Journal of Visualized Experiments

Measuring phagocytosis of Aspergillus fumigatus conidia by human leukocytes using flow cytometry --Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video		
Manuscript Number:	JoVE60397R1		
Full Title:	Measuring phagocytosis of Aspergillus fumigatus conidia by human leukocytes using flow cytometry		
Section/Category:	JoVE Immunology and Infection		
Keywords:	phagocytosis; Aspergillus fumigatus; Ieukocytes; flow cytometry; conidia; anti-FITC aspergillosis; monocytes; neutrophils, Mucorales, Aspergillus		
Corresponding Author:	Susann Hartung, Ph.D. Leibniz Institute for Natural Product Research and Infection Biology Jena, GERMANY		
Corresponding Author's Institution:	Leibniz Institute for Natural Product Research and Infection Biology		
Corresponding Author E-Mail:	Susann.Hartung@leibniz-hki.de		
Order of Authors:	Susann Hartung, Ph.D.		
	Christopher Rauh		
	Sarah Böttcher		
	Mai Thi Ngoc Hoang		
	Susanne Jahreis		
	Silke Rummler		
	Andreas Hochhaus		
	Marie von Lilienfeld-Toal		
Additional Information:			
Question	Response		
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)		
Please indicate the city , state/province , and country where this article will be filmed . Please do not use abbreviations.	Jena, Thuringia, Germany		

1 TITLE:

2 Measuring Phagocytosis of Aspergillus fumigatus Conidia by Human Leukocytes Using Flow

3 Cytometry

4 5 **A**

AUTHORS AND AFFILIATIONS:

6 Susann Hartung^{1,2}, Christopher Rauh², Sarah Böttcher¹, Mai Thi Ngoc Hoang^{1,2}, Susanne

7 Jahreis^{1,2}, Silke Rummler³, Andreas Hochhaus², Marie von Lilienfeld-Toal^{1,2}

8 9

- ¹Infections in Hematology and Oncology, Leibniz Institute for Infection Biology and Natural
- 10 Product Research, Jena, Germany
- ²Department for Hematology and Medical Oncology, Jena University Hospital, Jena, Germany
- 12 ³Institute for Transfusion Medicine, Jena University Hospital, Jena, Germany

13

14 Email addresses of co-authors:

15	Christopher Rauh	<u>christopher.rauh@uni-jena.de</u>
16	Sarah Böttcher	sarah.boettcher@leibniz-hki.de
17	Mai T.N. Hoang	mai.hoang@leibniz-hki.de
18	Susanne Jahreis	susanne.jahreis@leibniz-hki.de
19	Silke Rummler	silke.rummler@med.uni-jena.de
20	Andreas Hochhaus	andreas.hochhaus@med.uni-jena.de
24	NA - da - a - 1 de - Calabra - I	Namia was Hillanfald Taal Quand was invada

21 Marie von Lilienfeld-Toal <u>Marie.von Lilienfeld-Toal@med.uni-jena.de</u>

2223

Corresponding author:

24 Susann Hartung <u>susann.hartung@leibniz-hki.de</u>

25

26 **KEYWORDS**:

phagocytosis, flow cytometry, Aspergillus fumigatus, conidia, FITC, anti-FITC antibody,
 aspergillosis

28 29

30

31

32

SUMMARY:

This protocol provides a fast and reliable method to quantitatively measure phagocytosis of *Aspergillus fumigatus* conidia by human primary phagocytes using flow cytometry and to discriminate phagocytosis of conidia from mere adhesion to leukocytes.

333435

36

37

38

39

40

41 42

43

44

ABSTRACT:

Invasive pulmonary infection by the mold *Aspergillus fumigatus* poses a great threat to immunocompromised patients. Inhaled fungal conidia (spores) are cleared from the human lung alveoli by being phagocytosed by innate monocytes and/or neutrophils. This protocol offers a fast and reliable measurement of phagocytosis by flow cytometry using fluorescein isothiocyanate (FITC)-labeled conidia for co-incubation with human leukocytes and subsequent counterstaining with an anti-FITC antibody to allow discrimination of internalized and cell-adherent conidia. Major advantages of this protocol are its rapidness, the possibility to combine the assay with cytometric analysis of other cell markers of interest, the simultaneous analysis of monocytes and neutrophils from a single sample and its applicability to other cell wall-bearing

fungi or bacteria. Determination of percentages of phagocytosing leukocytes provides a means to microbiologists for evaluating virulence of a pathogen or for comparing pathogen wildtypes and mutants as well as to immunologists for investigating human leukocyte capabilities to combat pathogens.

INTRODUCTION:

Invasive pulmonary aspergillosis is a great threat to immunocompromised patients as treatment options are limited and only successful upon early diagnosis, which leads to high mortality rates¹. Infectious agents are conidia (spores) of the mold Aspergillus fumigatus that are ubiquitous to most habitats². Conidia are inhaled, pass through the airways and can finally enter the lung alveoli. In immunocompetent humans, these conidia are cleared by innate immune cells such as monocytes or macrophages and neutrophil granulocytes, which take up (phagocytose) and digest the pathogens³. Phagocytosis is important for microbiologists and immunologists likewise when interested in host-pathogen interactions. Confrontation assays, such as co-incubation of leukocytes and conidia, often include labeling of the spores by fluorescein or its derivative fluorescein isothiocyanate (FITC). Using a microscope, it is to identify internalized fluorescent conidia and attached/adherent conidia, although this approach is cumbersome and realistically restricted to a few hundreds of cells⁴. However, in flow cytometry which easily allows the analysis of hundreds of thousands of cells within minutes, differential staining of phagocytosed and adherent conidia is vital. Therefore, many protocols rely on Trypan Blue to quench FITCfluorescence from adherent conidia⁵⁻⁸. Another approach is exploiting fluorescence resonance energy transfer of ethidium bromide and FITC to emit red instead of green fluorescence from adherent conidia⁹⁻¹¹. If specific antibodies are available, as is the case for some bacteria, cellbound particles can be directly stained^{12,13}.

