CellProfiler Pipeline: http://www.cellprofiler.org Version:4 DateRevision:318 GitHash: ModuleCount:23 HasImagePlaneDetails:False Images:[module_num:1|svn_version:\'Unknown\'|variable_revision_number:2|show_window:False|notes:\x5B\'To begin creating your project, use the Images module to compile a list of files and/or folders that you want to analyze. You can also specify a set of rules to include only the desired files in your selected folders.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] :\xff\xfe Filter images?:\xff\xfeI\x00m\x00a\x00g\x00e\x00s\x00 \x00o\x00n\x00l\x00y\x00 Select the rule criteria:\xff\xfea\x00n\x00d\x00 \x00(\x00e\x00x\x00t\x00e\x00n\x00s\x00i\x00o\x00n\x00 \x00d\x00o\x00e\x00s\x00 \x00i\x00s\x00i\x00m\x00a\x00g\x00e\x00)\x00 \x00(\x00d\x00i\x00r\x00e\x00c\x00t\x00o\x00r\x00y\x00 \x00d\x00o\x00e\x00s\x00n\x00o\x00t\x00 \x00c\x00o\x00n\x00t\x00a\x00i\x00n\x00r\x00e\x00g\x00e\x00x\x00p\x00 \x00"\x00\x5B\x00\\\x00\\\x00\\\x00\\\x00/\x00\x5D\x00\\\x00\\\x00.\x00"\x00)\x00 Metadata:[module_num:2|svn_version:\'Unknown\'|variable_revision_number:5|show_window:False|notes:\x5B\'The Metadata module optionally allows you to extract information describing your images (i.e, metadata) which will be stored along with your measurements. This information can be contained in the file name and/or location, or in an external file.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Extract metadata?:\xff\xfeN\x00o\x00 Metadata data type:\xff\xfeT\x00e\x00x\x00t\x00 Metadata types:\xff\xfe{\x00}\x00 Extraction method count:\xff\xfe1\x00 Metadata extraction method:\xff\xfeE\x00x\x00t\x00r\x00a\x00c\x00t\x00 \x00f\x00r\x00o\x00m\x00 \x00f\x00i\x00l\x00e\x00/\x00f\x00o\x00l\x00d\x00e\x00r\x00 \x00n\x00a\x00m\x00e\x00s\x00 Metadata source:\xff\xfeF\x00i\x00l\x00e\x00 \x00n\x00a\x00m\x00e\x00 Regular expression to extract from file name:\xff\xfe^\x00(\x00?\x00P\x00<\x00P\x00l\x00a\x00t\x00e\x00>\x00.\x00*\x00)\x00_\x00(\x00?\x00P\x00<\x00W\x00e\x00l\x00l\x00>\x00\x5B\x00A\x00-\x00P\x00\x5D\x00\x5B\x000\x00-\x009\x00\x5D\x00{\x002\x00}\x00)\x00_\x00s\x00(\x00?\x00P\x00<\x00S\x00i\x00t\x00e\x00>\x00\x5B\x000\x00-\x009\x00\x5D\x00)\x00_\x00w\x00(\x00?\x00P\x00<\x00C\x00h\x00a\x00n\x00n\x00e\x00l\x00N\x00u\x00m\x00b\x00e\x00r\x00>\x00\x5B\x000\x00-\x009\x00\x5D\x00)\x00 Regular expression to extract from folder name:\xff\xfe(\x00?\x00P\x00<\x00D\x00a\x00t\x00e\x00>\x00\x5B\x000\x00-\x009\x00\x5D\x00{\x004\x00}\x00_\x00\x5B\x000\x00-\x009\x00\x5D\x00{\x002\x00}\x00_\x00\x5B\x000\x00-\x009\x00\x5D\x00{\x002\x00}\x00)\x00$\x00 Extract metadata from:\xff\xfeA\x00l\x00l\x00 \x00i\x00m\x00a\x00g\x00e\x00s\x00 Select the filtering criteria:\xff\xfea\x00n\x00d\x00 \x00(\x00f\x00i\x00l\x00e\x00 \x00d\x00o\x00e\x00s\x00 \x00c\x00o\x00n\x00t\x00a\x00i\x00n\x00 \x00"\x00"\x00)\x00 Metadata file location:\xff\xfeE\x00l\x00s\x00e\x00w\x00h\x00e\x00r\x00e\x00.\x00.\x00.\x00\x7C\x00 Match file and image metadata:\xff\xfe\x5B\x00\x5D\x00 Use case insensitive matching?:\xff\xfeN\x00o\x00 Metadata file name:\xff\xfe NamesAndTypes:[module_num:3|svn_version:\'Unknown\'|variable_revision_number:8|show_window:False|notes:\x5B\'The NamesAndTypes module allows you to assign a meaningful name to each image by which other modules will refer to it.\', \'\\xe2\\x80\\x94\', \'Load each channel (or stain) as a separate image. If you have a color image composed of different stains, you\\xe2\\x80\\x99ll need to specify the image type as \\xe2\\x80\\x98Color image\\xe2\\x80\\x99 and then use a ColorToGray module in the Analysis modula panel to separate the incoming image into its component channels.\', \'\', \'In the example pipeline, we call the two images OrigStain1 and OrigStain2.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Assign a name to:\xff\xfeI\x00m\x00a\x00g\x00e\x00s\x00 \x00m\x00a\x00t\x00c\x00h\x00i\x00n\x00g\x00 \x00r\x00u\x00l\x00e\x00s\x00 Select the image type:\xff\xfeG\x00r\x00a\x00y\x00s\x00c\x00a\x00l\x00e\x00 \x00i\x00m\x00a\x00g\x00e\x00 Name to assign these images:\xff\xfeD\x00N\x00A\x00 Match metadata:\xff\xfe\x5B\x00\x5D\x00 Image set matching method:\xff\xfeO\x00r\x00d\x00e\x00r\x00 Set intensity range from:\xff\xfeI\x00m\x00a\x00g\x00e\x00 \x00m\x00e\x00t\x00a\x00d\x00a\x00t\x00a\x00 Assignments count:\xff\xfe2\x00 Single images count:\xff\xfe0\x00 Maximum intensity:\xff\xfe2\x005\x005\x00.\x000\x00 Process as 3D?:\xff\xfeN\x00o\x00 Relative pixel spacing in X:\xff\xfe1\x00.\x000\x00 Relative pixel spacing in Y:\xff\xfe1\x00.\x000\x00 Relative pixel spacing in Z:\xff\xfe1\x00.