 8.3 M NaOH, 10 mL of 20%SDS, and H₂O to 200 mL. 138 139 Recombination of pAdTrack-GFP viral vector with pAdEasy-1 plasmid in BJ5183 bacteria 2. 140 141 2.1. Linearization of pAdTrack-GFP and purification of the linearized plasmid 142 143 2.1.1. Prepare the following digestion mix on ice:

10 μg of pAdTrack-GFP

144

- 145 5 µL of 10x colorless buffer
- 146 2 μL of Pme I

152

155

157

159

162

165

168

171

174

147 H_2O of to a final volume of 50 µL.

148 2.1.2. Incubate at 37 °C for 3 hours in a water bath. 149

- 150 2.1.3. Inactivate at 65 °C for 20 min. 151
- 153 2.1.4. Check the efficiency of the digestion of pAdTrack-GFP with Pme I: run 1 µg of the digested 154 plasmid in parallel with 1 µg of undigested plasmid on a 0.8% agarose gel.
- 156 2.2. Isolation and purification of DNA
- 158 NOTE: Steps 2.2.1-2.2.6 need to be performed in a fume hood.
- 160 2.2.1. Add an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) over the digestion 161 mixture and invert the tube until the mixture is homogeneous.
- 163 2.2.2. Centrifuge for 3 min at 16,200 x q, and then transfer the upper aqueous phase to a 164 collection tube.
- 2.2.3. Add an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1) over the lower 166 167 organic phase and vortex.
- 2.2.4. Centrifuge for 3 min at 16,200 x q, and then transfer the upper phase to the same 169 170 collection tube.
- 172 2.2.5. Add an equal volume of chloroform over the aqueous phase harvested in the collection 173 tube and vortex.
- 175 2.2.6. Centrifuge for 3 min at 16,200 x q, and then transfer the upper aqueous phase to a new 176 collection tube.

177

2.2.7. Add a 1/10 volume of 3 M sodium acetate, and 2 volumes of cold 100% ethanol and vortex.

180

181 2.2.8. Incubate for 1 hour at -70 °C or overnight at -20 °C.

182

183 2.2.9. Thaw the sample on ice and centrifuge it for 10 min at 16,200 x q and 4 °C.

184

2.2.10. Remove the supernatant and add 750 μL of 75% ethanol.

186

2.2.11. Centrifuge for 3 min at 16,200 x g and 4 °C and remove the supernatant.

188

2.2.12. Briefly spin the tube to remove all the supernatant and dry the pellet in the hood. Do notdry the DNA pellet for a long time because it is tricky to dissolve.

191

192 2.2.13. Dissolve the pellet in 15 μ L of H₂O.

193 194

2.2.14. Measure the DNA concentration using a spectrophotometer (e.g., Nanodrop).

195

196 2.3. Transformation of AdEasier-1 bacteria with pAdTrack-GFP

197

198 NOTE: In this step, the recombination of pAdTrack-GFP with pAdEasy-1 plasmid takes place.

199

2.3.1. Prepare AdEasier-1 (BJ5183-containing pAdEasy-1, Addgene #16399) chemical competent bacteria, using a commercial transformation kit, following the manufacturers' instructions. Keep aliquots of 100 μL competent bacteria at -80 °C.

203

2.3.2. Thaw an aliquot of competent AdEasier-1 bacteria on ice and add 1 μg of purified Pme I digested pAdTrack-GFP. Mix gently by flicking the tube (do not pipette the mixture). Incubate for
 10 min on ice.

207

208 2.3.3. Add 900 μ L of SOC medium and incubate for 1 hour at 37 °C with shaking.

209

210 2.3.4. Microfuge for 5 min at $600 \times g$.

211

2.3.5. Remove 900 μ L of the supernatant, mix the pellet and the supernatant, and seed the transformed bacteria on LB-agar plates with kanamycin.

214

2.3.6. Incubate for \sim 16 hours at 37 $^{\circ}$ C (do not exceed 18 hours).

216

217 2.4. Selection of the possible positive clones by PCR

218

2.4.1. Divide toothpicks into two halves and sterilize the half-toothpicks by autoclaving.

221 2.4.2. Pick up small and translucent colonies using sterile half-toothpicks.

222

- 223 2.4.3. Briefly, rotate the half-toothpick with bacteria in 10 μ L water (in a PCR tube) and then put
- the half-toothpick in a 1.5 mL Eppendorf tube containing 100 μL SOC medium with kanamycin.
- 225 Incubate for 4-6 hours at 37 °C, while you test the clones by "negative" and "positive" PCR.

226

2.4.4. Incubate the PCR tubes containing 10 μ L water with bacteria for 5 min at 95 °C to obtain the bacterial sample and run in parallel the "negative" and "positive" PCR.

229

- 230 2.4.5. "Negative" PCR to test the pAdTrack-GFP integrity: Prepare the following PCR mix for
- the negative PCR on ice.
- 5 μL of the bacterial sample
- 233 0.1 μL of primer Forward (4631 F: 5'-CAGTAGTCGGTGCTCCAG)
- 234 0.1 μL of primer Reverse (5616 R: 5'-TATGGGGGCTGTAATGTTGTCTC)
- 235 0.1 μL of dNTP 10 mM
- 236 3 μL of 5x Buffer
- 237 1.5 μL of MgCl₂ 25mM
- 238 0.1 μL of GoTag Polymerase
- 239 H_2O to a final volume of 15 μ L

240

- NOTE: The positive control in which the DNA template is the pAdTrack-GFP vector must be
- 242 included.

243

- 2.4.6. "Positive" PCR to test the presence of the gene of interest. Use specific primers for the
- inserted gene and prepare the mix as in the previous step. The primers used for GFP were the
- 246 following:
- 247 F: 5'-CAAGGACGACGGCAACTACA
- 248 R: 5'-ATGGGGGTGTTCTGCTGGTA

249

- 250 2.4.7. Run in parallel the "negative" and the "positive" PCR. The PCR Program is: 5 min, 95 °C;
- 40 cycles of the following steps: 30 sec, 95 °C; 30 sec, 68 °C; 1 min, 72 °C; final elongation: 10 min,
- 252 72 °C.

253

NOTE: Adapt the annealing temperature for amplification the gene of interest.

255

2.4.8. Evaluate the PCR products on a 1% agarose gel and make the selection of the clones.

257

2.4.9. Consider for further processing the clones that give no PCR products for the "negative PCR" and the specific PCR product after the "positive PCR".

260261

2.5. Grow the bacterial cultures of selected recombinant clones.

- 263 2.5.1. Dilute the cultures of the presumed positive clones (resulted in the step 2.4.3.) in 4 mL of
- SOC medium with kanamycin, and incubate them overnight at 37°C with shaking.

- 2.6. Isolation of plasmid DNA from AdEasier-1 bacteria (Miniprep using alkaline lysis)
- 268 2.6.1. Transfer 1.5 mL of bacterial culture in microcentrifuge tubes, centrifuge for 1 min at $\frac{1}{2}$ 16,200 x $\frac{1}{2}$, and remove the supernatant.
- 2.6.2. Transfer another 1.5 mL bacterial culture in the same tube, repeat centrifugation, and
 remove the supernatant.
- 274 2.6.3. Add 200 μ L of resuspension buffer (50 mM glucose, 10 mM EDTA, 25 mM Tris-HCl pH 8).
- 2.6.4. Add 200 μ L of lysis solution (0.2 N NaOH, 1% SDS), mix gently by inverting the tube.
- 278 2.6.5. Add 200 μ L of precipitation solution (60 mL of 5 M potassium acetate, 11.5 mL of glacial acetic acid, add H₂O until 100 mL), and mix gently by inverting the tube.
- 281 2.6.6. Centrifuge for 3 min at 16,200 x g.282

265

267

270

273

280

285

287288

293

298

301

303

306

- 283 2.6.7. Transfer the supernatant in a new microcentrifuge tube, add 500 μ L isopropanol, mix and incubate for 20 min on ice.
- 286 2.6.8. Centrifuge for 15 min at 16,200 x g and add 500 μ L of 75% ethanol.

