1	TITLE:	
2	Differentiation of Monocytes into Phenotypically Distinct Macrophages After Treatment with	
3	Human Cord Blood Stem Cell (CB-SC)-Derived Exosomes	
4	, ,	
5	AUTHORS & AFFILIATIONS:	
6	Wei Hu ^{1,2} , Xiang Song ¹ , Haibo Yu ¹ , Jingyu Sun ² , Yong Zhao ¹	
7	, 5 5, ,, ,	
8	¹ Center for Discovery and Innovation, Hackensack Meridian Health Center, Nutley, USA	
9	² Department of Chemistry and Chemistry Biology, Stevens Institute of Technology, Hoboken,	
10	USA	
11	 -	
12	Corresponding author:	
13	Yong Zhao (Yong.Zhao@HMH-CDI.org)	
14	13116 21180 (13116)21118111 (2011016)	
15	Email Addresses of Co-authors:	
16	Wei Hu (WHU2@STEVENS.EDU)	
17	Xiang Song (Xiang.song@hmh-cdi.org)	
18	Haibo Yu (Xiang.song@hmh-cdi.org)	
19	Jingyu Sun (jsun20@stevens.edu)	
20	Jingyu Jun (Jaunzow stevens.euu)	
21	KEYWORDS:	
21	CB-SC, Stem Cell Educator (SCE) therapy, exosomes, monocyte, type 2 macrophage,	
23	differentiation, immune modulation	
	amerentiation, illilliane illoadiation	
24 25	SUMMARY:	
26	Application of exosomes is an emerging tool for drug development and regenerative medicine.	 Deleted: E
	We establish an exosome isolation protocol with high purity to isolate exosomes from novel	
27	identified stem cells called CB-SC for mechanistic studies. We also coculture CB-SC-derived	Deleted: are
28 I 20		Deleted
29	exosomes with human monocytes, leading to their differentiation into phenotypically_distinct	 Deleted:
30	macrophages.	
31	ADCTD ACT.	
32	ABSTRACT:	
33	Stem Cell Educator (SCE) therapy is a novel clinical approach for the treatment of type 1 diabetes	
34	and other autoimmune diseases. SCE therapy circulates the isolated patient's blood mononuclear	
35	cells (e.g., lymphocytes and monocytes) through an apheresis machine, co-cultures the patient's	
36	blood mononuclear cells with adherent cord blood-derived stem cells (CB-SC) in the SCE device	
37	and then returns these "educated" immune cells to the patient's blood. Exosomes are nano-sized	
38	extracellular vesicles between 30–150 nm existing in all biofluid and cell culture media. To further	
39	explore molecular mechanisms underlying SCE therapy and determine the actions of exosomes	 Deleted: to
40	released from CB-SC, we investigate which cells phagocytize these exosomes during the	
41	treatment with CB-SC. By co-culturing Dio-labeled CB-SC-derived exosomes with human	
42	peripheral blood mononuclear cells (PBMC), we found that CB-SC-derived exosomes were	
43	predominantly taken up by human CD14-positive monocytes, leading to the differentiation of	 Deleted: up
44	monocytes into type 2 macrophages (M2), with spindle-like morphology and expression of M2-	

associated surface molecular markers. Here, we present a protocol for the isolation and characterization of CB-SC-derived exosomes and the protocol for the co-culture of CB-SC-derived exosomes with human monocytes and the monitoring of M2 differentiation.

INTRODUCTION:

Cord blood stem cells (CB-SC) are unique type of stem cell identified from human cord blood and are distinguished from other known types of stem cells such as mesenchymal stem cells (MSC) and hematopoietic stem cells (HSC)¹. Based on their unique properties of immune modulation and their ability to tightly adhere to the surface of petri dishes, we developed a new technology designated as Stem Cell Educator (SCE) therapy in clinical trials^{2,3}. During SCE therapy, a patient's peripheral blood mononuclear cells (PBMC) are collected and circulated through a cell separator and co-cultured with adherent CB-SC in vitro. These "educated" cells (CB-SC-treated PBMC) are then returned to the patient's circulation in a closed-loop system. Clinical trials have already demonstrated the clinical safety and efficacy of SCE therapy for the treatment of autoimmune diseases including type 1 diabetes (T1D)^{2,4} and alopecia areata (AA)⁵.

Exosomes are a family of nanoparticles with diameters ranging 30–150 nm and exist in all biofluid and cell culture media⁶. Exosomes are enriched with many bioactive molecules including lipids, mRNAs, proteins and microRNAs (miRNA), and play an important role in cell to cell communications. Of late, exosomes have become more attractive for researchers and pharmaceutical companies due to their therapeutic potentials in clinics⁷⁻⁹. Recently, our mechanistic studies demonstrated that CB-SC-released exosomes contribute to the immune modulation of SCE therapy¹⁰.