\x000\x00 Select the rule criteria:\xff\xfea\x00n\x00d\x00 \x00(\x00f\x00i\x00l\x00e\x00 \x00d\x00o\x00e\x00s\x00 \x00c\x00o\x00n\x00t\x00a\x00i\x00n\x00 \x00"\x00C\x000\x000\x002\x00"\x00)\x00 Name to assign these images:\xff\xfeO\x00r\x00i\x00g\x00S\x00t\x00a\x00i\x00n\x001\x00 Name to assign these objects:\xff\xfeC\x00e\x00l\x00l\x00 Select the image type:\xff\xfeG\x00r\x00a\x00y\x00s\x00c\x00a\x00l\x00e\x00 \x00i\x00m\x00a\x00g\x00e\x00 Set intensity range from:\xff\xfeI\x00m\x00a\x00g\x00e\x00 \x00m\x00e\x00t\x00a\x00d\x00a\x00t\x00a\x00 Maximum intensity:\xff\xfe2\x005\x005\x00.\x000\x00 Select the rule criteria:\xff\xfea\x00n\x00d\x00 \x00(\x00f\x00i\x00l\x00e\x00 \x00d\x00o\x00e\x00s\x00 \x00c\x00o\x00n\x00t\x00a\x00i\x00n\x00 \x00"\x00C\x000\x000\x003\x00"\x00)\x00 Name to assign these images:\xff\xfeO\x00r\x00i\x00g\x00S\x00t\x00a\x00i\x00n\x002\x00 Name to assign these objects:\xff\xfeC\x00e\x00l\x00l\x00 Select the image type:\xff\xfeG\x00r\x00a\x00y\x00s\x00c\x00a\x00l\x00e\x00 \x00i\x00m\x00a\x00g\x00e\x00 Set intensity range from:\xff\xfeI\x00m\x00a\x00g\x00e\x00 \x00m\x00e\x00t\x00a\x00d\x00a\x00t\x00a\x00 Maximum intensity:\xff\xfe2\x005\x005\x00.\x000\x00 Groups:[module_num:4|svn_version:\'Unknown\'|variable_revision_number:2|show_window:False|notes:\x5B\'The Groups module optionally allows you to split your list of images into image subsets (groups) which will be processed independently of each other. Examples of groupings include screening batches, microtiter plates, time-lapse movies, etc.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Do you want to group your images?:\xff\xfeN\x00o\x00 grouping metadata count:\xff\xfe1\x00 Metadata category:\xff\xfeN\x00o\x00n\x00e\x00 CorrectIlluminationCalculate:[module_num:5|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\'Perform illumination correction using the Regular method and polynomial fitting to create a illumination correction function for the first image. \'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the input image:\xff\xfeO\x00r\x00i\x00g\x00S\x00t\x00a\x00i\x00n\x001\x00 Name the output image:\xff\xfeI\x00l\x00l\x00u\x00m\x00S\x00t\x00a\x00i\x00n\x001\x00 Select how the illumination function is calculated:\xff\xfeR\x00e\x00g\x00u\x00l\x00a\x00r\x00 Dilate objects in the final averaged image?:\xff\xfeN\x00o\x00 Dilation radius:\xff\xfe1\x00 Block size:\xff\xfe6\x000\x00 Rescale the illumination function?:\xff\xfeY\x00e\x00s\x00 Calculate function for each image individually, or based on all images?:\xff\xfeE\x00a\x00c\x00h\x00 Smoothing method:\xff\xfeF\x00i\x00t\x00 \x00P\x00o\x00l\x00y\x00n\x00o\x00m\x00i\x00a\x00l\x00 Method to calculate smoothing filter size:\xff\xfeA\x00u\x00t\x00o\x00m\x00a\x00t\x00i\x00c\x00 Approximate object diameter:\xff\xfe1\x000\x00 Smoothing filter size:\xff\xfe1\x000\x00 Retain the averaged image?:\xff\xfeN\x00o\x00 Name the averaged image:\xff\xfeI\x00l\x00l\x00u\x00m\x00B\x00l\x00u\x00e\x00A\x00v\x00g\x00 Retain the dilated image?:\xff\xfeN\x00o\x00 Name the dilated image:\xff\xfeI\x00l\x00l\x00u\x00m\x00B\x00l\x00u\x00e\x00D\x00i\x00l\x00a\x00t\x00e\x00d\x00 Automatically calculate spline parameters?:\xff\xfeY\x00e\x00s\x00 Background mode:\xff\xfea\x00u\x00t\x00o\x00 Number of spline points:\xff\xfe5\x00 Background threshold:\xff\xfe2\x00.\x000\x00 Image resampling factor:\xff\xfe2\x00.\x000\x00 Maximum number of iterations:\xff\xfe4\x000\x00 Residual value for convergence:\xff\xfe0\x00.\x000\x000\x001\x00 CorrectIlluminationCalculate:[module_num:6|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\'Perform illumination correction using the Regular method and polynomial fitting to create a illumination correction function for the second image. \'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the input image:\xff\xfeO\x00r\x00i\x00g\x00S\x00t\x00a\x00i\x00n\x002\x00 Name the output image:\xff\xfeI\x00l\x00l\x00u\x00m\x00S\x00t\x00a\x00i\x00n\x002\x00 Select how the illumination function is calculated:\xff\xfeR\x00e\x00g\x00u\x00l\x00a\x00r\x00 Dilate objects in the final averaged image?:\xff\xfeN\x00o\x00 Dilation radius:\xff\xfe1\x00 Block size:\xff\xfe6\x000\x00 Rescale the illumination function?:\xff\xfeY\x00e\x00s\x00 Calculate function for each image individually, or based on all images?:\xff\xfeE\x00a\x00c\x00h\x00 Smoothing method:\xff\xfeF\x00i\x00t\x00 \x00P\x00o\x00l\x00y\x00n\x00o\x00m\x00i\x00a\x00l\x00 Method to calculate smoothing filter size:\xff\xfeA\x00u\x00t\x00o\x00m\x00a\x00t\x00i\x00c\x00 Approximate object diameter:\xff\xfe1\x000\x00 Smoothing filter size:\xff\xfe1\x000\x00 Retain the averaged image?:\xff\xfeN\x00o\x00 Name the averaged image:\xff\xfeI\x00l\x00l\x00u\x00m\x00B\x00l\x00u\x00e\x00A\x00v\x00g\x00 Retain the dilated image?:\xff\xfeN\x00o\x00 Name the dilated image:\xff\xfeI\x00l\x00l\x00u\x00m\x00B\x00l\x00u\x00e\x00D\x00i\x00l\x00a\x00t\x00e\x00d\x00 Automatically calculate spline parameters?:\xff\xfeY\x00e\x00s\x00 Background mode:\xff\xfea\x00u\x00t\x00o\x00 Number of spline points:\xff\xfe5\x00 Background threshold:\xff\xfe2\x00.