2.6.9. Centrifuge for 10 min at 16,200 x q and remove the supernatant.

- 289 2.6.10. Centrifuge for 3 min at 16,200 x q, remove the supernatant and add 15 μ L of H₂O.
- 291292 2.7. Amplification, isolation, and re-testing of the recombined plasmids
- 294 2.7.1. Transformation of DH5 α bacteria with the DNA isolated from AdEasier-1 cells 295
- 296 2.7.1.1. Prepare DH5 α competent bacteria using the commercial transformation kit, following the manufacturers' instructions.
- 299 2.7.1.2. Thaw 100 μ L of DH5 α competent bacteria on ice, add the recombinant DNA, and incubate 10 min on ice. Then seed the bacteria onto LB-agar plates with kanamycin.
- 302 2.7.1.3. Incubate at 37 °C overnight.
- 2.7.1.4. Pick-up several colonies and grow each in 2 mL of LB medium with kanamycin, at 305 37 °C, overnight, with shaking.
- 307 2.7.2. Isolate the DNA (Miniprep using alkaline lysis) and resuspend the obtained DNA in 25 μ L 308 H_2O .

309 310 2.7.3. Confirm the positive clones by enzymatic digestion. 311 312 2.7.3.1. Prepare the following mix on ice: 313 5 µL of recombinant DNA 314 1.5 µL of 10x colorless Buffer 315 0.5 μL of Hind III or Pst I 316 H₂O to a final volume of 15 μL 317 318 2.7.3.2. Incubate at 37 °C for 30 min. 319 320 NOTE: As a control, digest also the pAdTrack-GFP and pAdEasy-1 plasmids. 321 322 2.7.3.3. In each sample add 3 µL of Sx6 loading buffer with RNase A (if RNase A is not 323 present in the miniprep buffers). 324 325 2.7.3.4. Run the digested DNA fragments on 1% agarose gel electrophoresis. 326 327 NOTE: The digestion pattern of a positive clone includes the majority of fragments of the digested 328 pAdEasy plasmid, revealing pAdEasy recombination with the pAdTrack vector. The gene of 329 interest should be evidenced by digestion with the restriction enzymes used for cloning. 330 331 2.7.4. Preparation of plasmid DNA (transfection-grade) for adenovirus packaging 332 333 2.7.4.1. Grow a 200 mL culture of bacteria from a positive clone to isolate the plasmid 334 DNA. 335 336 2.7.4.2. Isolate the plasmid DNA using a commercial kit for plasmid DNA Midiprep (e.g., 337 Qiagen Plasmid Midi Kit) following the manufacturer's instructions. 338 339 Packaging the adenoviral particles 3. 340 341 3.1. Day 1. Seed the AD293 cells 342 343 3.1.1. Wash the AD293 cells with PBS and incubate them with 0.125% Trypsin for 2-5 min at 344 37 °C. 345 346 3.1.2. Collect the cells in cold medium with serum. 347

3.1.4. Resuspend the cells in medium with serum and seed the cells at a density of $^{\sim}2x10^{6}/T25$

348

349 350

351

352

3.1.3. Centrifuge for 5 min at 400 x g at 4 °C.

flask. Preferably, use a flask with a filter.

- 353 3.2. Day 1. Digest the recombinant DNA with Pac I 354
- 355 3.2.1. Prepare the following mix:
- 356 6 μ L of recombinant DNA (1 μ g/ μ L)
- 357 2 μL of Pac I
- 358 2.5 μL of 10x colorless Buffer
- 359 H₂O to a final volume of 25 μL

360

3.2.2. Incubate for 3 h (or overnight) at 37 °C, and then inactivate the enzyme at 65 °C for 20 min.

363

3.2.3. DNA precipitation with ethanol: add 2.5 μ L of (1/10 v/v) 3 M sodium acetate and 2-3 volumes of 100% ethanol. Incubation for 30 min at -70 °C or overnight at -20 °C.

366

3.2.4. Centrifuge at 16,200 x g for 30 min at 4 °C and resuspend the pellet in sterile water.

368

369 3.3. Day 2: Transfection of AD293 cells using K2 reagent

370

371 3.3.1. Add 40 μL of K2 Multiplier over the cells, two hours before transfection.

372

- 373 3.3.2. Prepare A and B solutions:
- 374 Solution A: Add 6 μg of Pac I-linearized DNA in 260 μL of Opti-MEM.
- 375 Solution B: Add 21.6 μ L of K2 Reagent in 248.4 μ L of Opti-MEM.

376

3.3.3. Add solution A over solution B and mix gently by pipetting.

378

3.3.4. Incubate the mixture for 20 min at room temperature. Add dropwise A and B mix to the cells.

381

382 3.4. Day 3-11: Monitor the GFP expression by fluorescence microscopy.

383

NOTE: Cells should appear green in fluorescence microscopy and should gradually detach.

385

386 3.5. Day 11: Harvest the F1 adenoviral particles

387

3.5.1. Collect the detached cells and the medium in a 50 mL tube, scrape the adherent cells, and add them in the same tube.

390

391 3.5.2. Centrifuge for 5 min at 400 x g, collect the supernatant in a new tube and resuspend the cell pellet in 0.5 mL of PBS.

393

394 3.5.3. Cell disruption

395

396 3.5.3.1. Transfer the cell suspension in a microcentrifuge tube.

397
398 3.5.3.2. Perform three freeze/thaw cycles (freeze in liquid nitrogen or at -80 °C /thaw at 399 37 °C for maximum 7 min).
400
401 3.5.3.3. Pass the broken cells through a 23 G syringe needle three times.
402

403 3.5.4. Remove the cell debris by centrifugation at 9,600 x g for 12 min. 404

405 3.5.5. Transfer the supernatant to the 50 mL tube with the collected medium.

4. Amplification of the adenovirus

406 407

408

412

416

419

424

427

432

436

440

4.2.

4.3.

NOTE: If the AD293 cells did not reach the necessary confluence, the aliquots of the adenoviral stocks (lysate obtained from the virus-producing cells) to be used for infection may be stored at -80 °C.

413 4.1. Prepare the F2 adenoviral particles 414

- 4.1.1. Seed the AD293 cells in a T75 flask (5x10⁶ cells/flask).
- 4.1.2. Infect ~90% confluent AD293 cells using the F1 adenoviral particles: add the cell homogenate and the medium from the T25 flask over the cells grown in the T75 flask.
- 420 4.1.3. Monitor the GFP expression by fluorescence microscopy. 421
- 4.1.4. Harvest the virus-producing cells when \sim 90% of the transduced AD293 are detached (\sim 423 the 5th day after transduction). Keep the cell culture medium at 4 °C.
- 4.1.5. Disrupt the cells (similarly with those for F1) in 1 mL PBS. 426

Prepare the F3 adenoviral particles

- 428 429 4.2.1. Infect $^{\sim}90\%$ confluent AD293 cells seeded in T175 flask with F2 adenoviral particles and
- the cell culture medium from the F2 adenoviral particles.
 431
- 4334344.2.3. Disrupt the cells (similarly with those for F1) in 2 mL of PBS.