Here, we present a protocol to quickly and quantitatively assess phagocytosis of FITC-labeled *A. fumigatus* conidia by human leukocytes along with attachment of spores to cells and lack of interaction by employing an allophycocyanin (APC)-coupled anti-FITC antibody. The method also allows for the simultaneous flow cytometric analysis of further cell markers that can be employed for separate analysis of phagocytosis by monocytes and neutrophils from the same sample.

The protocol can be applied for characterization of fungal strains (e.g., several species of *Aspergillus* and other molds from the genus *Mucorales* presented here) and their mutants¹⁴ and immunological research on phagocytes, such as leukocytes from immunocompromised individuals.

PROTOCOL:

This protocol includes the use of human buffy coats obtained from the Institute for Transfusion Medicine, Jena University Hospital and fresh venous blood drawn from patients, both after written informed consent of the donors in accordance to ethics committee approval 4357-03/15.

90 **1.** Preparation of Aspergillus fumigatus conidia
91
92 1.1. Grow A. fumigatus on 1.5% malt agar Petri dishes for 5 days at 37 °C without CO₂.
93
94 CAUTION: A. fumigatus is a biosafety level 2 microorganism and must be handled

CAUTION: A. fumigatus is a biosafety level 2 microorganism and must be handled in an appropriate facility using a biosafety cabinet and wearing lab coat, gloves and a filter mask.

NOTE: The plate should be covered completely with a green-greyish layer of conidia. White cultures do not sporulate. Composition of malt agar: 4% (w/v) malt extract, yeast extract 0.4% (w/v), agar 1.5% (w/v), Aqua dest.

1.2. Harvesting conidia

95

96 97

98

99

100

101102103

104

105

109110

111

112113

114

116

118

123124

125

126127

130131

132

1.2.1. Place a paper towel wet with disinfectant into the biosafety cabinet and put the plate on top to prevent overdistribution of volatile conidia.

1.2.2. Add 10 mL of phosphate buffered saline (PBS) + 0.01% detergent on top of the fungus, use a Drigalski spatula to spread the liquid over the plate and rub off the dark colored conidia.

108 Be careful not to remove the white mycelium.

1.2.3. Put the conidia suspension to a 50 mL tube using a 30 μm cell strainer to remove any residual mycelium.

1.2.4. Repeat steps 1.2.2 and 1.2.3 and collect in the same 50 mL tube.

1.2.5. Spin for 5 min at $2,600 \times g$ at room temperature.

1.2.6. Remove the supernatant and resuspend in 20 mL of sterile Aqua dest.

1.2.7. Determine conidia concentration with a Thoma counting chamber.120

NOTE: The protocol can be paused here and the conidia suspension stored for up to 1 month at 4 °C with the lid screwed tightly.

1.3. FITC labeling

1.3.1. Prepare a 0.1 mM solution of FITC powder in sterile 0.1 M Na₂CO₃ (dissolved in PBS).

128 CAUTION: FITC powder is hazardous and should be handled with gloves, goggles and a filter 129 mask. Collect waste according to local regulations.

NOTE: Omit artificial light during this and the following steps involving conidia.

133 1.3.2. Resuspend 1 x 10⁸ (or less) conidia in 5 mL of FITC solution in a 15 mL tube. Incubate for 20 min at 37 °C in a rotator.

135

136 1.3.3. For the negative control, resuspend conidia in 0.1 M Na₂CO₃ (without FITC) in a 15 mL tube. Incubate for 20 min at 37 °C in a rotator.

138

NOTE: When calculating the amount of conidia to be stained, take into account a loss of up to 70% during staining, swelling and all necessary washing steps. If no rotator is available, the suspension should be shaken three times during incubation.

142

143 1.3.4. For washing, add 10 mL of PBS + 0.01% detergent to the suspension and spin for 5 min at $2,600 \times g$ at room temperature.

145

1.3.5. Remove supernatant and repeat washing twice with 10 mL of PBS + 0.01% detergent.

147148

1.4. Swelling of conidia (may be omitted if not desired)

149

1.4.1. Resuspend FITC labeled conidia in 5 mL of Roswell Park Memorial Institute (RPMI) 151 medium + 10% Fetal Calf Serum (FCS) and incubate in a rotator at 37 °C for the desired time 152 (e.g., 2 h, 4 h).

153

NOTE: If no rotator is available, the suspension should be shaken at least every 20 min during incubation.

156

1.4.2. Add 10 mL of PBS + 0.01% detergent to the suspension and spin for 5 min at 2,600 x g at room temperature.

159

160 1.4.3. Remove the supernatant and wash twice with 10 mL of PBS + 0.01% detergent.

161

162 1.4.4. Filter through a 30 μm cell strainer to remove large clumps of conidia.

163

164 1.5. Fixing of conidia (may be omitted if not desired)

165

1.5.1. Resuspend FITC labeled and swollen conidia in 1 mL of formaldehyde and incubate for 1
 h at room temperature.

168

169 1.5.2. Add 10 mL of PBS + 0.01% detergent to the suspension and spin for 5 min at 2,600 x g at room temperature.

171

1.5.3. Remove the supernatant and wash twice with 10 mL of PBS + 0.01% detergent.

173

NOTE: The protocol can be paused here and the conidia stored in PBS in the dark (tube wrapped up in aluminum foil) for up to 1 week at 4 °C.