\x000\x00 Image resampling factor:\xff\xfe2\x00.\x000\x00 Maximum number of iterations:\xff\xfe4\x000\x00 Residual value for convergence:\xff\xfe0\x00.\x000\x000\x001\x00 CorrectIlluminationApply:[module_num:7|svn_version:\'Unknown\'|variable_revision_number:3|show_window:True|notes:\x5B\'Apply the illumination function to the original images and examine the result.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the input image:\xff\xfeO\x00r\x00i\x00g\x00S\x00t\x00a\x00i\x00n\x001\x00 Name the output image:\xff\xfeC\x00o\x00r\x00r\x00e\x00c\x00t\x00e\x00d\x00S\x00t\x00a\x00i\x00n\x001\x00 Select the illumination function:\xff\xfeI\x00l\x00l\x00u\x00m\x00S\x00t\x00a\x00i\x00n\x001\x00 Select how the illumination function is applied:\xff\xfeD\x00i\x00v\x00i\x00d\x00e\x00 Select the input image:\xff\xfeO\x00r\x00i\x00g\x00S\x00t\x00a\x00i\x00n\x002\x00 Name the output image:\xff\xfeC\x00o\x00r\x00r\x00e\x00c\x00t\x00e\x00d\x00S\x00t\x00a\x00i\x00n\x002\x00 Select the illumination function:\xff\xfeI\x00l\x00l\x00u\x00m\x00S\x00t\x00a\x00i\x00n\x002\x00 Select how the illumination function is applied:\xff\xfeD\x00i\x00v\x00i\x00d\x00e\x00 Align:[module_num:8|svn_version:\'Unknown\'|variable_revision_number:3|show_window:True|notes:\x5B\'(Optional) Since accurate colocalization requires accurate positioning of the features in both images, it is sometimes worth using this module to align the images.\', \'\', \'If aligning the images, it is important to remember that there needs to be sufficient overlap in image features, other than the features suspected of overlapping, in order to align them. For example, attempting to align two images in which there is little to no colocalization will probably result in poor alignment. \'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the alignment method:\xff\xfeM\x00u\x00t\x00u\x00a\x00l\x00 \x00I\x00n\x00f\x00o\x00r\x00m\x00a\x00t\x00i\x00o\x00n\x00 Crop mode:\xff\xfeK\x00e\x00e\x00p\x00 \x00s\x00i\x00z\x00e\x00 Select the first input image:\xff\xfeO\x00r\x00i\x00g\x00S\x00t\x00a\x00i\x00n\x001\x00 Name the first output image:\xff\xfeS\x00t\x00a\x00i\x00n\x001\x00 Select the second input image:\xff\xfeO\x00r\x00i\x00g\x00S\x00t\x00a\x00i\x00n\x002\x00 Name the second output image:\xff\xfeS\x00t\x00a\x00i\x00n\x002\x00 MeasureColocalization:[module_num:9|svn_version:\'Unknown\'|variable_revision_number:3|show_window:True|notes:\x5B\'The Measure Correlation module measures both the correlation of Stain1 and Stain2 across the entire image. The overall image correlation can give a general sense of how colocalized the features within the images are.\', \'\', \'The correlation measurement is the normalized covariance (covariance divided by the product of standard deviation of pixels in each image). Correlation ranges from -1 (complete inverse correlation) to +1 (complete correlation). Thus, the closer to one the correlation measurement is, the more correlated the two images are and the higher the amount of colocalization.\', \'\', \'Note that if you are not interested in object-based calculations, you could stop here and remove the modules up to the ExportToSpreadsheet module.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Hidden:\xff\xfe2\x00 Hidden:\xff\xfe1\x00 Select an image to measure:\xff\xfeS\x00t\x00a\x00i\x00n\x001\x00 Select an image to measure:\xff\xfeS\x00t\x00a\x00i\x00n\x002\x00 Set threshold as percentage of maximum intensity for the images:\xff\xfe1\x005\x00.\x000\x00 Select where to measure correlation:\xff\xfeA\x00c\x00r\x00o\x00s\x00s\x00 \x00e\x00n\x00t\x00i\x00r\x00e\x00 \x00i\x00m\x00a\x00g\x00e\x00 Select an object to measure:\xff\xfeN\x00o\x00n\x00e\x00 Run all metrics?:\xff\xfeY\x00e\x00s\x00 Calculate correlation and slope metrics?:\xff\xfeY\x00e\x00s\x00 Calculate the Manders coefficients?:\xff\xfeY\x00e\x00s\x00 Calculate the Rank Weighted Coloalization coefficients?:\xff\xfeY\x00e\x00s\x00 Calculate the Overlap coefficients?:\xff\xfeY\x00e\x00s\x00 Calculate the Manders coefficients using Costes auto threshold?:\xff\xfeY\x00e\x00s\x00 IdentifyPrimaryObjects:[module_num:10|svn_version:\'Unknown\'|variable_revision_number:13|show_window:True|notes:\x5B\'Similarly, correlation measurements for individual objects can also be obtained. However, to determine colocalization on per-object basis, the objects within the image must be identified. We first segment the image features into objects, then make comparisons between the individual objects in the channels.\', \'\', \'The input image is selected as Stain1, with the output objects named Objects1. The typical diameter is set as \x5B3,15\x5D for the min/max size we expect the objects to be. We chose to discard small and large objects, which tend to be spurious, and discard those objects at the border because we will be making area-based measurements.