4.2.2. Harvest the cells (~5 days after transduction).

Prepare the F4 adenoviral particles.

- 435
- 437
 438 4.3.1. Infect 5 T175 flasks containing ~90% confluent AD293 cells with F3 adenoviral particles
 439 and cell culture medium.

- 441 4.3.2. Harvest the cells (~5 days after transduction). 442 443 4.3.3. Disrupt the cells (similarly with those for F1) in 3 mL of PBS. 444 445 4.4. Prepare the F5 adenoviral particles 446 447 4.4.1. Infect 25 T175 flasks containing ~90% confluent AD293 cells with F4 adenoviral stock and cell culture medium. 448 449 450 Purification of the adenovirus from cell lysate and culture medium 5. 451 452 5.1. Harvesting the virus-producing cells and the culture medium. 453
- 456 5.1.2. Save the medium in a sterile bottle for precipitation of the adenoviral particles. 457
- NOTE: Keep the medium in the refrigerator until purification of the adenovirus.

5.1.1. Harvest the AD293 cells of F5 after 5 days from transduction.

- 460 5.1.3. Centrifuge the cells at 400 x g, for 5 min, at 4 $^{\circ}$ C.
- 462 5.1.4. Resuspend the final pellet in 5 mL of 10 mM Tris HCl, pH 8 with 2 mM MgCl $_2$. 463
- 464 5.1.5. Aliquot the suspension in 1.5 mL tubes.

454

455

461

465

467

471

473

475

479

- 466 5.1.6. Disrupt the cells (similarly with those for F1): three cycles of freezing/thawing.
- NOTE: If the ultracentrifugation cannot be performed immediately, keep the samples at -80 °C.
- 470 5.1.7. Pass the cell suspension through a 23G syringe needle for three times.
- 5.1.8. Centrifuge the homogenate at 9 600 x g, for 12 min.
- 474 5.1.9. Save the supernatant for adenovirus purification by CsCl gradient ultracentrifugation.
- 476 5.2. Precipitation of the adenovirus released in the culture medium 477
- 478 5.2.1. Bring the bottle with saved cell culture medium at room temperature.
- 480 5.2.2. Add 121 g ammonium sulfate to every 500 mL of cell culture medium (saturation of the solution should be between 40 42%).
- 483 5.2.3. Mix carefully until the ammonium sulfate is completely dissolved. 484

485 5.2.4. Incubate for a minimum of 2.5 hours at room temperature.

486

487 5.2.5. Centrifuge at 1600 x g, for 15 min, at 22 °C and save the pellet.

488

5.2.6. Resuspend the pellet in 4 mL of 10mM Tris HCl pH 8 with 2mM MgCl₂; this suspension should be purified immediately by CsCl gradient ultracentrifugation.

491

NOTE: If the purification step cannot be subsequently performed, dialyze overnight the resuspended pellet against 10mM Tris HCl, pH 8 with 2mM MgCl₂.

494

495 5.3. Adenovirus purification by ultracentrifugation

496

5.3.1. Prepare a discontinuous CsCl gradient in polypropylene tubes for SW41Ti rotor. Add 3 mL of 765 mg/mL CsCl (high density: 1.4 g/L) at the bottom of the tube. Slowly add 3 mL of 288.5 mg/mL CsCl (low density: 1.2 g/L) on top of the first CsCl layer.

500

501 5.3.2. Gently overlay 3 - 4 mL of adenoviral particle suspension released from the cells or precipitated from the cell culture medium (as described before) on top of the gradient.

503

5.3.3. Fill the tubes with mineral oil, and put the tubes in the cold SW41Ti buckets.

505

506 5.3.4. Equilibrate the tubes. Make sure that the filled polypropylene tubes are loaded symmetrically into the rotor. Put the rotor in the ultracentrifuge.

508

509 5.3.5. Centrifuge at 210,000 x *g* and 4 °C, for 18 hours, no brake.

510

5.3.6. Place the ultracentrifuge tubes on a stand with a black paper behind to get the bands.

512

5.3.7. Discard the clear upper phase, the cell debris, and the upper band in a waste container with the bleaching solution.

515

5.3.8. Harvest the lowest band that contains the complete adenovirus ($^{\sim}700~\mu\text{L}$ - 1 mL) in a sterile 1.5 mL tube and keep it on ice.

518

5.3.9. Pre-wet a dialysis cassette in dialysis buffer (10 mM Tris-Cl buffer pH 8, 2 mM MgCl₂).

520

5.3.10. Inject the purified adenovirus into the dialysis cassette using a 2 mL syringe.

522

5.3.11. Dialyze overnight against 10 mM Tris-Cl buffer pH 8, 2 mM MgCl₂ (change the dialysis buffer 3 - 4 times).

525

5.3.12. Harvest the adenoviral stock from the dialysis cassette in aliquots of 10 - 100 μ L.

527

528 5.3.13. Add sucrose to 4% final concentration to viral aliquots (for cryoprotection).

5.3.14. Store aliquots at -80 °C. 6. Adenovirus titration 6.1. Day 1: Plating the cells.

6.1.1. Seed the AD293 cells at a density of 2.5×10^5 cells per well (in a 12-well culture plate) in 1 mL complete growth medium, as shown in Figure 2. Ensure that cells are spread evenly in each

well for accurate titer determination.

[Place Figure 2 here]

6.2. Day 2: Transduction of cells.

6.2.1. Detach the cells from one well with trypsin and count them. Note this number because it will be used to calculate the viral titer.

6.2.2. Perform serial dilutions $(1/10^4; 1/10^5; 1/10^6; 1/10^7)$ of the viral stock in 1 mL of complete growth medium as follows:

6.2.3. $1/10^3$: dilution of the virus stock - add 2 µL of viral stock to 1998 µL of complete medium.

6.2.4. $1/10^4$: Make 1:10 dilution of $1/10^3$ by diluting 120 μ L to 1080 μ L of complete medium (A).

6.2.5. $1/10^5$: Make 1:10 dilution of B by diluting 120 µL of A to 1080 µL of complete medium (B).

6.2.6. $1/10^6$: Make 1:10 dilution of C by diluting 120 μ L of B to 1080 μ L of complete medium (C).

6.2.7. $1/10^7$: Make 1:10 dilution of D by diluting 120 μ L of C to 1080 μ L of complete medium (D).

NOTE: Prepare 3 tubes of each dilution (A, B, C, D) to perform the experiment in triplicates.

6.2.8. Remove the cell culture medium from the wells and add the prepared dilutions of the virus, as shown in Figure 2.

6.3. Day 3: Monitoring GFP expression.

6.3.1. Check the wells for the presence of green cells using a fluorescence microscope.

6.4. Day 4: Flow cytometry analysis of GFP-positive cells

6.4.1. Prepare and label twelve 1.5 mL tubes.

- 573 6.4.2. Collect the cell culture medium (together with the detached cells) in 1.5 mL tubes and
- keep them on ice.

575

576 6.4.3. Add 200 μL of trypsin in each well.

577

578 6.4.4. Incubate the plate for 2 - 3 min at 37 °C in the CO₂ incubator.

579

580 6.4.5. Harvest the cells in the same Eppendorf tubes with the cell culture medium. Keep the tubes on ice.

582

583 6.4.6. Pellet the cells at 400 x g, for 5 min, at 4 °C.

584

585 6.4.7. Remove the supernatant; keep the tubes on ice.

586

587 6.4.8. Resuspend the pellet in 250 μ L of PBS + 2% FBS; keep the tubes on ice.