176

177 **2.** Preparation of human primary leukocytes
178

181

185

188

192

194

197

199

203204

205

209

212

214

216

219

- Put 5 mL of buffy coat in a 50 mL tube. Alternatively, use fresh human peripheral venous
 blood drawn into ethylenediaminetetraacetic acid (EDTA) monovettes (10 mL per 50 mL tube).
- 182 CAUTION: Human blood may transmit viruses such as Human Immunodeficiency Virus and 183 Hepatitis B Virus. Handle only after being vaccinated against Hepatitis B. Handle in a biosafety 184 cabinet wearing lab coat and gloves.
- 2.2. Fill up the tube with Erythrocyte Lysis (EL) Buffer, invert three times and incubate for 5-8
 min horizontally until the milky appearance of the mixture turns clear.
- NOTE: Occasionally, the blood may take longer to lyse. Go by the appearance. It is not unusual that two tubes of the same blood take different times to lyse. Composition of EL buffer: 0.15 M NH₄Cl, 10 mM KHCO₃, 0.1 mM EDTA
- 193 2.3. Spin for 10 min at 300 x g at room temperature. Discard the supernatant.
- 2.4. Resuspend the pellet in 1 mL of EL Buffer by pipetting. Then add another 24 mL of EL buffer, and invert several times.
- 198 2.5. Spin for 5 min at 300 x g at room temperature.
- 200 2.6. Discard the supernatant and resuspend cells in 1 mL of RPMI + 10% FCS. 201
- 202 2.7. Determine the cell concentration with a Neubauer counting chamber.
 - 3. Phagocytosis assay
- 3.1. Incubate 2 x 10⁶ leukocytes and 4 x 10⁶ FITC-labeled conidia (multiplicity of infection = 2) in 1.5 mL of RPMI + 10% FCS in a 12-well cell culture plate. As controls, include cells only (no conidia) and cells + unlabeled conidia.
- 3.2. Place in a humidified CO₂ incubator at 37 °C and incubate for the desired period of time (e.g., 0.5 h, 2 h or 4 h).
- 213 3.3. After incubation, harvest cells with a cell scraper and put in a 15 mL tube.
- 215 3.4. Spin for 5 min at 300 x g at room temperature.
- 217 3.5. Collect supernatant for cytokine analysis or discard if not wanted. Resuspend each sample in $100~\mu L$ of PBS + 2 mM EDTA.
- 220 4. Antibody staining

221
222 4.1 For each sample propage 100 ull of antibody mix including A

222 4.1. For each sample, prepare 100 μL of antibody mix, including APC anti-FITC antibody, 223 according to **Table 1**.

224

225 4.2. Put a 100 μL sample into one well of a 96-well V-bottom plate. Add 150 μL of PBS + 2
226 mM EDTA for washing.

227

4.3. For color compensation, place 1 x 10^6 cells for each color in further wells of the 96-well V bottom plate. Include a well of cells that is left unstained. Add 150 μ L of PBS + 2 mM EDTA for washing.

231

232 4.4. Cover plate with an adhesive foil.

233234

4.5. Spin for 5 min at 300 x g at room temperature. Remove the foil.

235

236 4.6. Discard the supernatant by quickly and forcefully inverting the plate only once over the sink or a disposable paper towel.

238

NOTE: Do not repeat or knock the plate on a paper until dry as this will result in a massive loss of cells from the plate.

241

242 4.7. Resuspend cells in the 100 μL antibody mix, and mix well by pipetting.

243244

4.8. For color compensation, resuspend the respective cells in 100 μ L of PBS + 2 mM EDTA and add a single antibody to each well at the same amount used in the antibody mix.

245246

4.9. Cover with an adhesive foil and incubate for 20 min at room temperature in the dark.

247248

249 4.10. Remove the foil. Add 150 μL of PBS + 2 mM EDTA to each well for washing. Cover with an adhesive foil.

251252

4.11. Spin for 5 min at 300 x g at room temperature. Remove the foil. Discard the supernatant by quickly and forcefully inverting the plate over the sink or a disposable paper towel.

253254

255 4.12. Resuspend in 200 μ L of PBS + 2 mM EDTA and transfer cells from each well to a separate 256 round bottom tube. Make sure there are no cell clusters in the suspension. Remove clusters 257 otherwise.

258

NOTE: Every cluster that is large enough for the eye to see is large enough to potentially clog the cytometer.

261

262 **5. Flow cytometry**

263

264 5.1. Start the flow cytometer and let it warm up. Start the acquisition software.

5.2.	Create a new experiment and setup and label the samples.
- 2	Call and account on (ECC 250, CCC 250), and detection for fill and because EITC ADC
5.3.	Set up parameters (FSC 250, SSC 250) and detectors for fluorophores FITC, APC
BOA3	95, V500, PerCP-Cy5.5.
г 4	Componentian cotun
5.4.	Compensation setup
E / 1	Open compensation setup.
3.4.1.	Open compensation setup.
542	Indicate individual colors.
J.4.2.	malcate marviada colors.
543	Using the control cells left unstained or with individual stainings, set the PMT detecto
	ges to include all events within the scale.
	, ·······························
5.4.4.	Record at least 10,000 events of each control.
5.4.5.	Use the compensation setup to calculate the spillover of fluorophores and apply to the
	iment's cytometer settings.
5.5.	Recording sample data
<mark>5.5.1</mark> .	Display FSC and SSC in the acquisition software and set gate around leukocytes.
	Based on the leukocyte gate, display dot plot SSC/CD45 and gate for CD45+ cells to
<mark>separ</mark>	r <mark>ate from conidia.</mark>
	Display CD45+ cells in a dot plot CD14/CD66b and gate monocytes (CD14+) and
neutr	ophils (CD66b+) separately.
гг 4	Display poutrophils in a det plot enti FITC/FITC
5.5.4.	Display neutrophils in a dot plot anti-FITC/FITC.
	Using the sample with unlabeled conidia, set quadrants for anti-FITC and FITC signals
	ing a maximum of 1% of cells in the respective quadrants.
allow	ing a maximum of 1% of cens in the respective quadrants.
556	Repeat steps 5.5.4 and 5.5.5 for monocyte gate.
<mark>J.J.0.</mark>	Repeat steps 3.3.4 and 3.3.3 for monocyte gate.
5.5.7.	Record all samples with at least 20,000 events in the leukocyte gate.
3.3.7	record an samples with at least 20,000 events in the leaked) te gate.
REPR	ESENTATIVE RESULTS:
	easuring phagocytosis of <i>A. fumigatus</i> conidia by human phagocytic cells, discrimination
	een genuine internalization and mere attachment of conidia to the cells is an obstacle