\', \'\', \'The chosen thresholding method can greatly affect segmentation. Here, you want to select a method that will accurately identify the protein of interest as foreground. Depending on the background level and properties of the stain, you may need to try several different methods and corresponding settings to obtain good segmentation. Please see the help for IdentifyPrimaryObjects for more information on the thresholding methods available.\', \'\', \'Settings to distinguish clumped objects are of importance for per-object measures of co-localization. For example, if you wish to measure co-localization only in the nuclei or cytoplasm, each sub cellular compartment must be properly segmented to provide an accurate measurement. You may need to adjust various settings to get good segmentation of clumpy nuclei. \'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the input image:\xff\xfeS\x00t\x00a\x00i\x00n\x001\x00 Name the primary objects to be identified:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Typical diameter of objects, in pixel units (Min,Max):\xff\xfe3\x00,\x001\x005\x00 Discard objects outside the diameter range?:\xff\xfeY\x00e\x00s\x00 Discard objects touching the border of the image?:\xff\xfeY\x00e\x00s\x00 Method to distinguish clumped objects:\xff\xfeI\x00n\x00t\x00e\x00n\x00s\x00i\x00t\x00y\x00 Method to draw dividing lines between clumped objects:\xff\xfeI\x00n\x00t\x00e\x00n\x00s\x00i\x00t\x00y\x00 Size of smoothing filter:\xff\xfe1\x000\x00 Suppress local maxima that are closer than this minimum allowed distance:\xff\xfe7\x00.\x000\x00 Speed up by using lower-resolution image to find local maxima?:\xff\xfeY\x00e\x00s\x00 Fill holes in identified objects?:\xff\xfeA\x00f\x00t\x00e\x00r\x00 \x00b\x00o\x00t\x00h\x00 \x00t\x00h\x00r\x00e\x00s\x00h\x00o\x00l\x00d\x00i\x00n\x00g\x00 \x00a\x00n\x00d\x00 \x00d\x00e\x00c\x00l\x00u\x00m\x00p\x00i\x00n\x00g\x00 Automatically calculate size of smoothing filter for declumping?:\xff\xfeY\x00e\x00s\x00 Automatically calculate minimum allowed distance between local maxima?:\xff\xfeY\x00e\x00s\x00 Handling of objects if excessive number of objects identified:\xff\xfeC\x00o\x00n\x00t\x00i\x00n\x00u\x00e\x00 Maximum number of objects:\xff\xfe5\x000\x000\x00 Use advanced settings?:\xff\xfeY\x00e\x00s\x00 Threshold setting version:\xff\xfe1\x000\x00 Threshold strategy:\xff\xfeG\x00l\x00o\x00b\x00a\x00l\x00 Thresholding method:\xff\xfeO\x00t\x00s\x00u\x00 Threshold smoothing scale:\xff\xfe1\x00.\x003\x004\x008\x008\x00 Threshold correction factor:\xff\xfe1\x00.\x000\x00 Lower and upper bounds on threshold:\xff\xfe0\x00.\x000\x00,\x001\x00.\x000\x00 Manual threshold:\xff\xfe0\x00.\x000\x00 Select the measurement to threshold with:\xff\xfeN\x00o\x00n\x00e\x00 Two-class or three-class thresholding?:\xff\xfeT\x00h\x00r\x00e\x00e\x00 \x00c\x00l\x00a\x00s\x00s\x00e\x00s\x00 Assign pixels in the middle intensity class to the foreground or the background?:\xff\xfeB\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00 Size of adaptive window:\xff\xfe5\x000\x00 Lower outlier fraction:\xff\xfe0\x00.\x000\x005\x00 Upper outlier fraction:\xff\xfe0\x00.\x000\x005\x00 Averaging method:\xff\xfeM\x00e\x00a\x00n\x00 Variance method:\xff\xfeS\x00t\x00a\x00n\x00d\x00a\x00r\x00d\x00 \x00d\x00e\x00v\x00i\x00a\x00t\x00i\x00o\x00n\x00 # of deviations:\xff\xfe2\x00.\x000\x00 Thresholding method:\xff\xfeO\x00t\x00s\x00u\x00 IdentifyPrimaryObjects:[module_num:11|svn_version:\'Unknown\'|variable_revision_number:13|show_window:True|notes:\x5B\'The settings are identical to the first IdentifyPrimaryObjects, but here we identify the nuclei from Stain 2.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the input image:\xff\xfeS\x00t\x00a\x00i\x00n\x002\x00 Name the primary objects to be identified:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00 Typical diameter of objects, in pixel units (Min,Max):\xff\xfe3\x00,\x001\x005\x00 Discard objects outside the diameter range?:\xff\xfeY\x00e\x00s\x00 Discard objects touching the border of the image?:\xff\xfeY\x00e\x00s\x00 Method to distinguish clumped objects:\xff\xfeI\x00n\x00t\x00e\x00n\x00s\x00i\x00t\x00y\x00 Method to draw dividing lines between clumped objects:\xff\xfeI\x00n\x00t\x00e\x00n\x00s\x00i\x00t\x00y\x00 Size of smoothing filter:\xff\xfe1\x000\x00 Suppress local maxima that are closer than this minimum allowed distance:\xff\xfe7\x00.