588

589 6.4.9. Transfer the cell suspension in flow cytometry tubes or plate.

590

591 6.4.10. Run the samples on a flow cytometer recording the fluorescence of the GFP expressing cells.

593

- Titer calculation: The samples with 5 20% GFP positive cells from the parent population should
- be taken into account for the calculation of viral titer using the following formula:
- 596 Titer (TU/mL) = D x F/100 x C/V
- 597 D = dilution factor
- 598 F = percent of positive cells / 100
- 599 C = number of cells / well
- 600 V = volume of viral inoculum

601

7. Adenoviral transduction of target cells and testing of the induced protein expression

603

7.1. Day 1: Seeding the cells

605

7.1.1. Seed the target cells ensuring that they are spread evenly in the wells.

607

608 7.2. Day 2: Transduction of the cells

609

7.2.1. Detach the target cells from one well and count them.

611

7.2.2. Calculate the appropriate volume of adenoviral suspension required to transduce the cells with the desired number of infectious particles per cell.

614

7.2.3. Add the corresponding amount of viral suspension to the target cells.

- 7.3. Day 3: Removal of the viral suspension and checking for GFP expression
- 7.3.1. Replace the cell culture medium containing adenoviral particles with fresh medium.
- 7.3.2. Check the GFP expression at the fluorescence microscope.

REPRESENTATIVE RESULTS:

618

620

622623

624

625

626 627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646 647

648

649

650

651 652

653 654

655

656

657

658

659

660

We modified and improved the original Vogelstein's protocol in order to attain faster and more efficient adenovirus production. First, we revised the methodology to achieve an easier selection of recombinants. After recombination, the BJ5183 bacterial clones were tested by "negative PCR" to assess the integrity of pAdTrack-GFP as an indicator of the lack of recombination (Figure 3A), or by "positive PCR" to identify the gene of interest, assimilated in our case to GFP (Figure 3B). In both "negative" and "positive" PCRs, we used pAdTrack-GFP as a control template, which gave a band of 986 bp for pAdTrack integrity (Figure 3A, lane 1), and a band of 264 bp for GFP (Figure **3B**, lane 3). The primers used for the "negative PCR" were designed to amplify a fragment of 986 bp containing the Pmel site in pAdTrack-GFP. This DNA fragment is drastically enlarged after recombination and is not amplified in the positive recombinant clones. Negative clones for recombination, in which pAdTrack-GFP remained intact, are represented in Figure 3A, lanes 3, 4, and 6. The primers anneal on the DNA sequences adjacent to the recombination site. Potential positive recombinant clones (Figure 3A, lanes 2 and 5) expressed GFP as shown in Figure 3B, lane 1, and 2. Plasmid DNA from these clones was isolated and used for DH5 α transformation to obtain a higher amount of DNA. These preselected recombinant plasmids amplified in DH5 α were then tested by enzymatic digestion. In Figure 3C-E are illustrated the results of the enzymatic digestion of one recombinant-positive clone digested with Hind III, PstI, BamHI restriction enzymes (Figure **3C, D, E** lane 2). The HindIII and PstI digestion patterns of the recombinant clone were similar to those obtained for pAdEasy-1 since HindIII and PstI cut the pAdEasy-1 plasmid 24 and 25 times, respectively, (Figure 3C, and D, lane 3); HindIII cut once and PstI cut four times the pAdTrack-GFP vector (Figure 3 C and D, lane 1). BamHI cut twice pAdEasy-1 vector (Figure 3C, lane 3), and once pAdTrack-GFP (Figure 3C, lane 1).

PacI cut out a fragment of 4.5 kb from the recombinant plasmid (Figure 3F, lane 2), a fragment of 2863 bp from pAdTrack-GFP (**Figure 3F**, lane 1), and linearized the pAdEasy-1 vector (Figure 3F, lane 3). The DNA ladder is represented in **Figure 3C-F**, in lanes 4. The recombinant plasmid was digested with Pac I for further use for AD293 transfection.

[Place Figure 3 here]

The adenoviral packaging and amplification were performed in AD293 cells. The adenoviral particles (AdV-GFP) were purified from the AD293 cell lysate as well as from the cell culture medium, where they had been released by the infected cells. To concentrate the adenovirus found in the cell culture medium, the particles were precipitated with ammonium sulfate and then resuspended in 10 mM Tris HCl pH 8 with 2 mM MgCl₂, the same buffer as that used for cell lysis. Subsequently, the adenoviral particles from the cell lysate and from the culture medium were purified by CsCl discontinuous gradient ultracentrifugation. After ultracentrifugation, a

strong band of purified AdV-GFP was obtained, as shown in Figure 4.

661 662 663

[Place Figure 4 here]

664 665

666

667

668

669

670

To determine the viral titer expressed in transducing units per one mL (TU/mL), the AD293 cells were infected with serial dilutions of the AdV-GFP. After 48 hours, the infected cells expressed GFP, in an inverse correlation with the dilution factor of the viral suspension. This was observed by fluorescence microscopy and the percentage of GFP-positive cells was determined by flow cytometry (Figure 5). To calculate the titer, the viral dilution that induced 5 - 20% of GFP-positive cells was considered (Figure 5C). Usually, we obtain a viral titer of ~1010 (TU/mL) for GFPadenovirus.

671 672 673

674

Below, we provide an example of an adenoviral titer calculation for a specific adenoviral batch in which 300000 cells (C) were transduced with 1 mL adenoviral solution (V), at a dilution factor of 10⁶ (D), for which 6% GFP-positive cells (F) were obtained:

675 676 677

```
Titer (TU/mL) = D x F/100 x C/V = 10^6 x 6/100 x 300000/1 = 1.8 \times 10^{10} TU/mL
```

678 679

[Place Figure 5 here]

680 681

682

683

684

To test the transduction potential of the prepared adenovirus, four cell lines were used: human endothelial cells (EA.hy926), bovine aortic endothelial cells (BAECs), murine hepatocytes (Hepa 1-6), and murine mesenchymal stromal cells (MSC). Endothelial cells (EA.hy926 and BAEC) were transduced with 25 TU/cell, the hepatocytes were transduced with 5 TU/cell and MSC were transduced with 250 TU/cell.

685 686 687

688

690

Here is an example of how the volume of adenoviral suspension needed to infect 3x10⁶ cells with 25 TU/cell using the adenoviral suspension with 1.8x10¹⁰ TU/mL was calculated.

75 x 10^{6} TU.....v mL \Rightarrow v= 4.2 x 10^{-3} mL = 4.2μ L of viral stock

689 For

1 cell25 TU

$$3x10^6$$
 cells.....x TU \Rightarrow x=75 x10⁶ TU

691

If the viral stock contains 1.8 x
$$10^{10}\,\mathrm{TU}.....1\,\mathrm{mL}$$

692 693 694

695

696

697

698

699

700

Forty-eight hours after transduction, the cells were analyzed by fluorescence microscopy. As shown in Figure 6, human or bovine endothelial cells were transduced with good efficiency (~50%) for 25 TU/cell (Figure 6 EA.hy926 and BAEC). Murine hepatocytes (Hepa 1-6) were efficiently transduced by the adenovirus at a low amount of adenovirus particles (5 TU/cell), but they are also sensitive to the adenovirus since a higher percentage of dead cells (PI-positive cells) was recorded (~16%) as compared to the other cell types. Mesenchymal stromal cells were the most difficult to transduce (Figure 6), due to the lack of specific adenoviral receptors (unpublished data).