especially when it comes to high-throughput methods such as flow cytometry. In order to

overcome this hurdle, we present a fast and reliable protocol based on the staining of conidia

307 308 with the fluorescent dye FITC prior to co-incubation of cells and conidia, followed by a counterstaining with an APC-labeled anti-FITC antibody after incubation (**Figure 1A**). As shown in **Figure 1B**, FITC-labeled conidia are phagocytosed by human monocytes and neutrophils that provide a green signal to the cells. These conidia are inaccessible for the anti-FITC antibody and, hence, cannot bind the antibody and the cells appear APC negative (FITC+, APC-). Non-interacting cells do not acquire a green signal from FITC-labeled conidia and remain FITC-, APC-. A few cells appear FITC-, APC+. Since the anti-FITC APC antibody should not be able to bind cells without FITC-labeled conidia, these events are considered staining artifacts. FITC-labeled conidia, which are attached to the cells but not internalized, render cells also positive for FITC but also provide a target for the anti-FITC antibody that makes these cells double positive for FITC and APC (FITC+, APC+). When analyzed microscopically, this population contained up to 20% of cells with attached conidia only in our experiments.

Using the antibodies described in this protocol and following the gating strategy in **Figure 1D**, a general gating of human leukocytes by FSC and SSC characteristics is followed by a separation of leukocytes and free conidia by the pan-leukocyte marker CD45. Especially when using swollen conidia and/or long incubation times, conidia can reach almost cell size at the time of flow cytometry and hence bias analysis. Since human primary monocytes and neutrophils take up conidia differently, this protocol allows to separately analyze these cell population based on staining with the well-established cell lineage markers CD14 for monocytes and CD66b for neutrophils. Gating for phagocytosing and adherent cell populations is done based on control samples with unlabeled conidia that carry neither a FITC nor an anti-FITC APC signal. When APC and FITC are plotted against each other, quadrants are set in such a manner that a maximum of 1% cells are allowed in the gates of interest.

The percentage of human primary phagocytes internalizing conidia can be highly variable among blood donors but also depends on experimental factors such as incubation time and swelling state of conidia. Spore internalization can be detected after 0.5 h of co-incubation already and increases with time (Figure 2A). Pre-swollen conidia are taken up easier than resting (not swollen) spores even at short incubation times (Figure 2B). If conidia are fixed with formaldehyde, phagocytosis is diminished compared to native conidia (Figure 2C).

FIGURE AND TABLE LEGENDS:

Table 1: Antibody mix for flow cytometry. Amounts of each reagent are given as microliters per sample $(1 \times 10^6 \text{ cells})$ to be analyzed.

Figure 1: Setup and analysis of flow cytometric phagocytosis assay. (A) Scheme of the protocol including conidia and cell preparation and counterstaining. (B) Phagocytosis is analyzed by plotting of flow cytometric data of FITC-labeled conidia against anti-FITC APC counterstaining. Resulting populations indicate percentages of non-interacting leukocytes (FITC-, APC-), leukocytes with adherent conidia (FITC+, APC+) and phagocytosing leukocytes (FITC+, APC-) as well as staining artifacts (FITC-, APC+). (C) Double positive cell populations from 3 different experiments with 3 different donors (two of them performed in duplicates, one performed single) were microscopically counted for internalized and attached only conidia. (D)

Representative gating strategy of flow cytometric data to detect leukocytes (CD45), identify monocytes (CD14) and neutrophils (CD66b) and determine interacting populations (FITC, anti-FITC). This figure has been modified from Hartung et al., Cytometry A, 95: 3, p. 332-338 (2019)¹⁴.

Figure 2: Phagocytosis of conidia by human primary phagocytes depends on several conditions. (A) Percentage of cells internalizing resting conidia increased with co-incubation time. (B) Phagocytosis increased with conidial swelling time when co-incubated for 0.5 h. (C) Native conidia were better phagocytosed than fixed conidia. Data were obtained from 10 different donors (A,B) or 5 different donors (C) in 10 (A,B) or 5 (C) independent experiments. Error bars indicate SD. This figure has been modified from Hartung et al., Cytometry A, 95: 3, p. 332-338 (2019)¹⁴.