\x000\x00 Speed up by using lower-resolution image to find local maxima?:\xff\xfeY\x00e\x00s\x00 Fill holes in identified objects?:\xff\xfeA\x00f\x00t\x00e\x00r\x00 \x00b\x00o\x00t\x00h\x00 \x00t\x00h\x00r\x00e\x00s\x00h\x00o\x00l\x00d\x00i\x00n\x00g\x00 \x00a\x00n\x00d\x00 \x00d\x00e\x00c\x00l\x00u\x00m\x00p\x00i\x00n\x00g\x00 Automatically calculate size of smoothing filter for declumping?:\xff\xfeY\x00e\x00s\x00 Automatically calculate minimum allowed distance between local maxima?:\xff\xfeY\x00e\x00s\x00 Handling of objects if excessive number of objects identified:\xff\xfeC\x00o\x00n\x00t\x00i\x00n\x00u\x00e\x00 Maximum number of objects:\xff\xfe5\x000\x000\x00 Use advanced settings?:\xff\xfeY\x00e\x00s\x00 Threshold setting version:\xff\xfe1\x000\x00 Threshold strategy:\xff\xfeG\x00l\x00o\x00b\x00a\x00l\x00 Thresholding method:\xff\xfeO\x00t\x00s\x00u\x00 Threshold smoothing scale:\xff\xfe1\x00.\x003\x004\x008\x008\x00 Threshold correction factor:\xff\xfe1\x00.\x000\x00 Lower and upper bounds on threshold:\xff\xfe0\x00.\x000\x00,\x001\x00.\x000\x00 Manual threshold:\xff\xfe0\x00.\x000\x00 Select the measurement to threshold with:\xff\xfeN\x00o\x00n\x00e\x00 Two-class or three-class thresholding?:\xff\xfeT\x00h\x00r\x00e\x00e\x00 \x00c\x00l\x00a\x00s\x00s\x00e\x00s\x00 Assign pixels in the middle intensity class to the foreground or the background?:\xff\xfeB\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00 Size of adaptive window:\xff\xfe5\x000\x00 Lower outlier fraction:\xff\xfe0\x00.\x000\x005\x00 Upper outlier fraction:\xff\xfe0\x00.\x000\x005\x00 Averaging method:\xff\xfeM\x00e\x00a\x00n\x00 Variance method:\xff\xfeS\x00t\x00a\x00n\x00d\x00a\x00r\x00d\x00 \x00d\x00e\x00v\x00i\x00a\x00t\x00i\x00o\x00n\x00 # of deviations:\xff\xfe2\x00.\x000\x00 Thresholding method:\xff\xfeO\x00t\x00s\x00u\x00 RelateObjects:[module_num:12|svn_version:\'Unknown\'|variable_revision_number:4|show_window:True|notes:\x5B\'If we want to consider objects which touch or overlap each other are considered to be colocalized, this module establishes a \\xe2\\x80\\x98parent-child\\xe2\\x80\\x99 relationship between two sets of objects. A \\xe2\\x80\\x98parent\\xe2\\x80\\x99 object is one that touches, overlaps or encloses a \\xe2\\x80\\x98child\\xe2\\x80\\x99 object. Object2 objects that touch or overlap with an Object2 object are considered to be colocalized and will be assigned as a parent to a corresponding child. All others have no children and are labeled accordingly.\', \'\', \'In addition, the distance between object centroids may also be obtained with this module by enabling the \\xe2\\x80\\x98Calculate distances?\\xe2\\x80\\x99\\xe2\\x80\\x99 setting.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Parent objects:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Child objects:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00 Name the output object:\xff\xfeR\x00e\x00l\x00a\x00t\x00e\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x00 Calculate child-parent distances?:\xff\xfeC\x00e\x00n\x00t\x00r\x00o\x00i\x00d\x00 Calculate per-parent means for all child measurements?:\xff\xfeN\x00o\x00 Calculate distances to other parents?:\xff\xfeN\x00o\x00 Parent name:\xff\xfeN\x00o\x00n\x00e\x00 Parent name:\xff\xfeN\x00o\x00n\x00e\x00 ExpandOrShrinkObjects:[module_num:13|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\'If we only want to consider objects whose centroids are N pixels apart, this module shrinks the objects identified in the Stain1 image to a point and names the resultant points ShrunkenObjects1. The second ExpandOrShrinkObjects does the same for Stain2.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the input objects:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Name the output objects:\xff\xfeS\x00h\x00r\x00u\x00n\x00k\x00e\x00n\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Select the operation:\xff\xfeS\x00h\x00r\x00i\x00n\x00k\x00 \x00o\x00b\x00j\x00e\x00c\x00t\x00s\x00 \x00t\x00o\x00 \x00a\x00 \x00p\x00o\x00i\x00n\x00t\x00 Number of pixels by which to expand or shrink:\xff\xfe1\x00 Fill holes in objects so that all objects shrink to a single point?:\xff\xfeN\x00o\x00 ExpandOrShrinkObjects:[module_num:14|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\'If we only want to consider objects whose centroids are N pixels apart, this module shrinks the objects identified in the Stain1 image to a point and names the resultant points ShrunkenObjects1. The second ExpandOrShrinkObjects does the same for Stain2.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the input objects:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00 Name the output objects:\xff\xfeS\x00h\x00r\x00u\x00n\x00k\x00e\x00n\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00 Select the operation:\xff\xfeS\x00h\x00r\x00i\x00n\x00k\x00 \x00o\x00b\x00j\x00e\x00c\x00t\x00s\x00 \x00t\x00o\x00 \x00a\x00 \x00p\x00o\x00i\x00n\x00t\x00 Number of pixels by which to expand or shrink:\xff\xfe1\x00 Fill holes in objects so that all objects shrink to a single point?:\xff\xfeN\x00o\x00 ExpandOrShrinkObjects:[module_num:15|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\'We now expand the previously shrunken point objects by 2 pixels, i.e., two pixels are added to either side of the single-pixel object to create new objects which are 5 pixels across, as shown in Fig. 2. These new objects are named ExpandedObjects1 and ExpandedObjects2.