Submission ID #: 61017

Scriptwriter Name: Bridget Colvin

Project Page Link: http://www.jove.com/files_upload.php?src=18610233

Title: Evaluation of the Cognitive Performance of Hypertensive Patients with Silent Cerebrovascular Lesions

Authors and Affiliations: Manman Zhang^{1,2}, Junling Gao³, Bingjiao Xie², Henry Ka Fung Mak⁴, and Raymond Tak Fai Cheung^{2,5}

Corresponding Author:

Raymond Tak Fai Cheung rtcheung@hkucc.hku.hk

Co-authors:

zhangmanman@wmu.edu.cn galeng@hku.hk xb027@ha.org.hk makkf@hku.hk

¹Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University

²Department of Medicine, The University of Hong Kong

³Centre of Buddhist Studies, The University of Hong Kong

⁴Department of Diagnostic Radiology, The University of Hong Kong

⁵Research Centre of Heart, Brain, Hormone & Healthy Aging, The University of Hong Kong

Author Questionnaire

- Microscopy: Does your protocol involve video microscopy, such as filming a complex dissection or microinjection technique?

 N
- **2. Software:** Does the part of your protocol being filmed demonstrate software usage? **Y***Videographer: All screen capture files provided, do not film
- **3. Filming location:** Will the filming need to take place in multiple locations (greater than walking distance)? **N**

Script Length

Number of steps: 31

Introduction

1. Introductory Interview Statements

REQUIRED:

- 1.1. <u>Raymond Tak Fai Cheung</u>: Silent cerebrovascular lesions can cause various functional impairments and cognitive deficits. However, the distinct effects of each type of lesions on cognitive performance remain unclear [1].
 - 1.1.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera

REQUIRED:

- 1.2. <u>Raymond Tak Fai Cheung</u>: Using both neuropsychological tests and multi-sequence MRI scans, we can assess whether various types of silent cerebrovascular lesions are differentially associated with deficits in specific cognitive domains [1].
 - 1.2.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera

Introduction of Demonstrator on Camera

- 1.3. <u>Raymond Tak Fai Cheung</u>: Demonstrating the <u>study</u> procedures will be <u>done</u> by <u>Junling</u> <u>Gao</u>, my research officer, and <u>Tracy Lam</u>, my technical officer [1][2]. <u>NOTE: (sic)</u>
 - 1.3.1. INTERVIEW: Author saying the above
 - 1.3.2. Named demonstrator(s) looks up from workbench or desk or microscope and acknowledges camera

Ethics Title Card

1.4. Procedures involving human subjects have been approved by the Institutional Review Board (IRB) at the University of Hong Kong/Hospital Authority Hong Kong West Cluster (HKU/HA HKW IRB) for human research.

Protocol

2. Neuropsychological Assessments

- 2.1. To set up a symbol digit modalities test, pair 1-9 digits in numeric order with nine unassociated symbols [1] and show a list of the symbols in a random order without the corresponding digits [2].
 - 2.1.1. WIDE: Talent preparing test, with monitor visible in frame
 - 2.1.2. LAB MEDIA: Figure 1C
- 2.2. Before starting the test, instruct the Participant to fill in the blank with the correctly paired digit below each symbol [1-TXT].
 - 2.2.1. Participant filling in blank(s) **TEXT: Allow participant to check pair legend for reference as necessary**
- 2.3. Allow the Participant fill in the first 10 blanks as practice [1], pointing out any errors during the practice stage and encouraging the Participant to be correct [2].
 - 2.3.1. Shot of filled in blanks
 - 2.3.2. Talent pointing out error to/encouraging Participant
- 2.4. When the Participant is ready, start the test, encouraging the Participant to fill in the blanks as quickly and accurately as possible in 90 seconds [1].
 - 2.4.1. Talent timing Participant while Participant fills in blanks
- 2.5. When the Participant has finished or the time has run out, record the number of correct responses [1] and re-start the test, this time having the Participant provide the correctly paired digits verbally [2-TXT].
 - 2.5.1. Talent recording correct responses
 - 2.5.2. Participant reading correct digits **TEXT: Record number of correct oral-SDMT responses**
- 2.6. To assess verbal fluency, ask the Participant to verbally provide a list of names [1] belonging to each of two categories for one minute per category [2].
 - 2.6.1. Participant providing names
 - 2.6.2. Shot of lists