Figure 3: Analysis of phagocytosis is a means to assess functionality of human primary phagocytes and characterize clinically relevant molds. (A) Exemplary comparison of monocytes from a healthy donor and an immunosuppressed patient (after hematopoietic stem cell transplantation) phagocytosing resting conidia for 0.5 h, 2 h and 4 h. (B) Phagocytosis of resting fungal conidia was determined for clinically relevant *Aspergillus* and *Mucorales* species after 2 h co-incubation. Data were obtained from 5 (*Aspergillus*) or 3 (*Mucorales*) different donors in 5 or 3 independent experiments each. Error bars indicate SD. Abbreviations: A. *Aspergillus*, L. *Lichtheimia*, M. *Mucor*, R. *Rhizopus*

DISCUSSION:

This protocol presents a fast flow cytometric method to measure interaction of *A. fumigatus* conidia with a large number of primary human leukocytes that is not possible in common microscopic protocols. Imaging cells with a microscope and manually counting internalized conidia is cumbersome and can realistically be done for a few hundred cells only. Flow cytometry overcomes this problem by measuring thousands of cells within minutes. A hurdle common to both approaches is the distinction of phagocytosed and adherent conidia in or on cells, respectively. In microscopy, the dye calcofluor white is often used for staining adherent conidia but its usage is limited to microorganisms with a chitin-containing cell wall.

This protocol in contrast used distinct fluorophores for characterization of interaction events that allows the addition of further cell markers, such as the lineage markers CD45, CD14 and CD66b. Thus, it is also possible to discriminate phagocytosis of pathogens by monocytes and neutrophils in a single sample. While the choice of markers and fluorophores for cell identification can be adapted to the needs of the experiment and the capacities of the available cytometer, the usage of the specific APC anti-FITC antibody mentioned in this protocol is recommended as it was the most reliable antibody in our hands.

Since formaldehyde-fixed conidia are not internalized equally well, native spores are recommended for phagocytosis assays. However, native conidia will start or continue swelling during the co-incubation with human leukocytes and eventually germinate. Typically, *A. fumigatus* conidia germinate after about 8-9 h in glucose-containing media at 37 °C. The

combination of swelling time and co-incubation time with phagocytes should not exceed this time frame as germination causes the loss of FITC on the conidia surface. More important, germlings cannot be phagocytosed anymore by monocytes or neutrophils. Instead, these phagocytes accumulate around and stick to germlings that produce cell clusters that clog the cytometer, if not removed. Similarly, 4 h swollen conidia tend to generate clusters among themselves and with cells. Often these clusters cannot be separated mechanically anymore and the cells within are lost for flow cytometric analysis.

Although gating is straightforward and easy in the beginning, the more conidia are internalized by cells, the blurrier gating may become. Using MOIs > 2 increases phagocytosis at initial time points but gating issues might arise earlier as well. Therefore, MOIs should be carefully determined with the specific cells and pathogens of interest.

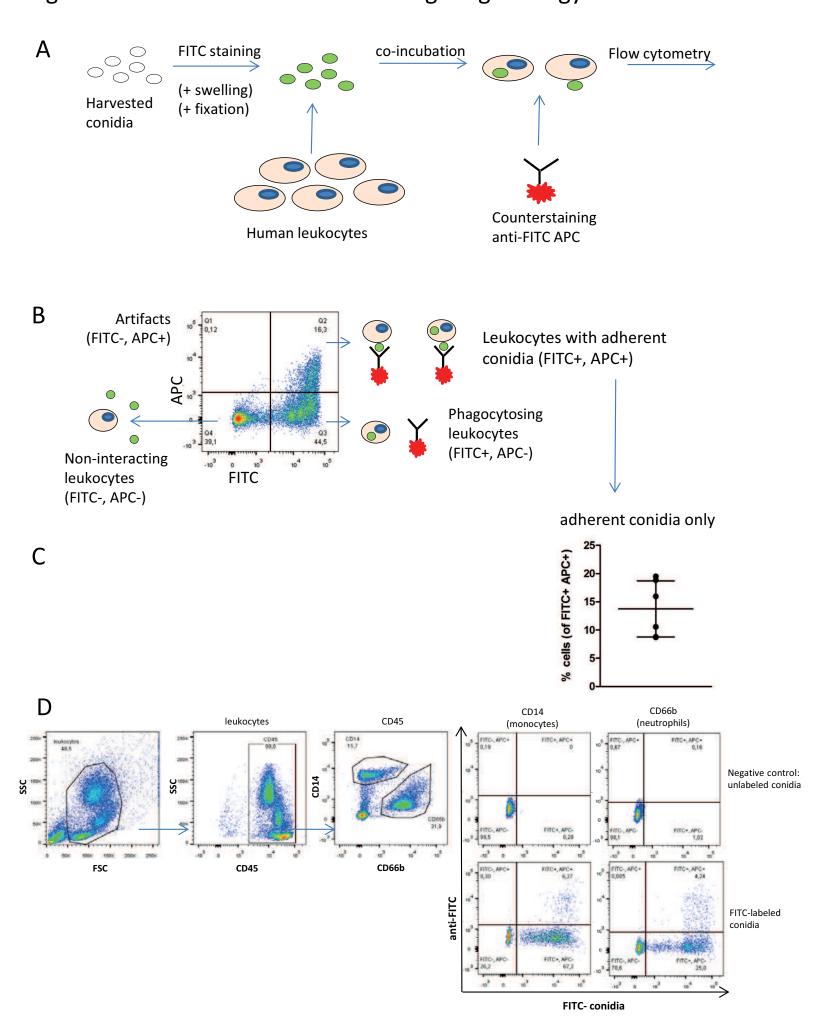
A limitation of this protocol is in the duality of the cell population with adherent conidia (FITC+ APC+) that might also be harboring cells with adherent as well as internalized conidia. A possibility for further discrimination is the application of imaging flow cytometry¹⁵ that allows visual imaging of all cells measured in the flow cytometer.

Due to the unspecific FITC labeling of the conidial cell wall, this method is easily transferable to other fungi of interest such as clinically relevant molds of the genus *Mucorales* or the yeast *Candida albicans*. Moreover, also cell-wall bearing bacteria can be FITC-labeled. The universal counterstaining with the anti-FITC antibody allows fast and easy measurement of phagocytosis of all these pathogens alike by a large number of human leukocytes.