Here, we describe the protocol to explore the mechanism of SCE therapy through targeting monocytes by CB-SC-released exosomes. First, CB-SC-released exosomes were isolated from CB-SC-derived conditioned media using ultracentrifugation methods and validated by flow cytometry, western blot (WB) and dynamic light scattering (DLS). Second, CB-SC-derived exosomes were labeled with a green fluorescent lipophilic dye: Dio. Third, they were co-cultured with PBMC to examine the positive percentages of Dio-labeled CB-SC-derived exosomes at the different subpopulations of PBMC by flow cytometry. This protocol provides a guidance to study the action of exosomes underlying the immune modulation of stem cells.

PROTOCOL:

The protocol follows the guidelines of institutional human research ethics committee at Center for Discovery and Innovation, Hackensack Meridian Health. Human buffy coat blood units were purchased from the New York Blood Center (New York, NY). Human umbilical cord blood units were collected from healthy donors and purchased from Cryo-Cell International blood bank (Oldsmar, FL). Both New York Blood Center and Cryo-Cell have received all accreditations for blood collections and distributions, with IRB approval and signed Consent Forms from donors.

1. Cell culture and preparation of CB-SC-derived conditioned medium

Deleted: a

1.1. Transfer 25 mL cord blood (See Table of Materials) over 20 mL of density gradient medium 94 (γ = 1.077) into a 50 mL conical tube. 95 96 97 1.2. Centrifuge at 1,690 x g for 20 min at 20 °C in a swinging-bucket rotor without brake. 98 99 1.3. Carefully transfer the mononuclear cell layer (buffy coat) to a new 50 mL conical tube. Fill 100 the conical tube with phosphate buffered saline (PBS) to 40 mL. Mix and centrifuge to pellet cells 101 102 at 751 x g for 10 min at 20 °C. 103 104 1.4. Discard the supernatant and add 15 mL of ACK lysis buffer (See Table of Materials) to the 105 cell pellet. Re-suspend cells through pipetting. Then incubate for 10 min at room temperature. 106 NOTE: This step removes the red blood cells. 107 108 1.5. Fill the conical tube with 25 mL of PBS. Centrifuge at 751 x g for 5 min and discard 109 110 supernatant to obtain pelleted mononuclear cells. 111

1.6. Wash 2x with 40 mL of PBS to remove the remaining lysis buffer.

1.7. Centrifuge at 751 x g for 5 min to pellet the cells.

112

113

114

120

123

126

131

134

136

115
 116 1.8. Discard supernatant and re-suspend cord blood mononuclear cells with 10 mL of chemical 117 defined serum-free medium (See **Table of Materials**) per tube.

118119 1.9. Combine cord blood mononuclear cells to one tube.

121 1.10. Take 20 μ L cell suspension and mix with 20 μ L of 0.4% trypan blue solution (See **Table of Materials**) in 1.5 mL tube.

124 1.11. Load into the chamber slide and quantify cell number and cell viability with an automated 125 cell counter.

NOTE: Cell suspension is diluted at 1:10 if cell concentration is above 1x10⁷ cells/mL.

128
 129 1.12. Seed mononuclear cells in 150 mm x 15 mm Petri dishes at 1 x 10⁶ cells/mL, 25 mL/dish in
 130 chemical-defined serum-free cell culture medium.

1.13. Incubate at 37 °C under 8% CO₂ conditions for 10–14 days until CB-SC reach more than 80%
 confluence.

135 1.14. Discard the supernatant and wash with 15 mL PBS per Petri dish, then remove the PBS.

137 NOTE: CB-SC attached to Petri dishes tightly.

138	
139	1.15. Repeat the step 1.14 two times.
140	
141	1.16. Add 25 mL of chemical-defined serum free medium per Petri dish.
142	
143	1.17. Incubate at 37 $^{\circ}$ C under 8% CO ₂ conditions for 3–4 days.
144	
145	1.18. Collect the CB-SC-derived conditioned medium into 50 mL conical tubes.
146	
147	2. Characterization of CB-SC
148	
149	2.1. Detach CB-SC by pipetting 10 mL of PBS-based cell dissociation buffer up and down with a 5
150	mL pipette tip (see Table of Materials).
151	

- 2.2. Centrifuge at 1,690 x g for 5 min to pellet cells and resuspend in 200 μ L of PBS.
- 2.3. Fix and permeabilize cells for intracellular staining via staining preparation kit (see Table of
 Materials).
- $2.4. \text{ Add 5} \mu \text{L of Fc blocker (see Table of Materials)}$ per sample and incubate for 15 min at room temperature.
- 2.5. Add fluorescence-conjugated mouse anti-human monoclonal antibodies including CD34, CD45, SOX2, OCT3/4, CD270, and Galectin 9 at 25 μ g/mL (see **Table of Materials**) to 100 μ L volume of cells. Incubate for 30 min at room temperature with light protection.
- 164 2.6. After staining, wash cells with 1 mL of PBS and centrifuge at 751 x g for 10 min to pellet cells. 165
 - 2.7. Re-suspend cells with 200 μL of PBS and transfer into a 5 mL tube.
- 2.8. Perform flow cytometry to validate the expression of CB-SC-associated above specificmarkers.

