

Let the longer (L) beam have mass M_L And the bigger beam (B) have mass M_B

The total mass of the system = $M = M_B + M_L$

Assuming that the M of the entire system is located at G (red dot) and located by coordinates: x, y & z w.r.t a cartesian coordinate system O-XYZ, and each Center of mass: for $M_B \& M_L$ is located at: x_B , y_B , $z_B \& x_L$, y_L , z_L respectively.

Summing the moments about the y –axis: $xM = x_B.M_B + x_L.M_L$ Similarly, $yM = y_B.M_B + y_L.M_L$ and $zM = z_B.M_B + z_L.M_L$

$$x = \underline{x_B \cdot M_B} + \underline{x_L \cdot M_L}$$

$$M_B + M_L$$

$$y = \underline{y_B \cdot M_B} + \underline{y_L \cdot M_L}$$

$$M_B + M_L$$

$$z = \underline{z_B \cdot M_B} + \underline{z_L \cdot M_L}$$

$$M_B + M_L$$