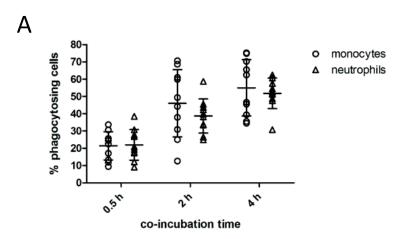
ACKNOWLEDGMENTS:

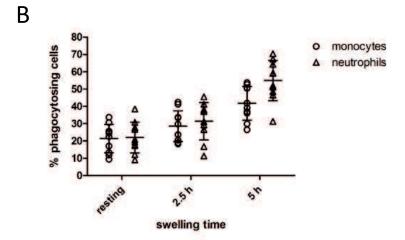
We thank Mrs. Pia Stier for excellent technical assistance. M. von Lilienfeld-Toal is supported by the Center for Sepsis Control and Care (German Federal Ministry of Education and Health, BMBF, FKZ 01E01002) and InfectoGnostics Research Campus (BMBF, FKZ 13GW0096D). Thi Ngoc Mai Hoang is supported by the Jena School of Microbial Communication (Deutsche Forschungsgemeinschaft, FKZ 214/2)

DISCLOSURES:


The authors have nothing to disclose.

REFERENCES:


- Hidden killers: human fungal infections. *Science Translational Medicine*. **4** (165), 165rv113 (2012).
- 2 Brakhage, A. A., Bruns, S., Thywissen, A., Zipfel, P. F., Behnsen, J. Interaction of phagocytes with filamentous fungi. *Current Opinion in Microbiology.* **13** (4), 409-415 (2010).
- Heinekamp, T. et al. Interference of Aspergillus fumigatus with the immune response.
- *Seminars in Immunopathology.* **37** (2), 141-152 (2015).
- 438 4 Slesiona, S. et al. Persistence versus escape: Aspergillus terreus and Aspergillus 439 fumigatus employ different strategies during interactions with macrophages. PLoS One. 7 (2),
- 440 e31223 (2012).


- 441 5 Busetto, S., Trevisan, E., Patriarca, P., Menegazzi, R. A single-step, sensitive flow
- 442 cytofluorometric assay for the simultaneous assessment of membrane-bound and ingested
- 443 Candida albicans in phagocytosing neutrophils. Cytometry A. 58 (2), 201-206 (2004).
- Lowe, D. M. et al. A novel assay of antimycobacterial activity and phagocytosis by
- 445 human neutrophils. *Tuberculosis (Edinb).* **93** (2), 167-178 (2013).
- 446 7 Nuutila, J., Lilius, E. M. Flow cytometric quantitative determination of ingestion by
- phagocytes needs the distinguishing of overlapping populations of binding and ingesting cells.
- 448 *Cytometry A.* **65** (2), 93-102 (2005).
- Saresella, M. et al. A rapid evaluation of phagocytosis and killing of *Candida albicans* by
- 450 CD13+ leukocytes. *Journal of Immunological Methods.* **210** (2), 227-234 (1997).
- 451 9 Fattorossi, A., Nisini, R., Pizzolo, J. G., D'Amelio, R. New, simple flow cytometry
- 452 technique to discriminate between internalized and membrane-bound particles in
- 453 phagocytosis. *Cytometry.* **10** (3), 320-325 (1989).
- 454 10 Heinzelmann, M., Gardner, S. A., Mercer-Jones, M., Roll, A. J., Polk, H. C., Jr.
- 455 Quantification of phagocytosis in human neutrophils by flow cytometry. Microbiology and
- 456 *Immunology.* **43** (6), 505-512 (1999).
- 457 11 Perticarari, S., Presani, G., Mangiarotti, M. A., Banfi, E. Simultaneous flow cytometric
- 458 method to measure phagocytosis and oxidative products by neutrophils. Cytometry. 12 (7), 687-
- 459 693 (1991).
- 460 12 Sveum, R. J., Chused, T. M., Frank, M. M., Brown, E. J. A quantitative fluorescent method
- 461 for measurement of bacterial adherence and phagocytosis. Journal of Immunolological
- 462 Methods. 90 (2), 257-264 (1986).
- 463 13 de Boer, E. C., Bevers, R. F., Kurth, K. H., Schamhart, D. H. Double fluorescent flow
- 464 cytometric assessment of bacterial internalization and binding by epithelial cells. Cytometry. 25
- 465 (4), 381-387 (1996).
- 466 14 Hartung, S. et al. Fast and Quantitative Evaluation of Human Leukocyte Interaction with
- 467 Aspergillus fumigatus Conidia by Flow Cytometry. Cytometry A. 95 (3), 332-338 (2019).
- 468 15 Fei, C., Lillico, D. M. E., Hall, B., Rieger, A. M., Stafford, J. L. Connected component
- 469 masking accurately identifies the ratio of phagocytosed and cell-bound particles in individual
- 470 cells by imaging flow cytometry. *Cytometry A.* **91** (4), 372-381 (2017).