3. Isolation of CB-SC-derived exosomes

152 153

156

163

166 167

170

171 172

173 174

178

181

- 3.1. Centrifuge the conditioned medium collected from step 1.18. at 300 x g at 4 °C for 10 min. Transfer the supernatant to a new 50 mL conical tube.
- 175
 176
 3.2. Centrifuge the supernatant collected from step 3.1 at 2,000 x g at 4 °C for 20 min. Transfer
 177 the supernatant to a new 50 mL conical tube.
- 3.3. Centrifuge the supernatant collected from step 3.2 for 30 min at 10,000 x g at 4 °C. Transfer
 the supernatant to a new 50 mL conical tube.

182	NOTE: The fixed angle rotor is used so that the cell pellets are precipitated to the side of the tube.	
183	Mark the side of the cap and draw a circle on the side of the tube where the pellet is expected.	
184		
185	3.4. Filter supernatants collected from step 3.3 with a 0.22 μm filter (see Table of Materials).	
186	25 T. C. 45 J. C. 11 J. 1401D J. W. 160 J. W. W. W. W. W. 110	
187	3.5. Transfer 15 mL of media to each 10 kDa centrifugal filter unit (see Table of Materials).	
188	2.C. Contribute at 4.000 v. of an 20 min to include the approximated account of the	
189	3.6. Centrifuge at 4,000 x g for 30 min to isolate the concentrated exosome media.	
190 191	3.7. Transfer concentrated exosomes to ultracentrifuge tube. Then, pellet exosomes at 100,000	
191	$\times g$ for 80 min at 4 °C.	
193	ky for 60 fillinat 4 °C.	
194	3.8. Discard the supernatant and re-suspend the pellet exosomes in 10 mL of PBS.	
195	5.6. Discard the supernatant and re suspend the penet exosomes in 10 me of r bs.	
196	3.9. Centrifuge at 100,000 x g for 80 min at 4 °C to collect exosomes pellet.	
197	5.51 Centimage at 150,500 kg for 50 min at 1 2 to conect exosomes penet.	
198	3.10. Re-suspend exosomes pellet in 200 µL of PBS by pipetting up and down.	
199		
200	4. Characterization of CB-SC-derived exosomes	
201		
202	4.1. Quantifying total protein concentration of exosome preparation by bicinchoninic acid	
203	assay (BCA) kit	
204		
205	4.1.1. Pipette 10 μL of each albumin standard and isolated exosome sample prepared in 3.10.	
206	into a 96-well plate in duplicate.	
207		
208	4.1.2. Add 200 μ L of the working reagent from the BCA kit to each well. Mix contents of the plate	
209	thoroughly on the plate shaker for 10 s.	
210		
211	NOTE: Working reagent (WR): 50-part reagent A with 1-part reagent B.	
212		
213	4.1.3. Cover the plates with foil and incubate them at 37 °C for 30 min.	
214	44.4 a 1.1 a	
215	4.1.4. Cool plates to room temperature (RT).	
216	445.44	
217	4.1.5. Measure sample absorbance at 562 nm via a plate reader.	
218	4.3. Description and defining of automateur for flow when the	
219	4.2. Preparation and staining of exosomes for flow cytometry	
220 221	4.2.1. Capture exosomes by adding 20 μL of anti-human CD63 magnetic beads (4.5 μm size) (see	
221	Table of Materials) into 25 μ g of CB-SC-derived exosomes prepared in step 3.10. in total 100 μ L	
223	volume of PBS.	
224	volunic of 1 bb.	
225	4.2.2. Incubate the tube overnight (18–22 h) at 4 °C on the shaker at 800 rpm.	