701 702

[Place Figure 6 here]

Figure 1. The adenovirus production technology. The main steps of the adenoviral technology are: (1) The recombination of the pAdTrack-GFP with the pAdEasy-1 plasmid in BJ5183 bacteria. The selected recombined plasmids are amplified in DH5 α bacteria and then purified; (2) The packaging of the adenoviral particles in AD293 cells, that are producing adeno-E1 proteins, used for the viral packaging.; (3) The amplification of the adenovirus in AD293 cells; (4) The purification of the adenoviral particles from the cell lysate and the culture medium by ultracentrifugation on a CsCl density gradient; (5) The titration of the adenovirus and the functional testing.

Figure 2. Titration plate design.

Figure 3. The recombination of pAdTrack-GFP with the pAdEasy-1 plasmid. The plasmids obtained after the recombination of pAdTrack-GFP and pAdEasy-1 were tested by "negative" PCR for the pAdTrack-GFP integrity (A). The non-recombinant clones were evidenced by the presence of a 986 bp band corresponding to the sequence amplified from the pAdTrack-GFP plasmid (A, lanes 3, 4, and 6). The clones potentially positive for recombination (A, lanes 2 and 5) were also obtained. When the pAdTrack-GFP vector was used as a template, a band of 986 bp for pAdTrack-GFP (A, lane 1) was obtained. The potentially positive recombinant clones were tested for GFP expression by "positive" PCR (B); a band of 264 bp appears for both potentially recombined clones (B, lane 1 and 2), as well as for the pAdTrack-GFP plasmid. The DNA from one potential recombinant clone was tested with HindIII, PstI, BamHI, and PacI restriction enzyme (C-F, lanes 2). In the controls, the pAdEasy-1 vector (C-F, lanes 3) and the pAdTrack-GFP plasmid (C-F, lanes 1) were digested with the same enzymes. The DNA ladder is represented in C-F lane 4.

Figure 4. The adenoviral purification by ultracentrifugation on a discontinuous CsCl gradient. The cell homogenate and the adenovirus precipitated from the medium were subjected to ultracentrifugation on a discontinuous gradient formed by low and high-density CsCl solutions. Strong bands of GFP- adenovirus were evidenced in both cases.

Figure 5. The assessment of adenoviral titer. AD293 cells were infected with various adenoviral dilutions. Forty-eight hours later, the cells were observed by fluorescence microscopy and analyzed by flow cytometry to determine the percentage of GFP positive cells induced by different adenoviral dilutions (A-D). To establish the gate for flow cytometry, non-transduced cells were also analyzed (E). The titer calculated for dilution factor 10^6 , when 6% of the cells were GFP positive was 1.8×10^{10} . For panels A-E, bars: $100 \mu m$.

Figure 6. The infectivity of the adenovirus and the induction of GFP expression in transduced cells. Human endothelial cells (EA.hy926), bovine aortic endothelial cells (BAECs), murine hepatocytes (Hepa 1-6), and murine mesenchymal stromal cells (MSC) were transduced with the indicated amount of adenovirus. GFP was detected by fluorescence microscopy and the percentage of the GFP positive cells was analyzed by flow cytometry. PI-positive cells determined by flow cytometry show the cell mortality determined by viral transduction. EA.hy926 cells, bovine aortic endothelial cells, and Hepa 1-6 cells were highly transduced by the adenovirus, the yield of transduction ranging from 41 - 52%. For MSC, a higher amount of virus (250 TU/cells) induced only 27% GFP positive of the transduced cells. Bars: 100μm.

DISCUSSION:

Recombinant adenoviruses are a versatile tool for gene delivery and expression ¹²⁻¹⁴. To induce strong protein expression by adenoviral transduction, the encoding sequence of the gene of interest is inserted in the genome of the adenovirus. The AdEasy adenoviral system, developed in the laboratory of Bert Vogelstein, comprises a backbone plasmid (pAdEasy-1) containing most of the wild-type adenovirus serotype 5 genome, and a shuttle vector (pAdTrack), designed for gene cloning^{2,10}. The deletion of the adenoviral genes E1 (responsible for the assembly of infectious virus particles) and E3 (encoding proteins involved in evading host immunity) created a space in the adenoviral genome, in which a gene of interest of 6.5-7.5 kb can be inserted^{2,3}. This size is sufficient for many genes, especially for those with shorter introns¹⁵⁻¹⁷. There are also researchers reporting the production of adenoviruses carrying the cDNA of a transgene¹⁸⁻²⁰. However, we obtained a lower yield of transgene expression for cDNA-carrying adenoviruses than for their counterparts carrying a gene or a mini-gene (data not shown).

Improving and adapting the previous methods^{2,10,14,18,21}, the technology for adenoviral production requires a shorter time, lower cost, and less effort. The full-length adenoviral DNA is obtained by recombination between the shuttle vector and the pAdEasy-1 plasmid in the homologous recombination prone *E. coli* strain, BJ5183. The protocol implies the chemical transformation of AdEasier-1 cells (BJ5183 bacteria containing pAdEasy-1). This technique does not require an electroporator that may not be available in some laboratories, is very simple, increases the recombination yield, and reduces the time necessary to obtain competent cells and to perform the transformation. The preselection of recombinant clones performed by PCR further shortens the time and eases the whole procedure. A similar procedure was used by Zhao and co-workers²², however, in the protocol, we optimized the sequences of the primers.

For the GFP-adenovirus packaging and amplification, a HEK293 derivative cell line was used, namely AD293 cells, which are more adherent to the culture plate. Other cell lines commonly used for adenoviral production are the following: 911, 293FT, pTG6559 (A549 derivative), PER.C6 (HER derivative), GH329 (HeLa derivative), N52.E6, and HeLa-E1²³⁻²⁶. In our hands, no improvement in the adenoviral production was obtained when 911 cells were used (data not shown). The transfection of AD293 cells with the recombinant plasmid using K2 reagent highly increased the efficiency of the viral packaging step. After adenovirus production, up to ~70% of the adenovirus is still inside the cells and is released by three freezing and thawing cycles. Increasing the number of cycles is not suitable because it destroys the adenovirus.

Throughout the routine adenoviral production process, numerous viral particles are released in the cell culture medium. Discarding this cell culture medium during the harvesting of the infected AD293 cells would result in an important viral loss. We optimized the protocol described by Schagen and co-workers to purify the adenoviral particles from the cell culture medium by precipitation with ammonium sulfate²⁷. This method has a higher efficiency in adenovirus recovery from the cell culture medium as compared with the method using polyethylene glycol²⁸. The precipitated adenovirus should be purified immediately by ultracentrifugation or kept in the

refrigerator for a couple of days but only after dialysis, to remove the salt excess. Keeping the precipitate longer than a few hours without dialysis is harmful to the virus.

Purification of the adenoviral particles by ultracentrifugation performed in one-step reduces the manipulation of the adenoviral stock and eases the procedure as compared with the protocols using successive ultracentrifugation steps^{14,29}. Dialysis of the purified adenovirus is necessary to remove cesium chloride that may further affect transduction. In the protocol, we used Tris buffer containing MgCl₂ but not sucrose for dialysis, since it requires a huge, unjustified amount of sucrose that is needed otherwise as a preservative for freezing. Thus, we added sucrose later, directly into the adenoviral stocks prepared for freezing. To avoid frequent freezing and thawing of the purified adenovirus, it is advisable to aliquot the adenoviral stocks and to store them at -80 °C. The adenoviral titer was evaluated by flow cytometry considering the GFP reporter gene and the percentage of transduced cells for a specific viral dilution. This method is faster as compared with the classical "plaque assay" and is more trustful as compared with the evaluation of the capsid proteins (by various methods such as ELISA or flow cytometry) which does not reveal the capacity of infection of the adenoviral particles. However, ELISA-based quantification, Q-PCR, or plaque assay using commercially available kits are alternative methods, especially useful for titration of adenoviruses which do not contain a fluorescent tracer.