<u>*</u>

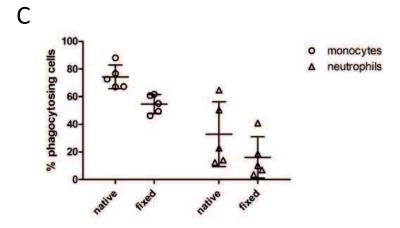
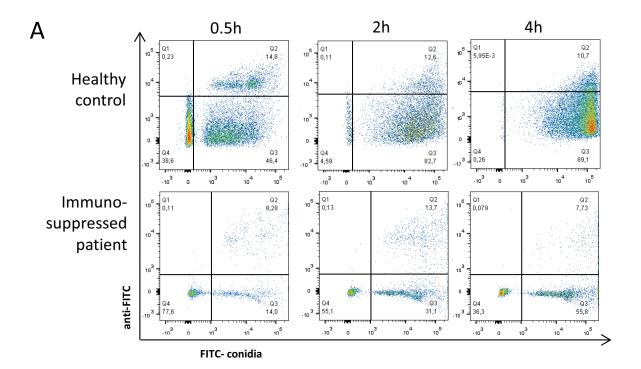
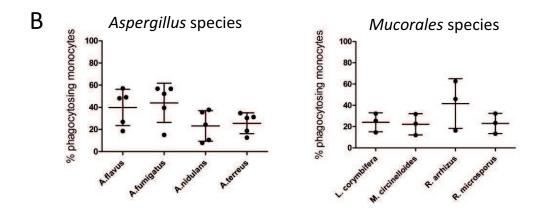
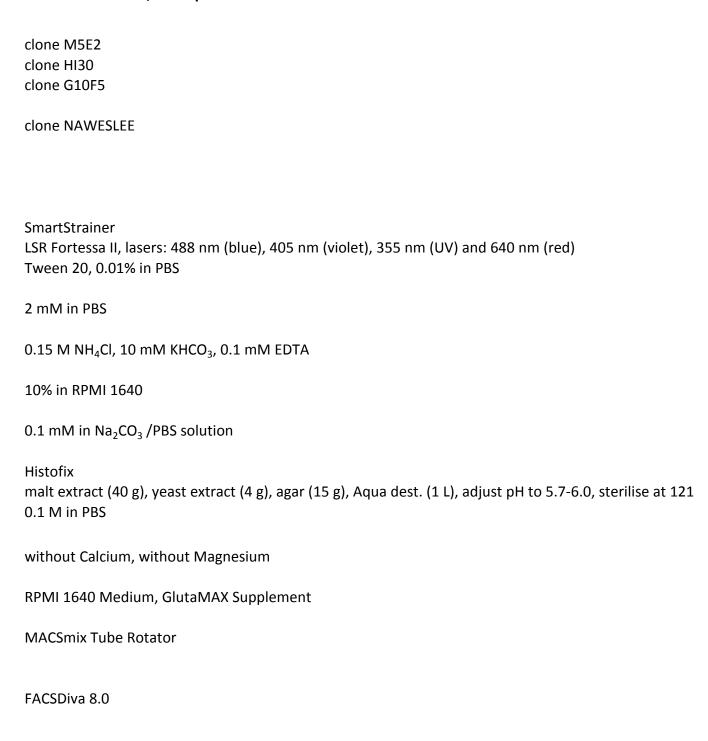
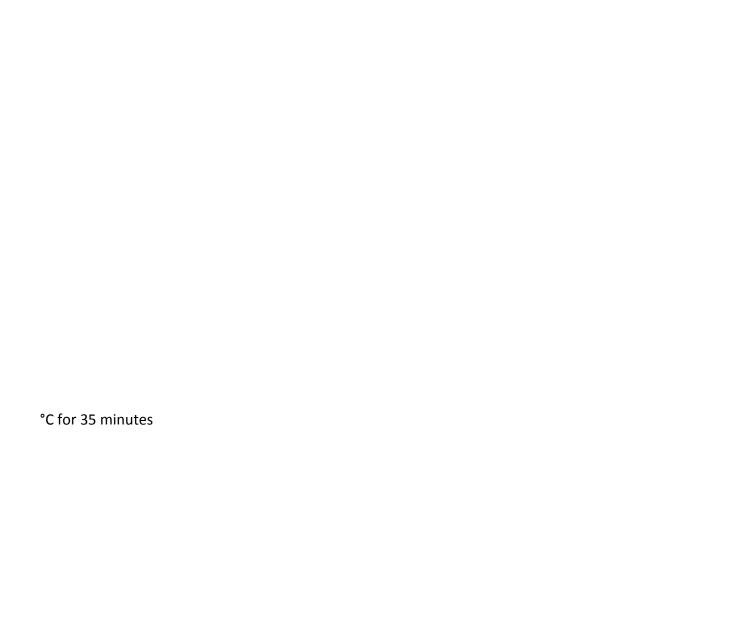




Figure 3: Application of phagocytosis





Name of Material/	Company	Catalog Number
Equipment		704267
Adhesive foil	Brand	701367
anti-CD14 V500	BD Biosciences	561391
anti-CD45 BUV395	BD Biosciences	563792
anti-CD66b PerCP-	BD Biosciences	562254
Cy5.5	T. F. I	47 7604 02
anti-FITC APC	ThermoFisher	17-7691-82
	Scientific	665400
Cell culture plate, 12-	Greiner Bio-one	665180
well	Dia avvianta ala	800030
Cell scraper	Bioswisstech	800020
Cell strainer, 30 μm	Miltenyi Biotech	130-098-458
Cytometer	BD Biosciences	D4 2 7 0
Detergent	Sigma Aldrich	P1379
Drigalski spatula	Carl Roth	PC59.1
Ethylenediaminetetraa	Sigma Aldrich	ED3SS-500g
cetic acid (EDTA)		
Erythrocyte lysis buffer		
Fetal Calf Serum (FCS)	Biochrom AG	S 0115
Fluorescein	Sigma Aldrich	F3651-100MG
isothiocyanate (FITC)		
Formaldehyd	Carl Roth	PO87.3
Malt agar (1.5%)		
Na_2CO_3	Carl Roth	8563.1
Petri dish	Greiner Bio-one	633180
Phosphat Buffered	ThermoFisher	189012-014
Saline (PBS)	Scientific	
RPMI 1640	ThermoFisher	61870010
	Scientific	
Rotator	Miltenyi Biotech	130-090-753
Round-bottom tube,	Corning	REF 352008
7.5 mL		
Software for data	BD Biosciences	
acquisition and		
analysis		
V-bottom plate, 96 wel	l Brand	781601