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the input objects:\xff\xfeS\x00h\x00r\x00u\x00n\x00k\x00e\x00n\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Name the output objects:\xff\xfeE\x00x\x00p\x00a\x00n\x00d\x00e\x00d\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Select the operation:\xff\xfeE\x00x\x00p\x00a\x00n\x00d\x00 \x00o\x00b\x00j\x00e\x00c\x00t\x00s\x00 \x00b\x00y\x00 \x00a\x00 \x00s\x00p\x00e\x00c\x00i\x00f\x00i\x00e\x00d\x00 \x00n\x00u\x00m\x00b\x00e\x00r\x00 \x00o\x00f\x00 \x00p\x00i\x00x\x00e\x00l\x00s\x00 Number of pixels by which to expand or shrink:\xff\xfe2\x00 Fill holes in objects so that all objects shrink to a single point?:\xff\xfeN\x00o\x00 ExpandOrShrinkObjects:[module_num:16|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\'We now expand the previously shrunken point objects by 2 pixels, i.e., two pixels are added to either side of the single-pixel object to create new objects which are 5 pixels across, as shown in Fig. 2. These new objects are named ExpandedObjects1 and ExpandedObjects2.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the input objects:\xff\xfeS\x00h\x00r\x00u\x00n\x00k\x00e\x00n\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00 Name the output objects:\xff\xfeE\x00x\x00p\x00a\x00n\x00d\x00e\x00d\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00 Select the operation:\xff\xfeE\x00x\x00p\x00a\x00n\x00d\x00 \x00o\x00b\x00j\x00e\x00c\x00t\x00s\x00 \x00b\x00y\x00 \x00a\x00 \x00s\x00p\x00e\x00c\x00i\x00f\x00i\x00e\x00d\x00 \x00n\x00u\x00m\x00b\x00e\x00r\x00 \x00o\x00f\x00 \x00p\x00i\x00x\x00e\x00l\x00s\x00 Number of pixels by which to expand or shrink:\xff\xfe2\x00 Fill holes in objects so that all objects shrink to a single point?:\xff\xfeN\x00o\x00 RelateObjects:[module_num:17|svn_version:\'Unknown\'|variable_revision_number:4|show_window:True|notes:\x5B\'In this case, ExpandedObjects1 are assigned to be parents, with ExpandedObject2 as children. Therefore, objects in ExpandedObjects1 which have children and 2 pixels apart or less are colocalized with objects in ExpandedObjects2.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Parent objects:\xff\xfeE\x00x\x00p\x00a\x00n\x00d\x00e\x00d\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Child objects:\xff\xfeE\x00x\x00p\x00a\x00n\x00d\x00e\x00d\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00 Name the output object:\xff\xfeR\x00e\x00l\x00a\x00t\x00e\x00E\x00x\x00p\x00a\x00n\x00d\x00e\x00d\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x00 Calculate child-parent distances?:\xff\xfeN\x00o\x00n\x00e\x00 Calculate per-parent means for all child measurements?:\xff\xfeN\x00o\x00 Calculate distances to other parents?:\xff\xfeN\x00o\x00 Parent name:\xff\xfeN\x00o\x00n\x00e\x00 Parent name:\xff\xfeN\x00o\x00n\x00e\x00 ClassifyObjects:[module_num:18|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\'The ClassifyObjects module categorizes objects into bins associated with a particular measurement. In this case, the chosen measurement is the child count for Objects1. The value 0.5 is chosen as the measurement since we want to distinguish between colocalized objects with children (child count of 1 or greater) versus those without (child count of 0). \', \'\', \'The result of this module is an absolute count and percentage of objects that fall into the colocalized/non-colocalized bins, and an annotation to each Objects1 object as to whether it falls into a particular bin or not. This approach works well if you just want a yes/no readout per object.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Make each classification decision on how many measurements?:\xff\xfeS\x00i\x00n\x00g\x00l\x00e\x00 \x00m\x00e\x00a\x00s\x00u\x00r\x00e\x00m\x00e\x00n\x00t\x00 Hidden:\xff\xfe1\x00 Select the object to be classified:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Select the measurement to classify by:\xff\xfeC\x00h\x00i\x00l\x00d\x00r\x00e\x00n\x00_\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00_\x00C\x00o\x00u\x00n\x00t\x00 Select bin spacing:\xff\xfeC\x00u\x00s\x00t\x00o\x00m\x00-\x00d\x00e\x00f\x00i\x00n\x00e\x00d\x00 \x00b\x00i\x00n\x00s\x00 Number of bins:\xff\xfe3\x00 Lower threshold:\xff\xfe0\x00.\x000\x00 Use a bin for objects below the threshold?:\xff\xfeY\x00e\x00s\x00 Upper threshold:\xff\xfe1\x00.\x000\x00 Use a bin for objects above the threshold?:\xff\xfeY\x00e\x00s\x00 Enter the custom thresholds separating the values between bins:\xff\xfe0\x00.