4.2.3. Centrifuge the tube at 300 x g for 30s to collect the sample at the bottom of the tube. 4.2.4. Add 300 μL of isolation buffer (0.1% bovine serum albumin (BSA) in PBS) and mix gently by pipetting. NOTE: This step washes the bead-bound exosomes. 4.2.5. Place the tube on a magnet stand for 1 min (see Table of Materials) and discard the supernatant. 4.2.6. Repeat steps 4.2.4-4.2.5. 4.2.7. Re-suspend the bead-bound exosomes with 400 μL of isolation buffer. 4.2.8. Aliquot 100 μ L of bead-bound exosomes to each tube. 4.2.9. Add fluorescence-conjugated antibodies (CD9-FITC, CD81-PE and CD63-FITC at 25 $\mu g/mL$ respectively) to each flow tube with CD63 bead-captured exosomes. NOTE: Isotype-matched IgGs serve as negative control. 4.2.10. Incubate for 45 min at room temperature with light protection on shaker at 800 rpm. 4.2.11. Repeat steps 4.2.4-4.2.5. 4.2.13. Re-suspend the bead-bound exosomes in 200 µL of isolation buffer and transfer to 5 mL 4.2.15. Place the tubes in the sample carousel of the flow cytometer. 4.2.16. Open the protocol for the exosome testing. 4.2.17. Run the sample automatically by flow cytometer. 4.3. Exosome detection by western blot NOTE: Western blot is a well-established method and we will not go into detail for the method itself. 4.3.1. Lyse the pellets of CB-SC-derived exosomes from step 3.9. with 100 μL of RIPA buffer, pipette 20x, then place on ice for 5 min.

4.3.2. Quantify the protein concentration of exosome lysate by BCA kit and load 25 µg of protein per well. 4.3.3. Separate protein by gel electrophoresis for 40 min at 150 V. 4.3.4. Transfer the protein to polyvinylidene fluoride (PVDF) membrane by semi-dry transferring method¹¹. 4.3.5. Block the membrane with 5% non-fat milk for 30 min. 4.3.6. Incubate with 2 μ g/mL anti-human ALIX (see **Table of Materials**) and 1 μ g/mL anti-human CALNEXIN antibodies (see Table of Materials). 4.3.7. Detect the protein by chemiluminescence with a digital imaging system. 4.4. Exosome validation by dynamic light scattering (DLS) 4.4.1. Dilute 10 μg of CB-SC-derived exosome samples in 1 mL of PBS. 4.4.2. Transfer the 1 mL of diluted sample into disposable semi-micro cuvette (see Table of Materials). 4.4.3. Place the cuvette in the DLS instrument. Set the refractive index (RI) as 1.39 for all the 4.4.4. Run samples at 25 °C and acquire three measurements per fraction to get an average size distribution. 4.5. Exosome validation by transmission electron microscopy (TEM) 4.5.1. Coat formvar on 300 mesh copper grids ¹²(see **Table of Materials**). 4.5.2. Strengthen the formvar with the additional layer of evaporated carbon on copper grids¹². NOTE: Such coating approach is excellent for specimen support. 4.5.3. Load 10 μ L of exosome samples onto grids and leave to air dry. 4.5.4. Negatively stain samples with uranyl acetate for 5 min. 4.5.5. Wash three times with DI water and leave to air dry. 4.5.6. Observe and photograph the samples under TEM. Set the accelerating voltage at 200 kV and spot size at 2.

315		
316	5.1. Label CB-SC-derived exosomes with green fluorescent lipophilic dye Dio	
317	· · · · · ·	
318	5.1.1. Transfer 100 μg of CB-SC-derived exosomes (prepared in step 3.10) into a 15 mL centrifuge	
319	tube.	
320		
321	5.1.2. Dilute sample with PBS to 5 mL.	
322		
323	5.1.3. Add green fluorescent lipophilic dye Dio (see Table of Materials) until working	
324	concentration reaches 5 μM.	
325		
326	5.1.4. Incubate for 15 min at room temperature protected from light.	
327		
328	5.1.5. Transfer the sample into an ultracentrifuge tube.	
329		
330	5.1.6. Centrifuge at 100,000 x g for 80 min to pellet Dio-labeled CB-SC-derived exosomes.	
331		
332	5.1.7. Re-suspend the labeled exosomes in 200 μL of PBS.	
333		
334	5.2. Preparation of human PBMC	
335		
336	5.2.1. Transfer 25 mL of human buffy coat (See Table of Materials) over 20 mL of density gradient	
337	medium (γ = 1.077) into a 50 mL conical tube.	
338		
339	5.2.2. Repeat step 1.2. to 1.11.	
340		
341	5.2.3. Transfer 1 x 10 ⁶ PBMC into non-tissue-treated hydrophobic 24-well plate (1 mL/well).	
342		
343	NOTE: Non-tissue-treated plate was utilized to avoid adhering of monocytes.	
344		
345	5.3. Co-culture Dio-labeled exosomes with PBMC	
346		
347	5.3.1. Transfer 40 μL Dio-labeled CB-SC-derived exosomes prepared in 5.1.7 to each PBMC-	
348	containing well in a 24-well plate using a 200 µL pipette. Add the same volume of PBS to control	
349	wells.	
350		
351	5.3.2. Mix by pipetting 10x. Incubate for 4 h.	
352		
252	5.3.3. Collect 200 up exosome-treated PRMC and label with Hoechst 33342 for 10 min at room	

5. Measure Dio-labeled CB-SC-derived exosomes up taken by different subpopulation of PBMC

313 314

354

355

temperature.