- 2.7. Then record the total number of names listed for each category [1].
 - 2.7.1. Shot of lists with totals being written for list(s)
- 3. Visual Silent Cerebrovascular Lesion (SCL) Rating: Silent Lacunes
 - 3.1. To perform visual ratings of the lesions, first import the data into an appropriate medical imaging software program [1-TXT] and use the anonymize button to anonymize the participant's information [2].
 - 3.1.1. WIDE: Talent importing data, with keyboard visible in frame **TEXT**: **Here Osirix DICOM Viewer Lite is used (https://www.osirix-viewer.com)**
 - 3.1.2. SCREEN: 1 silentlacune: 00:10-00:19
 - 3.2. To rate visual silent cerebrovascular lesions, first locate the silent lacunes in T1-weighted horizontal images, in which the lesions appear as hypointense, 2-15-millimeter-diameter foci [1].
 - 3.2.1. SCREEN: 1 silentlacune: 02:31-02:41
 - 3.3. Search all of the brain regions in a pre-specified order from one side to the other to avoid any omission. For example, search from the frontal lobe [1], insula and basal ganglion [2], temporal lobe, parietal lobe and occipital lobe [3], cerebellum [4], and brain stem [5].
 - 3.3.1. SCREEN: 1 silentlacune: 00:56-01:00
 - 3.3.2. SCREEN: 1 silentlacune: 01:00-01:04
 - 3.3.3. SCREEN: 1 silentlacune: 01:05-01:12
 - 3.3.4. SCREEN: 1 silentlacune: 01:13-01:15
 - 3.3.5. SCREEN: 1_silentlacune: 01:15-01:20
 - 3.4. To confirm the presence of the silent lacunes, view the FLAIR (flair) and T1-weighted images, in which the lacunes can be observed as hypointense foci of 2-15-millimeter diameters, often with a hyperintense rim, and the T2-weighted images, in which the lacunes are hyperintense [1-TXT].
 - 3.4.1. SCREEN: 1_silentlacune: 03:31-03:38 Video Editor: with FLAIR and T1-weighted, please emphasize right image, with T2-weighted, please emphasize left image TEXT: FLAIR: fluid-attenuated inversion recovery
- 4. Visual SCL Lesion Rating: Cerebral Microbleeds and White Matter Hyperintensities

- 4.1. To identify cerebral microbleeds as punctuate or 2-10-millimeter-diameter, round-oval, hypointense foci and their locations, load susceptibility-weighted images into the software [1] and use the Brain Observer MicroBleed Scale to divide the entire brain region into seven anatomical locations [2].
 - 4.1.1. WIDE: Talent loading images, with monitor keyboard visible in frame
 - 4.1.2. ADDED: SCREEN: 2_microbleeds: 00:08-00:26 NOTE: Replace WIDE (4.1.1.) with SCREEN (4.1.2.)
 - 4.1.3. LAB MEDIA: Figure 3 Video Editor: please emphasize or sequentially emphasize 7 labeled regions in images
- 4.2. A participant is considered to have strictly lobar cerebral microbleeds when all of the lesions are confined to the cortex [1] and the subcortical white matter [2].
 - 4.2.1. SCREEN: 2_microbleeds: 00:19-00:25 4.2.2. SCREEN: 2 microbleeds: 04:38-04:43
- 4.3. To identify white matter hyperintensities as bilateral, almost symmetrical hyperintense areas, view the T2-weighted and FLAIR images [1-TXT].
 - 4.3.1. SCREEN: 3_WMH: 03:06-03:11 **TEXT: Confirm white matter hyperintensities on T1-weighted images as isointense or hypointense areas at same locations**
- 4.4. Use the Fazekas scale to score periventricular hyperintensities appearing as "caps" or pencil-thin lining as grade 1 foci [1], smooth "halos" as grade 2 [2], and irregular signals extending into the deep white matter as grade 3 [3].
 - 4.4.1. SCREEN: 3_WMH: 00:28-00:364.4.2. SCREEN: 3_WMH: 01:18-01:284.4.3. SCREEN: 3 WMH: 02:00-02:06
- 4.5. Rate deep white matter hyperintensities appearing as punctate foci as grade 1 [1], small confluent areas as grade 2 [2], and large confluent areas as grade 3 [3].
 - 4.5.1. SCREEN: 3_WMH: 00:37-00:43 4.5.2. SCREEN: 3_WMH: 01:30-01:37 4.5.3. SCREEN: 3_WMH: 02:09-02:13