\x005\x00 Give each bin a name?:\xff\xfeY\x00e\x00s\x00 Enter the bin names separated by commas:\xff\xfeN\x00o\x00t\x00C\x00o\x00l\x00o\x00c\x00a\x00l\x00i\x00z\x00e\x00d\x00,\x00C\x00o\x00l\x00o\x00c\x00a\x00l\x00i\x00z\x00e\x00d\x00 Retain an image of the classified objects?:\xff\xfeN\x00o\x00 Name the output image:\xff\xfeC\x00l\x00a\x00s\x00s\x00i\x00f\x00i\x00e\x00d\x00N\x00u\x00c\x00l\x00e\x00i\x00 Select the object name:\xff\xfeN\x00o\x00n\x00e\x00 Select the first measurement:\xff\xfeN\x00o\x00n\x00e\x00 Method to select the cutoff:\xff\xfeM\x00e\x00a\x00n\x00 Enter the cutoff value:\xff\xfe0\x00.\x005\x00 Select the second measurement:\xff\xfeN\x00o\x00n\x00e\x00 Method to select the cutoff:\xff\xfeM\x00e\x00a\x00n\x00 Enter the cutoff value:\xff\xfe0\x00.\x005\x00 Use custom names for the bins?:\xff\xfeN\x00o\x00 Enter the low-low bin name:\xff\xfel\x00o\x00w\x00_\x00l\x00o\x00w\x00 Enter the low-high bin name:\xff\xfel\x00o\x00w\x00_\x00h\x00i\x00g\x00h\x00 Enter the high-low bin name:\xff\xfeh\x00i\x00g\x00h\x00_\x00l\x00o\x00w\x00 Enter the high-high bin name:\xff\xfeh\x00i\x00g\x00h\x00_\x00h\x00i\x00g\x00h\x00 Retain an image of the classified objects?:\xff\xfeN\x00o\x00 Enter the image name:\xff\xfeN\x00o\x00n\x00e\x00 FilterObjects:[module_num:19|svn_version:\'Unknown\'|variable_revision_number:8|show_window:True|notes:\x5B\'The FilterObjects module effectively does the same operation as Classify Objects, but rather than simply assigning a label to each object, FilterObjects removes all objects that do not pass a criterion. Using the same choice of measurement and cutoff as in Classify Objects, only those Objects1 objects which fall into the co-localized bin are retained. This feature is useful if you want to perform additional operations or measurements on the remaining objects. \', \'\', \'These two modules can also be used to perform the same operations on the ExpandedObjects1 object set.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the objects to filter:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Name the output objects:\xff\xfeC\x00o\x00l\x00o\x00c\x00a\x00l\x00i\x00z\x00e\x00d\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x00 Select the filtering mode:\xff\xfeM\x00e\x00a\x00s\x00u\x00r\x00e\x00m\x00e\x00n\x00t\x00s\x00 Select the filtering method:\xff\xfeL\x00i\x00m\x00i\x00t\x00s\x00 Select the objects that contain the filtered objects:\xff\xfeN\x00o\x00n\x00e\x00 Select the location of the rules or classifier file:\xff\xfeE\x00l\x00s\x00e\x00w\x00h\x00e\x00r\x00e\x00.\x00.\x00.\x00\x7C\x00 Rules or classifier file name:\xff\xfer\x00u\x00l\x00e\x00s\x00.\x00t\x00x\x00t\x00 Class number:\xff\xfe1\x00 Measurement count:\xff\xfe1\x00 Additional object count:\xff\xfe0\x00 Assign overlapping child to:\xff\xfeB\x00o\x00t\x00h\x00 \x00p\x00a\x00r\x00e\x00n\x00t\x00s\x00 Select the measurement to filter by:\xff\xfeC\x00h\x00i\x00l\x00d\x00r\x00e\x00n\x00_\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00_\x00C\x00o\x00u\x00n\x00t\x00 Filter using a minimum measurement value?:\xff\xfeY\x00e\x00s\x00 Minimum value:\xff\xfe1\x00 Filter using a maximum measurement value?:\xff\xfeN\x00o\x00 Maximum value:\xff\xfe1\x00.\x000\x00 MaskObjects:[module_num:20|svn_version:\'Unknown\'|variable_revision_number:3|show_window:True|notes:\x5B\'This module masks (i.e., \\xe2\\x80\\x98hides\\xe2\\x80\\x99 from consideration) the pixels of the Objects1 object set which are in common with the Objects2 object set. The result of this operation is the colocalized area as a new object set, named ColocalizedRegions \'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select objects to be masked:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Name the masked objects:\xff\xfeC\x00o\x00l\x00o\x00c\x00a\x00l\x00i\x00z\x00e\x00d\x00R\x00e\x00g\x00i\x00o\x00n\x00 Mask using a region defined by other objects or by binary image?:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x00 Select the masking object:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x002\x00 Select the masking image:\xff\xfeN\x00o\x00n\x00e\x00 Handling of objects that are partially masked:\xff\xfeK\x00e\x00e\x00p\x00 \x00o\x00v\x00e\x00r\x00l\x00a\x00p\x00p\x00i\x00n\x00g\x00 \x00r\x00e\x00g\x00i\x00o\x00n\x00 Fraction of object that must overlap:\xff\xfe0\x00.