Considering that pAdTrack adenoviruses are derived from human adenoviruses serotype 5 which is recognized by Coxsackievirus and Adenovirus Receptors (CAR), we demonstrated the capacity of the GFP-adenovirus to transduce cells of human origin (endothelial cells), but also cells of other origins: bovine (endothelial cells) and murine (mesenchymal stromal cells and hepatocytes). The data showed that the GFP-adenovirus can induce a high level of expression of a transgene.

In conclusion, we optimized this laborious technology to reduce the time, the costs, and the effort needed to obtain the adenoviral particles. The adenovirus prepared is able to infect various cell types and to induce the expression of the gene of interest. This protocol may be used in a variety of experiments since the adenoviral-mediated gene transfer represents one of the main tools for developing modern gene therapies.

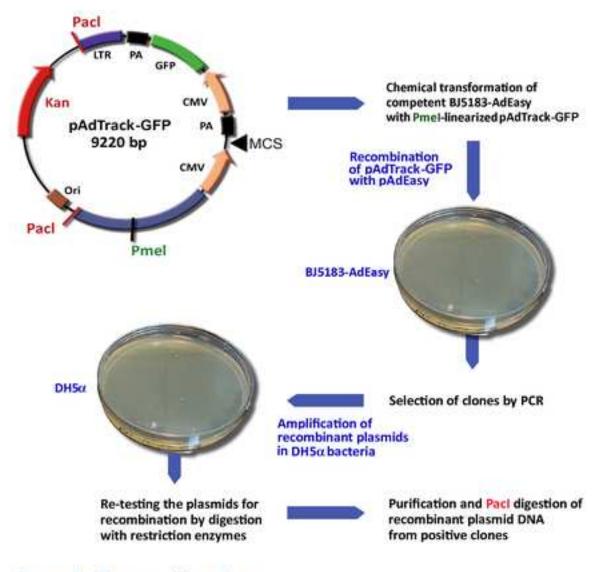
ABBREVIATIONS: AdV-GFP, adenoviral particles; BAEC, bovine aortic endothelial cells; CsCl, cesium chloride; GFP, green fluorescent protein; MSC, mesenchymal stromal cells; TU, transducing units.

ACKNOWLEDGMENTS:

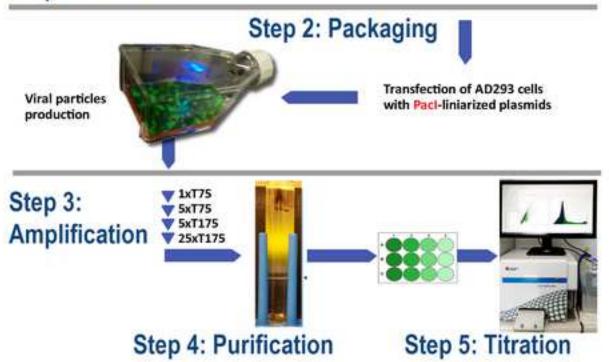
This work was supported by a Project co-financed from the European Regional Development Fund through the Competitiveness Operational Program 2014-2020 (POC-A.1-A.1.1.4-E-2015, ID: P_37_668; acronym DIABETER), a grant of the Romanian Ministry of Research and Innovation PCCDI- UEFISCDI, Project number PN-III-P1-1.2-PCCDI-2017-0697 within PNCD III and by the Romanian Academy. The authors thank Kyriakos Kypreos (University of Patras, Greece) for his generous and relevant advice, Ovidiu Croitoru (University of Fine Arts, Bucharest, Romania) for filming, film editing, and graphical design, and Mihaela Bratu for technical assistance.

DISCLOSURES:

837 The authors have nothing to disclose.

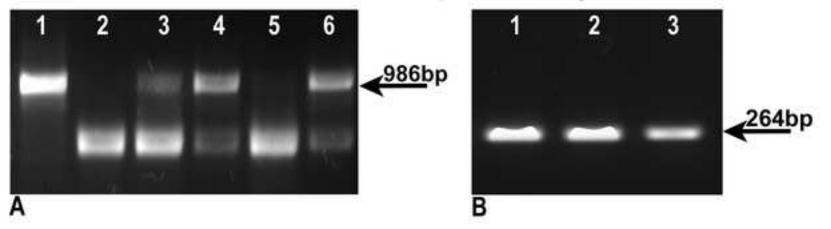

838 839

836

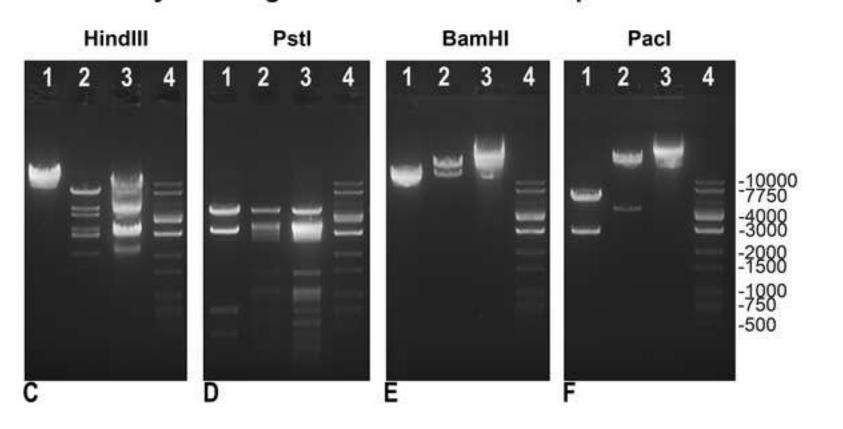

REFERENCES

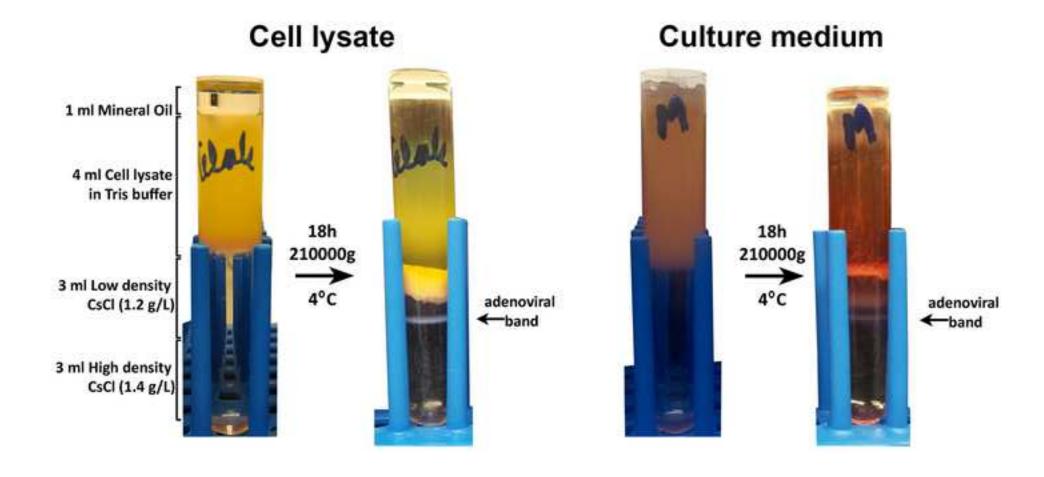
- Lee, C. S. et al. Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. *Genes and Diseases.* **4** (2), 43-63, doi:10.1016/j.gendis.2017.04.001, (2017).
- He, T. C. et al. A simplified system for generating recombinant adenoviruses. *Proceedings* of the National Academy of Sciences of the United States of America. **95** (5), 2509-2514 (1998).
- Russell, W. C. Update on adenovirus and its vectors. *The Journal of General Virology.* **81** (Pt 11), 2573-2604, doi:10.1099/0022-1317-81-11-2573, (2000).
- 847 4 Rauschhuber, C., Noske, N. & Ehrhardt, A. New insights into stability of recombinant 848 adenovirus vector genomes in mammalian cells. *European Journal of Cell Biology.* **91** (1), 2-9, 849 doi:10.1016/j.ejcb.2011.01.006, (2012).
- Saha, B., Wong, C. M. & Parks, R. J. The adenovirus genome contributes to the structural stability of the virion. *Viruses.* **6** (9), 3563-3583, doi:10.3390/v6093563, (2014).
- Kreppel, F. & Kochanek, S. Modification of adenovirus gene transfer vectors with synthetic polymers: a scientific review and technical guide. *Molecular Therapy: the Journal of the American Society of Gene Therapy.* **16** (1), 16-29, doi:10.1038/sj.mt.6300321, (2008).
- Dormond, E., Perrier, M. & Kamen, A. From the first to the third generation adenoviral vector: what parameters are governing the production yield? *Biotechnol Advances.* **27** (2), 133-144, doi:10.1016/j.biotechadv.2008.10.003, (2009).
- 858 Parks, R. J. et al. A helper-dependent adenovirus vector system: removal of helper virus 859 by Cre-mediated excision of the viral packaging signal. *Proceedings of the National Academy of* 860 *Sciences of the United States of America*. **93** (24), 13565-13570 (1996).
- 9 Jager, L. & Ehrhardt, A. Emerging adenoviral vectors for stable correction of genetic disorders. *Current Gene Therapy.* **7** (4), 272-283 (2007).
- Luo, J. et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. *Nature Protocols.* **2** (5), 1236-1247, doi:10.1038/nprot.2007.135, (2007).
- Dumitrescu, M. et al. Adenovirus-Mediated FasL Minigene Transfer Endows Transduced Cells with Killer Potential. *International Journal of Molecular Sciences.* **21** (17), doi:10.3390/ijms21176011, (2020).
- Campos, S. K. & Barry, M. A. Current advances and future challenges in Adenoviral vector biology and targeting. *Current Gene Therapy.* **7** (3), 189-204 (2007).
- Khare, R., Chen, C. Y., Weaver, E. A. & Barry, M. A. Advances and future challenges in adenoviral vector pharmacology and targeting. *Current Gene Therapy.* **11** (4), 241-258 (2011).
- Jager, L. et al. A rapid protocol for construction and production of high-capacity adenoviral vectors. *Nature Protocols.* **4** (4), 547-564, doi:10.1038/nprot.2009.4, (2009).
- 274 Tyintzou, E. et al. Pleiotropic effects of apolipoprotein C3 on HDL functionality and adipose tissue metabolic activity. *Journal of Lipid Research.* **58** (9), 1869-1883,
- 876 doi:10.1194/jlr.M077925, (2017).
- 877 16 Karavia, E. A. et al. Apolipoprotein A-I modulates processes associated with diet-induced
- 878 nonalcoholic fatty liver disease in mice. Molecular Medicine. 18 901-912,
- 879 doi:10.2119/molmed.2012.00113, (2012).

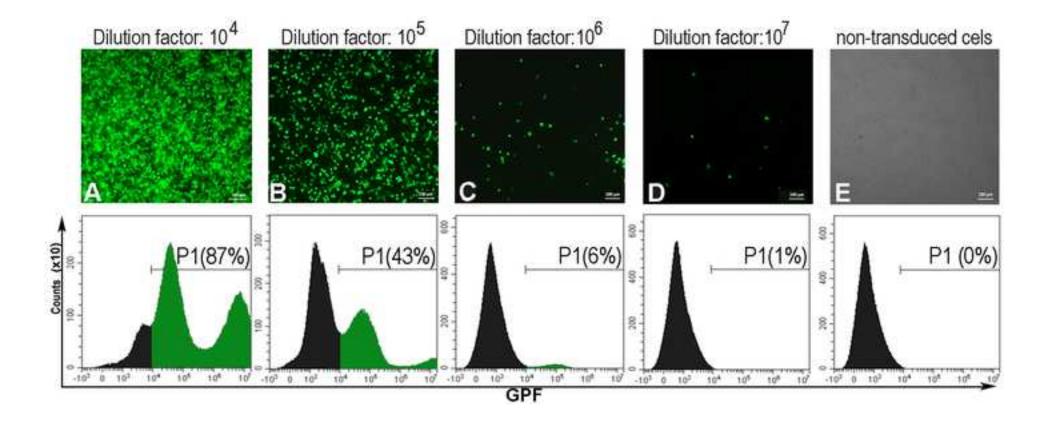
- Lampropoulou, A., Zannis, V. I. & Kypreos, K. E. Pharmacodynamic and pharmacokinetic
- analysis of apoE4 [L261A, W264A, F265A, L268A, V269A], a recombinant apolipoprotein E variant
- 882 with improved biological properties. Biochemical Pharmacology. 84 (11), 1451-1458,
- 883 doi:10.1016/j.bcp.2012.09.006, (2012).
- 284 18 Zheng, S. Y., Li, D. C., Zhang, Z. D., Zhao, J. & Ge, J. F. Adenovirus-mediated FasL gene
- transfer into human gastric carcinoma. World Journal of Gastroenterology. 11 (22), 3446-3450
- 886 (2005).
- 887 19 Ambar, B. B. et al. Treatment of experimental glioma by administration of adenoviral
- 888 vectors expressing Fas ligand. Human Gene Therapy. 10 (10), 1641-1648,
- 889 doi:10.1089/10430349950017644, (1999).
- 890 20 Okuyama, T. et al. Efficient Fas-ligand gene expression in rodent liver after intravenous
- injection of a recombinant adenovirus by the use of a Cre-mediated switching system. Gene
- 892 *Therapy.* **5** (8), 1047-1053, doi:10.1038/sj.gt.3300704, (1998).
- 893 21 van Dijk, K. W., Kypreos, K. E., Fallaux, F. J. & Hageman, J. Adenovirus-mediated gene
- 894 transfer. Methods in Molecular Biology. 693 321-343, doi:10.1007/978-1-60761-974-1_20,
- 895 (2011).
- 22 Zhao, Y. D., Z.; Li, T.; Huang, G. A simple negative selection method to identify adenovirus
- recombinants using colony PCR. Electronic Journal of Biotechnology, North America. 17 (1), 46-
- 898 49 (2014).
- 899 23 Kovesdi, I. & Hedley, S. J. Adenoviral producer cells. Viruses. 2 (8), 1681-1703,
- 900 doi:10.3390/v2081681, (2010).
- 901 24 Lin, X. Construction of new retroviral producer cells from adenoviral and retroviral
- 902 vectors. Gene Therapy. **5** (9), 1251-1258, doi:10.1038/sj.gt.3300720, (1998).
- 903 25 Fallaux, F. J. et al. Characterization of 911: a new helper cell line for the titration and
- propagation of early region 1-deleted adenoviral vectors. *Human Gene Therapy.* **7** (2), 215-222,
- 905 doi:10.1089/hum.1996.7.2-215, (1996).
- 906 26 Altaras, N. E. et al. Production and formulation of adenovirus vectors. Advances in
- 907 Biochemical Engineering/Biotechnology. **99** 193-260 (2005).
- 908 27 Schagen, F. H. et al. Ammonium sulphate precipitation of recombinant adenovirus from
- 909 culture medium: an easy method to increase the total virus yield. Gene Therapy. 7 (18), 1570-
- 910 1574, doi:10.1038/sj.gt.3301285, (2000).
- 911 28 Colombet, J. et al. Virioplankton 'pegylation': use of PEG (polyethylene glycol) to
- oncentrate and purify viruses in pelagic ecosystems. Journal of Microbiological Methods. 71 (3),
- 913 212-219, doi:10.1016/j.mimet.2007.08.012, (2007).
- 914 29 Kypreos, K. E., van Dijk, K. W., van Der Zee, A., Havekes, L. M. & Zannis, V. I. Domains of
- 915 apolipoprotein E contributing to triglyceride and cholesterol homeostasis in vivo. Carboxyl-
- 916 terminal region 203-299 promotes hepatic very low density lipoprotein-triglyceride secretion.
- 917 *Journal of Biological Chemistry.* **276** (23), 19778-19786, doi:10.1074/jbc.M100418200, (2001).