Results

- 5. Results: Representative SCL Distribution and Associations Between Neurovascular Architecture and Cognitive Function
 - 5.1. In this representative analysis, the mean age of the 398 participants was 72 years [1] and 213 of the participants were men [2].
 - 5.1.1. LAB MEDIA: Table 3 Video Editor: please emphasize Mean age row
 - 5.1.2. LAB MEDIA: Table 3 Video Editor: please emphasize Male row
 - 5.2. Here the neuropsychological assessment results for the participants are shown [1].
 - 5.2.1. LAB MEDIA: Table 4
 - 5.3. Only five participants had all four types of silent cerebrovascular lesions [1].
 - 5.3.1. LAB MEDIA: Table 5 Video Editor: please emphasize All four types row
 - 5.4. One or more types of silent cerebrovascular lesions were found in 169 participants [1], with 35 participants exhibiting two types [3] and 17 exhibiting three types [3].
 - 5.4.1. LAB MEDIA: Table 5 *Video Editor: please emphasize One, Two, and Three types rows*
 - 5.4.2. LAB MEDIA: Table 5 Video Editor: please emphasize 35 (8.8) text
 - 5.4.3. LAB MEDIA: Table 5 Video Editor: please emphasize 17 (4.3) text
 - 5.5. Only five participants had all four types of silent cerebrovascular lesions [1].
 - 5.5.1. LAB MEDIA: Table 5 *Video Editor: please emphasize All four types row* NOTE: Step moved from before 5.4. to after
 - 5.6. The data confirmed an independent association between the burden of periventricular white matter hyperintensities and a poorer performance in executive function and information processing speed [1].
 - 5.6.1. LAB MEDIA: Table 6 Video Editor: please emphasize PVHs severity data rows
 - 5.7. An increasing load of cerebral microbleeds was associated with impaired languagerelated performance and additional adjustment for vascular risk factors and other types

FINAL SCRIPT: APPROVED FOR FILMING

of silent cerebrovascular lesions did not affect the independent impact of cerebral microbleeds on language function [1].

- 5.7.1. LAB MEDIA: Table 6 Video Editor: please emphasize Strictly lobar CMBs
- 5.8. Although there was a significant association between the presence of silent lacunes and a poorer performance on executive function, this association was lost following additional correction for other types of silent cerebrovascular lesions [1].
 - 5.8.1. LAB MEDIA: Table 6 Video Editor: please emphasize Deep SLs

Conclusion

6. Conclusion Interview Statements

- 6.1. <u>Junling Gao</u>: While it is not difficult to learn how to administer the neuropsychological assessments, it can be challenging to follow the standardized procedures on hundreds of patients over three years [1].
 - 6.1.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera
- 6.2. <u>Raymond Tak Fai Cheung</u>: A unified standard should be adopted for both the neuropsychological assessments and <u>ratings</u> of MRI lesion for participants. <u>These</u> procedures should be reviewed periodically to ensure their uniformity [1].
 - 6.2.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera
- 6.3. <u>Junling Gao</u>: Some of the neuropsychological tests have overlaps in their evaluated domains. In future, computer-based tests can be more precise, and additional functional neuroimaging studies can be developed for specific cognitive domains [1].
 - 6.3.1. INTERVIEW: Named talent says the statement above in an interview-style shot, looking slightly off-camera NOTE: (sic)