Deleted: from two wells

Formatted: Font:(Default) Calibri, 12 pt

Formatted: Normal, No bullets or numbering

357	5.3.4. Centrifuge at 300 x g for 10 min at room temperature. Discard the supernatant and re-		
358	suspend the cell pellet in 100 μL of PBS.		
359	5.3.5. Mount cells onto microscope slides.		
360	•		
361	5.3.6. Observe and photograph the interaction of Dio-labeled CB-SC-derived exosomes with		
362	Hoechst 33342-labeled PBMC by using microscope,		
363			
364	5.3.7. Transfer remaining cells from step 5.3.3 into 1.5 mL tube.		
365			
366	5.3.8. Centrifuge at 300 x g for 10 min at 4 °C. Discard the supernatant and re-suspend the cell		
367	pellet in 200 μL of PBS.		
368			
369	5.3.9. Add 5 µL of Fc blocker (see Table of Materials) per sample. Incubate for 15 min at room		
370	temperature.		
371			
372	NOTE: Fc blocker inhibits non-specific binding when staining with antibodies.		
373			
374	5.3.10. Add antibodies (CD3, CD4, CD8, CD11c, CD14, CD19, CD56 at 25 μg/mL) (see Table of		
375	Materials) to stain PBMC.		
376			
377	NOTE: Isotype-matched IgGs serve as negative control.		
378			
379	5.3.11. Incubate for 30 min at room temperature with light protection.		
380			
381	5.3.12. Add 1 mL of PBS and centrifuge at 300 x g for 10 min at 4 °C to pellet the cells.		
382			
383	5.3.13. Re-suspend the cells with 200 μL PBS. Add 5 μL of propidium iodide.		
384			
385	5.3.14. Use flow cytometry evaluate the level of Dio-labeled exosome uptake in different		
386	subpopulation of PBMC.		
387			
388	6. Examine the action of CB-SC-derived exosomes on monocytes		
389			
390	6.1. Isolation human CD14-positive monocytes		
391			
392	6.1.1. Transfer 3 x 10 ⁷ human PBMC into a 15 mL tube.		
393			
394	6.1.2. Centrifuge at 300 x g for 10 min at 4 °C.		
395			
396	6.1.3. Place the separation column (see Table of Materials) in the magnet separator (see Table		
397			
398			
399	6.1.4. Wash separation columns three times with 2 mL cold running buffer (see Table of		
400	Materials).		

Formatted: Font:(Default) Calibri, 12 pt
Formatted: Normal, No bullets or numbering

Formatted: Font:(Default) Calibri, 12 pt
Formatted: Normal, No bullets or numbering

Deleted: roscope with NIS-Elements software version 5.11.02

Deleted: Nikon Eclipse Ti2

Deleted: other
Deleted: wells

_	15. De avenue d'abre celle in 200 et ef celd DDC Add CO et ef CD14 reigne en de Misseurell
	1.5. Re-suspend the cells in 300 μL of cold PBS. Add 60 μL of CD14 microbeads. Mix well cubate on ice for 15 min.
<mark>6.</mark>	1.6. Add 6 mL of cold PBS. Centrifuge at 300 x g for 10 min at 4 °C.
<mark>6.</mark>	1.7. Re-suspend the pelleted cells in 500 μL of cold running buffer.
	1.8. Transfer cells into the separation column (prepared in step 6.14) and let them rough.
	1.9. Wash the separation column three times with 2 mL of running buffer per wash. Lifulumn from magnet separator and place it in a 15 mL centrifuge tube.
	OTE: The 15 mL tube should be placed on ice due to the adherence of CD14-positive monor the tube at room temperature.
	1.10. Transfer 2 mL of cold running buffer to the top of column then isolate the CD14-pos lls into the 15 mL tube.
<mark>6.</mark>	1.11. Centrifuge at 300 x g for 10 min at 4 $^{\circ}$ C to pellet the CD14-positive cells.
	1.12. Re-suspend the cells with 2 mL of cold chemical-defined serum free medium (see T $\!$
<mark>6.</mark>	1.13. Transfer 50 μL of cells into a 1.5 mL tube.
	1.14. Stain with 10 μL of Krome Orange-conjugated anti-human CD14 mAb (see Tablaterials) for 20 min.
N	OTE: Isotype-matched IgGs serve as negative controls.
<mark>6.</mark>	1.15. Add 1 mL PBS to the cells. Centrifuge at 300 x g for 10 min to pellet cells.
	1.16. Re-suspend cells in 200 μL of PBS and transfer to 5 mL tube. Determine the purity of C ssitive monocytes by flow cytometry.
<mark>6.</mark>	2. Treatment of monocytes with CB-SC-derived exosomes
	2.1. Seed 1×10^6 purified monocytes with chemical-defined serum free culture medium while of Materials) in tissue culture-treated 6-well plate (2 mL/well).