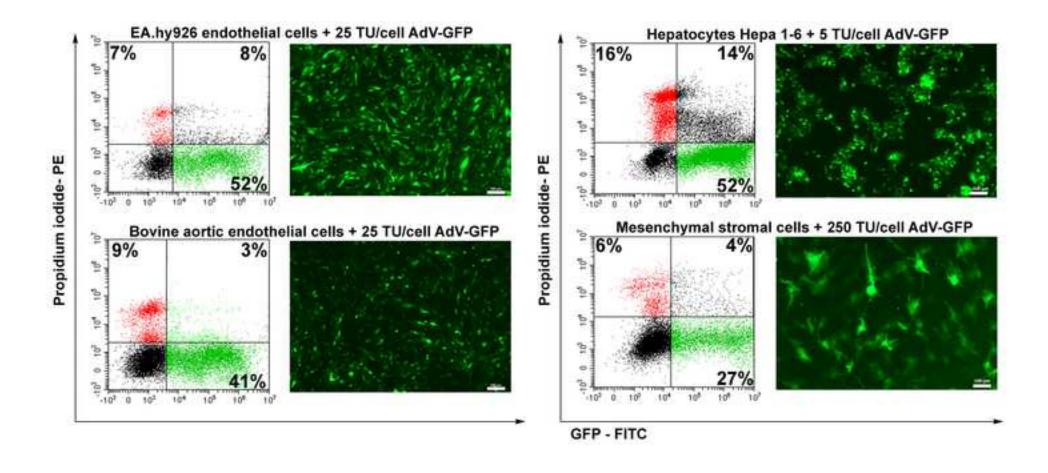


Step 1: Recombination




Cells for counting	Cells transduced with 1 ml B;	Cells transduced with 1 ml C;	Cells transduced with 1 ml D;
	(D=10 ⁵)	$(D = 10^6)$	$(D = 10^7)$
Cells transduced with 1 ml A (D = 10 ⁴)	Cells transduced with 1 ml B;	Cells transduced with 1 ml C;	Cells transduced with 1 ml D;
	(D =10 ⁵)	(D =10 ⁶)	(D =10 ⁷)
Cells transduced with 1 ml A (D = 10 ⁴)	Cells transduced with 1 ml B;	Cells transduced with 1 ml C;	Cells transduced with 1 ml D;
	(D =10 ⁵)	(D =10 ⁶)	(D = 10 ⁷)


Selection of recombinant plasmids by PCR



Enzymatic digestion of a recombinant plasmid

Name of Material/ Equipment

Company

Catalog Number

AD293 cells	Agilent Technologies	240085
AdEasier-1 cells	Addgene	16399
Agarose I (for electrophoresis)	Thermo Scientific	17850
Ammonium sulfate	Sigma	A4418
Ampicillin sodium salt	Sigma	A0166
BamH I	Thermo Scientific	FD0054
Cell culture plates 100 mm	Eppendorf	30702115
Cesium chloride	Sigma	L4036
DH5alpha bacteria	Thermo Scientific	18265017
DMEM (GlutaMAX, 4.5g/L D-Glucose)	Gibco	3240-027
EA.hy926 cells	ATCC	CRL-2922
EDTA	Sigma	E5134
Ethanol (99.8%)	Roth	5054.2
Fetal Bovine Serum	Sigma	F7524
Flasks T25, T75, T175	Eppendorf	30712129
Glucose	Sigma	G7021
Hepa 1-6 murine hepatocytes	ATCC	CRL-1830
Hind III	Thermo Scientific	FD0504
Kanamycin Sulfate	Thermo Scientific	15160054
K2 Transfection System	Biontex	T060-5.0
LB medium	Formedium	LBx0102
LB-agar	Formedium	LBx0202
Mix & Go E. coli Transformation kit	Zymo Research	T3001
Midori Green Advanced DNA stain	Nippon Genetics Europe	MG-04
NaOH	Sigma	S8045
Opti-MEM	Thermo Scientific	31985070
Pac I	Thermo Scientific	FD2204
pAdEasy-1	Addgene	16400
pAdTrack-CMV	Addgene	16405
Phenol:chloroform:isoamyl alcohol (24:24:1)	Invitrogen	15593-031
Polymerase GoTaq	Promega	M3005
Pme I (Mss I)	Thermo Scientific	FD1344
Potassium acetate	VWR Chemicals	43065P
Pst I	Thermo Scientific	FD0614
Qiagen Midi Prep kit	Qiagen	12125
Cell Scraper	TPP	99003

SDS	Thermo Scientific	28365
Slide-A-Lyzer dialysis cassettes	Thermo Scientific	66330
Sodium pyruvate	SIGMA	P5280-100G
Syringe with 23G neeedle	B Braun	464BR
Tris HCl	Sigma	1185-53-1
Trypan blue	Roth	CN76.1
Tubes 50ml	TPP	91050
Ultra-Clear Tubes (14x89 mm)	Beckman Coulter	344059
Centrifuge (refrigerated)	Sigma Sartorius	3-19KS
HeraeusFresco 17 Microcentrifuge	Thermo Scientific	75002420
Ultracentrifuge with SW41Ti rotor	Beckman Coulter	Optima L-80 XP
Culture Hood	Thermo Scientific	Class II
Pipettes (0-2μl, 1-10μl, 2-20μl, 10-100μl, 20-200μl, 100-1000μl)	Thermo Scientific	
Dry Block Heating Thermostat	Biosan	TDB-120
Thermocycle	SensoQuest	012-103
Water Bath	Memmert	WNB 14

Bucharest, October 30, 2020

To: Dr. Nam Nguyen Manager of Review, JoVE

Dear Dr. Nguyen,

The video related to the manuscript entitled "An efficient method for adenovirus production", by Madalina Dumitrescu, Violeta G. Trusca, Ioana M Fenyo and myself was corrected (the editing glitch -min 02:25) and was uploaded at the specified link.

Thank you for considering our manuscript for publication to the JoVE.

With best regards,

Anca Gafencu, PhD

Institute of Cellular Biology and Pathology "N. Simionescu" 8, B.P. Hasdeu Street, sect 5, 050568- Bucharest, Romania

Phone: +4021 3192737 / 222; Fax: +4021 3194519

e-mail: anca.gafencu@icbp.ro

mobile: +40722347093