\x005\x00 Numbering of resulting objects:\xff\xfeR\x00e\x00n\x00u\x00m\x00b\x00e\x00r\x00 Invert the mask?:\xff\xfeN\x00o\x00 MeasureImageAreaOccupied:[module_num:21|svn_version:\'Unknown\'|variable_revision_number:4|show_window:True|notes:\x5B\'The MeasureImageAreaOccupied module measure various statistics associated with the area taken up by a feature in an image. In this case, we are concerned with Objects1 and ColocalizedRegion. The module counts all the pixels occupied by an given object set and adds them together for the total area occupied by each stained object\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Hidden:\xff\xfe2\x00 Measure the area occupied in a binary image, or in objects?:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x00 Select objects to measure:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Select a binary image to measure:\xff\xfeN\x00o\x00n\x00e\x00 Measure the area occupied in a binary image, or in objects?:\xff\xfeO\x00b\x00j\x00e\x00c\x00t\x00s\x00 Select objects to measure:\xff\xfeC\x00o\x00l\x00o\x00c\x00a\x00l\x00i\x00z\x00e\x00d\x00R\x00e\x00g\x00i\x00o\x00n\x00 Select a binary image to measure:\xff\xfeN\x00o\x00n\x00e\x00 CalculateMath:[module_num:22|svn_version:\'Unknown\'|variable_revision_number:2|show_window:True|notes:\x5B\'We divide the area occupied by ColocalizedRegion by the area occupied by Objects1 to get a per-image fraction.\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Name the output measurement:\xff\xfeS\x00t\x00a\x00i\x00n\x001\x00C\x00o\x00l\x00o\x00c\x00a\x00l\x00i\x00z\x00e\x00d\x00 Operation:\xff\xfeD\x00i\x00v\x00i\x00d\x00e\x00 Select the numerator measurement type:\xff\xfeI\x00m\x00a\x00g\x00e\x00 Select the numerator objects:\xff\xfeN\x00o\x00n\x00e\x00 Select the numerator measurement:\xff\xfeA\x00r\x00e\x00a\x00O\x00c\x00c\x00u\x00p\x00i\x00e\x00d\x00_\x00A\x00r\x00e\x00a\x00O\x00c\x00c\x00u\x00p\x00i\x00e\x00d\x00_\x00C\x00o\x00l\x00o\x00c\x00a\x00l\x00i\x00z\x00e\x00d\x00R\x00e\x00g\x00i\x00o\x00n\x00 Multiply the above operand by:\xff\xfe1\x00.\x000\x00 Raise the power of above operand by:\xff\xfe1\x00.\x000\x00 Select the denominator measurement type:\xff\xfeI\x00m\x00a\x00g\x00e\x00 Select the denominator objects:\xff\xfeN\x00o\x00n\x00e\x00 Select the denominator measurement:\xff\xfeA\x00r\x00e\x00a\x00O\x00c\x00c\x00u\x00p\x00i\x00e\x00d\x00_\x00A\x00r\x00e\x00a\x00O\x00c\x00c\x00u\x00p\x00i\x00e\x00d\x00_\x00O\x00b\x00j\x00e\x00c\x00t\x00s\x001\x00 Multiply the above operand by:\xff\xfe1\x00.\x000\x00 Raise the power of above operand by:\xff\xfe1\x00.\x000\x00 Take log10 of result?:\xff\xfeN\x00o\x00 Multiply the result by:\xff\xfe1\x00.\x000\x00 Raise the power of result by:\xff\xfe1\x00.\x000\x00 Add to the result:\xff\xfe0\x00.\x000\x00 Constrain the result to a lower bound?:\xff\xfeN\x00o\x00 Enter the lower bound:\xff\xfe0\x00.\x000\x00 Constrain the result to an upper bound?:\xff\xfeN\x00o\x00 Enter the upper bound:\xff\xfe1\x00.\x000\x00 ExportToSpreadsheet:[module_num:23|svn_version:\'Unknown\'|variable_revision_number:12|show_window:True|notes:\x5B\'This module is used to export the full set of measurements obtained by the pipeline. Measurements such as object counts, colocalization percentages and area fractions are saved to a per-image file (that is, one value per image); measurements such as colocalized/non-colocalized status and centroid distances are saved to a per-object file (one value per object).\'\x5D|batch_state:array(\x5B\x5D, dtype=uint8)|enabled:True|wants_pause:False] Select the column delimiter:\xff\xfeC\x00o\x00m\x00m\x00a\x00 \x00(\x00"\x00,\x00"\x00)\x00 Add image metadata columns to your object data file?:\xff\xfeN\x00o\x00 Select the measurements to export:\xff\xfeN\x00o\x00 Calculate the per-image mean values for object measurements?:\xff\xfeN\x00o\x00 Calculate the per-image median values for object measurements?:\xff\xfeN\x00o\x00 Calculate the per-image standard deviation values for object measurements?:\xff\xfeN\x00o\x00 Output file location:\xff\xfeD\x00e\x00f\x00a\x00u\x00l\x00t\x00 \x00I\x00n\x00p\x00u\x00t\x00 \x00F\x00o\x00l\x00d\x00e\x00r\x00 \x00s\x00u\x00b\x00-\x00f\x00o\x00l\x00d\x00e\x00r\x00\x7C\x00D\x00e\x00s\x00k\x00t\x00o\x00p\x00/\x00C\x00o\x00l\x00o\x00c\x00a\x00l\x00i\x00z\x00a\x00t\x00i\x00o\x00n\x00 \x00R\x00e\x00s\x00u\x00l\x00t\x00s\x00 Create a GenePattern GCT file?:\xff\xfeN\x00o\x00 Select source of sample row name:\xff\xfeM\x00e\x00t\x00a\x00d\x00a\x00t\x00a\x00 Select the image to use as the identifier:\xff\xfeN\x00o\x00n\x00e\x00 Select the metadata to use as the identifier:\xff\xfeN\x00o\x00n\x00e\x00 Export all measurement types?:\xff\xfeN\x00o\x00 Press button to select measurements:\xff\xfe Representation of Nan/Inf:\xff\xfeN\x00a\x00N\x00 Add a prefix to file names?:\xff\xfeN\x00o\x00 Filename prefix:\xff\xfeM\x00y\x00E\x00x\x00p\x00t\x00_\x00 Overwrite existing files without warning?:\xff\xfeY\x00e\x00s\x00 Data to export:\xff\xfeI\x00m\x00a\x00g\x00e\x00 Combine these object measurements with those of the previous object?:\xff\xfeN\x00o\x00 File name:\xff\xfeD\x00A\x00T\x00A\x00.\x00c\x00s\x00v\x00 Use the object name for the file name?:\xff\xfeY\x00e\x00s\x00