	rd the supernatant with 1 mL pipette. Add 2 mL of 37 °C pre-warmed chemicalum free culture medium (see Table of Materials) gently.
453 NOTE: Mon	ocytes were adhered to the plate within 2 h. Floating cells were identified as dead or ontaminations.
456 <mark>6.2.4. Add 8</mark>	80 μg CB-SC-derived exosomes isolated from step 3.10 to monocyte cultures in a 6-
457 <mark>well plate w</mark>	v <mark>ith total volume of 2 mL.</mark>
158 159 NOTE: The s 160	same volume of PBS was added to control wells.
	ate at 37 °C under 5% CO ₂ for 3–4 days.
63 <mark>6.2.6. Photo</mark> 64 Table of Ma	ograph the cell morphology using an inverted microscope at 200× magnification (see sterials).
	ch cells by pipetting up and down in 1 mL of a PBS based cell dissociation buffer with e tip.
69 <mark>6.2.8. Harve</mark>	est the remaining attached cells via a cell scraper.
adhered to	e primary monocytes or differentiated macrophages attach tightly, some cells remain the bottom after the treatment with dissociation buffer. Therefore, these cells are vith a cell scraper.
75 <mark>6.2.9. Collec</mark> 76	ct cells at 1,690 x g for 5 min. Re-suspend cells in 200 μL of PBS.
	5 μL of Fc blocker (25 μg/mL) to block non-specific binding.
79 <mark>6.2.11. Add</mark>	antibodies (CD14, CD80, CD86, CD163, CD206, and CD209 at 25 μg/mL, see Table of o cells. Incubate for 30 min at room temperature.
	pe-matched IgGs serve as negative control
34 <mark>6.2.12. Add</mark>	1 mL of PBS to cells and centrifuge at 300 x g for 10 min. Discard the supernatant and with 200 μ L of PBS.
	$5~\mu\text{L}$ of propidium iodide per sample (200 $\mu\text{L})$ and transfer cells to new $5~m\text{L}$ flow
90 <mark>6.2.14. Perf</mark>	orm the flow cytometry and evaluate the levels of CD14, CD80, CD86, CD163, CD206, expressions.
	ATIVE RESULTS:

Initially, the phenotype and purity of CB-SC were examined by flow cytometry with CB-SC_associated markers such as leukocyte common antigen CD45, ES cell-specific transcription factors OCT3/4 and SOX2. CB-SC display high levels of CD45, OCT3/4, SOX2, CD270, and galectin 9 expression, but no expression of CD34 expression (**Figure 1A**). Flow cytometry analysis confirmed the expression of exosome_specific markers including CD9, CD81 and CD63 were on CB-SC-derived exosomes (**Figure 1B**). Morphology and size distribution of exosomes were characterized by TEM and DLS (**Figure 1C**, **D**), with the size of 85.95 ± 22.57 nm. Western blot further proved the expression of the exosome-associated marker Alix, without expression of the ER-associated marker Calnexin (**Figure 1E**).

PBMC were treated with Dio-labeled CB-SC-Exo, The microscopy observation demonstrated the direct interaction of Dio-labeled CB-SC-Exo, with PBMC (Figure 2A). To better define which cell population interacted with the Dio-labeled CB-SC-Exo, different cell compartments were gated with cell-specific markers such as CD3 for T cells, CD11c for myeloid dendritic cells (DC), CD14 for monocytes, CD19 for B cells, and CD56 for NK cells (Figure 2B). After an incubation for 4 hr, flow cytometry demonstrated that different blood cell compartments displayed at different median fluorescence intensity (MFI) of Dio-positive exosomes (Figure 2C). Notably, monocytes exhibited higher median fluorescence intensity of Dio-positive CB-SC-Exo, than those of other immune cells (Figure 2C), highlighting the monocytes were primarily targeted by the CB-SC-derived exosomes.

To explore the direct effects of CB-SC-derived exosomes on monocytes, the purified CD14⁺ monocytes were co-cultured with CB-SC-derived exosomes for three days. The exosome-treated monocyte successfully differentiated into spindle-like morphologies (**Figure 3A**). Next, phenotypes of the CB-SC-Exo treated or untreated monocytes were tested, revealing the expressions of M2-associated markers including CD163, CD206, CD209 were markedly increased among the exosome-treated group (**Figure 3B**, red histogram). Comparing with the conventional M2 macrophages generated by M-CSF + IL-4, CB-SC-Exo-treated monocytes expressed the similar levels of M2-associated markers such as CD163, CD206, CD209, with no significant differences (**Figure 3C**). Therefore, these data indicate that monocytes differentiate into macrophages with M2 phenotype after the treatment with CB-SC-derived exosomes.

FIGURE LEGENDS:

Figure 1: Characterization of CB-SC-derived exosomes. (A) Phenotypic characterization of CB-SC, highly expression of CD45, OCT3/4, SOX2, CD270 and Galectin, no expression of CD34. (B) Expressions of exosome-associated markers (CD63, CD9, CD81) on CB-SC-derived exosomes. Isotype-matched IgGs served as control for flow cytometry (gray histogram). (C) Transmission Electron Microscopy (TEM) image of the CB-SC-derived exosomes. (D) Size distribution of CB-SC-derived exosomes using Dynamitic Light Scattering (DLS). (E) Western blots show that CB-SC-derived exosomes display the exosome-specific marker Alix, but negative for endoplasmic reticulum (ER)-associated marker Calnexin.

Figure 2: Interaction of CB-SC-derived exosomes with different population of PBMC. (A) The interaction of Dio-labeled CB-SC-Exo, (green) with PBMC (blue, nuclear staining with

Deleted:

Deleted:

Formatted: Font:Calibri
Formatted: Font:Calibri
Formatted: Font:Calibri
Formatted: Font:Calibri
Formatted: Font:Calibri

Formatted: Font:Calibri
Formatted: Font:Calibri
Formatted: Font:Calibri

Deleted: 2

Deleted: Deleted: 2

Deleted: 2

Formatted: Font:12 pt

Formatted: Font:12 pt

Hoechst 33342) was photographed with Nikon Eclipse Ti2 microscope with NIS-Elements software version 5.11.02, with a high magnification showing the distribution of Dio-labeled exosomes (green) in the PBMC cells after the co-incubation for 4 hours 5% CO2 in the non-tissue culture-treated 24-well plate, n = 2. (B) Gating strategy for flow cytometry analysis with cellspecific surface markers for different subpopulation in PBMC, including CD3 for T cells, CD14 for monocytes, CD19 for B cells, CD56 for NK cells and CD11c for DCs. (C) Display different median fluorescence intensity (MFI) of Dio-labeled exosome among different PBMC

subpopulations (e.g., T cells, Monocytes, B cells, NK cells, DCs).

Figure 3; Effects of CB-SC-derived exosomes on monocytes. (A) Morphological change of monocytes into the spindle-like cells after treatment with CB-SC-derived exosomes. (B) Upregulated the level of M2-associate markers' expression after the treatment with CB-SC-derived exosomes, such as CD163, CD206 and CD209 (red line). Untreated monocytes (green line) served as control. Isotype-matched IgG served as negative control (gray line). (C) Phenotypic comparison between conventional M2 macrophages and the CB-SC-Exo-induced M2 macrophages. To generate the conventional M2 macrophages, the purified CD14⁺ monocytes were treated with 50 ng/mL macrophage colony-stimulating factor (M-CSF) at 37 °C, 5% CO2 conditions for 7 days, and followed by the overnight treatment with 10 ng/mL IL-4. M2-associated markers including CD14. CD80, CD86, CD163, CD206, and CD209 were evaluated by flow cytometry. Isotypematched immunoglobulin G (IgG) serve as control. The data are presented as mean + SD; N = 3.

DISCUSSION:

544

545

546

547

548 549

550

551

552 553

554 555

556

557

558

559 560

561

562

563 564

565 566

567

568

569

570

571

572 573

574 575

576

577 578

579

580 581

582 583 584

585

586

Application of exosomes is emerging field for clinical diagnosis, drug developments and regenerative medicine. Here, we present a detailed protocol regarding the preparation of CB-SCderived exosomes and the functional study of exosomes on the differentiation of human monocytes. Current protocol demonstrated that functional CB-SC-derived exosomes are isolated by sequential centrifugation and ultracentrifugation with high purity and exhibiting the immune modulation on monocytes.

Comparing with other conventional protocols, ultrafiltration is an established approach for the isolation and purification of exosomes from different cells or media, based upon the molecular weight and exclusion sizes that are different from other extracellular vesicles (EVs). While ultrafiltration isolation is more time-saving than the ultracentrifugation-based separation, it may cause structural damage to vesicles at large sizes. Exosomes can also be collected by polyethylene glycol (PEG)-mediated precipitation at low cost, though this method risks the exosome purity due to the protein contaminations ^{13,14}. Therefore, the current protocol was cost-effective to produce exosomes at high purity. Based on the immune modulations of CB-SC-derived exosomes 10, characterization of CB-SC-derived exosomes may offer a valuable biomarker to evaluate the potency of Stem Cell Educator with CB-SC before clinical applications.

Macrophages are professional antigen-presenting cells against viral and bacterial infections, with varied biological functions and heterogeneities, Based on their differences in surface markers and immune function, macrophages are categorized with two sub-populations: type 1 Formatted: Font:12 pt

Formatted: Font:12 pt

Deleted: 2

Deleted: v

macrophages (M1, conventional macrophages causing inflammation) and type 2 macrophages (M2, displaying anti-inflammation)¹⁵. This study established that purified human monocytes <u>were</u> differentiated into type 2 macrophages after the treatment with CB-SC-derived exosomes, <u>displaying</u>, an anti-inflammation phenotype¹⁰. CB-SC-derived exosome-treated monocytes exhibited the elongated morphology and express<u>ed the</u>, M2-associated surface markers (e.g., CD163, CD206 and CD209), with the similar phenotype as the conventional M2 macrophages generated by using cytokines M-CSF + IL-4. Such phenotypic changes of monocytes highlight the new mechanism underlying the immune modulation of CB-SC for the treatment of type 1 diabetes and other autoimmune diseases. During the SCE therapy, patient's immune cells were co-cultured with CB-SC around 8–9 h. The SCE-treated monocytes carried the CB-SC-derived exosomes back into the body, which contributed to the M2 differentiation and the expansion of the induction of immune tolerance, leading to the improvement of clinical outcomes after the treatment with SCE therapy.

ACKNOWLEDGMENTS:

We are grateful to Mr. Poddar and Mr. Ludwig for generous funding support via Hackensack UMC Foundation. We appreciate Laura Zhao for English editing.

DISCLOSURES

Dr. Zhao is a founder of Tianhe Stem Cell Biotechnology Inc. Dr. Zhao is an inventor of Stem Cell Educator technology. All other authors have no financial interests that may be relevant to the submitted work.

REFERENCES:

- 1 Zhao, Y. Stem Cell Educator Therapy and Induction of Immune Balance. *Current Diabetes Reports.* **12** (5), 517-523 (2012).
- 2 Zhao, Y. et al. Reversal of type 1 diabetes via islet beta cell regeneration following immune modulation by cord blood-derived multipotent stem cells. *BMC Medicine*. **10** (1), 3 (2012).
- 3 Zhao, Y. et al. Targeting insulin resistance in type 2 diabetes via immune modulation of cord blood-derived multipotent stem cells (CB-SCs) in stem cell educator therapy: phase I/II clinical trial. *BMC Medicine*. **11**, 160, (2013).
- 4 Delgado, E. et al. Modulation of Autoimmune T-Cell Memory by Stem Cell Educator Therapy: Phase 1/2 Clinical Trial *EBioMedicine*. **2** (12), 2024-2036, (2015).
- 5 Li, Y. et al. Hair regrowth in alopecia areata patients following Stem Cell Educator therapy
 BMC. Medicine. 13 (1), 87, (2015).
- 624 6 Colombo, M., Raposo, G., Thery, C. Biogenesis, secretion, and intercellular interactions of 625 exosomes and other extracellular vesicles. *Annual Review of Cell And Developmental Biology.* **30**, 626 255-289, (2014).
- 7 Abak, A., Abhari, A., Rahimzadeh, S. Exosomes in cancer: small vesicular transporters for cancer progression and metastasis, biomarkers in cancer therapeutics. *PeerJ.* **6**, e4763, (2018).
- 8 Adamiak, M., Sahoo, S. Exosomes in Myocardial Repair: Advances and Challenges in the Development of Next-Generation Therapeutics. *Molecular Therapy.* **26** (7), 1635-1643, (2018).

Deleted: with

Deleted: ion of

- 633 9 Akyurekli, C. et al. A systematic review of preclinical studies on the therapeutic potential 634 of mesenchymal stromal cell-derived microvesicles. *Stem Cell Review and Report.* **11** (1), 150-635 160, (2015).
- Hu, W., Song, X., Yu, H., Sun, J., Zhao, Y. Released Exosomes Contribute to the Immune Modulation of Cord Blood-Derived Stem Cells (CB-SC). *Frontiers in Immunology.* (11), 165, (2020).
- 11 Jacobson, G., Kårsnäs, P. Important parameters in semi-dry electrophoretic transfer.
 Electrophoresis. 11 (1), 46-52, (1990).
- 640 12 Dykstra, M. J., Reuss, L. E. *Biological electron microscopy: theory, techniques, and* 641 *troubleshooting.* (Springer Science & Business Media, 2011).
- Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V., Laktionov, P. P. Isolation of Extracellular Vesicles: General Methodologies and Latest Trends. *Biomed Research International.* **2018**,
- 644 8545347, (2018).

650

- 645 14 Witwer, K. W. et al. Standardization of sample collection, isolation and analysis methods 646 in extracellular vesicle research. *Journal of Extracellular Vesicles*. **2**, (2013).
- 647 15 Orecchioni, M., Ghosheh, Y., Pramod, A. B., Ley, K. Macrophage Polarization: Different 648 Gene Signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively Activated
- 649 Macrophages. Frontiers in Immunology. 10, 1084, (2019).