Comments/Description

untreated surface

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Measuring phagocytosis o	f Aspergillus fumigatus conictia by
Author(s):	human Lenkocyks using Susaun Hartung, Christophe Jahreis, Silke Rummler, A.	f Aspergillus fumigatus conictia by flow cytometry er Ranh, Mai Thi Ngoc Hoang, Swanne ndreas Hochhaus, Marie von Littenfeld-
Item 1: The	Author elects to have the Materi	als be made available (as described at
http://www.jove	e.com/publish) via:	
Standard	d Access	Open Access
Item 2: Please se	elect one of the following items:	
The Autl	hor is NOT a United States government er	nployee.
	thor is a United States government emport factories of his or her duties as a United States gove	loyee and the Materials were prepared in the ernment employee.
	hor is a United States government employ of his or her duties as a United States gove	ree but the Materials were NOT prepared in the ernment employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-

nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, recording, art reproduction, abridgment, sound condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.

- 2. **Background.** The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. **Retention of Rights in Article.** Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. **Protection of the Work.** The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. **Likeness, Privacy, Personality.** The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

ARTICLE AND VIDEO LICENSE AGREEMENT

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

13. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication of the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.

14. **Transfer, Governing Law.** This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDING AUTHOR

CORRESPONDIN	Id Ad IIION					
Name:				1		
	Susaun Hartung					
Department:						
	Intections in Itematolo	gy an	d Oucology			
Institution:	Infections in Hematology and Oucology nstitution: Leibniz Institute for Infection Biology and Natural Production					
	ceionit institute for infi	ection c	horogy and rodistroe tro	Research		
Title:						
ricie.	DC					
	(11.1		06/06/2019			
Signature:	5,1701-9	Date:	06/06/2013			

Please submit a signed and dated copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

Dear Dr. Wu,

Thank you very much for considering our manuscript "Measuring phagocytosis of Aspergillus fumigatus conidia by human leukocytes using flow cytometry" for publication. We are also thankful for the reviewers' as well as the editorial comments as we feel they improve the manuscript substantially.

Editorial comments:

- 1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues.
- 2. Please obtain explicit copyright permission to reuse any figures from a previous publication. Explicit permission can be expressed in the form of a letter from the editor or a link to the editorial policy that allows re-prints. Please upload this information as a .doc or .docx file to your Editorial Manager account. The Figure must be cited appropriately in the Figure Legend, i.e. "This figure has been modified from [citation]."
- 3. Please use 12 pt font and single-spaced text throughout the manuscript.
- 4. Please use h, min, s for time units.
- 5. JoVE cannot publish manuscripts containing commercial language. This includes company names of an instrument or reagent. Please remove all commercial language from your manuscript and use generic terms instead. All commercial products should be sufficiently referenced in the Table of Materials and Reagents.
- 6. Please do not abbreviate journal titles for references.
- 7. Please specify the antibody in the protocol.
- 8. Please define all abbreviations before use.
- 9. Please specify the composition of all buffer or media in the protocol.

The manuscript was carefully checked for formatting, requested units, abbreviations and commercial language. It was proofread by three people. All antibodies used are specified in the Table of Materials and Reagents and were not further detailed in the protocol to avoid commercial language.

The references were updated and buffer and media compositions were added to the protocol.

Copyright permission was uploaded as .doc file as requested and citations added to the respective figures although the figures intended for publication with JOVE are not the same as in the previous publication.

Reviewers' comments:

Reviewer #1:

Major Concerns:

The double labeling strategy with FACS has been repeatedly published to identify conidia of A.fumigatus binding to phagocytes vs conidia phagocytosed. Here an antibody against FITC is used instead of the classical anti-conidium antibody. This ms does not bring anything new special (except

the use of an antiFITC antibody but at the end it is always the same strategy)

Discriminate phagocytosis of pathogens by monocytes and neutrophils in a single sample is not an issue for aspergillosis since these phagocytes are not present together and targets different

morphotypes.

The authors mention that the limitation of this protocol is in the duality of the cell population that harbor cells with adherent as well as internalized conidia. But they did not explore the putative solutions (even though they mention one ref)

Upon intake of *A. fumigatus* conidia to the human lung, alveolar macrophages constitute the first line of cellular defense. However, if cytokines are released to acquire further innate leukocytes to combat conidia, monocytes as well as neutrophils are recruited from the blood stream. Thus, the analysis of phagocytotic capabilities of monocytes and neutrophils towards conidia might still hold relevance.

Regarding the issue of a double-positive population, combining microscopy and flow cytometry, as already reported by Fei et al. (Cytometry A. 91 (4), 372-381, 2017) provides a sophisticated way to automatically determine percentages of cells with adherent conidia and cells with ingested and adherent conidia. If such a device is unavailable, manual microscopy is an alternative. Going for the latter, we further checked the double-positive population. Please see the reply to reviewer 2 on this aspect.

Reviewer #2:

Manuscript Summary:

A straightforward description of a standard protocol for measuring the phagocytosis of fungal spores by human blood monocytes.

Major Concerns:

No major concerns with the protocol or the written article.

Minor Concerns:

Microscopic analysis of the double positive population should be performed to provide a general quantitative assessment of how many macrophages or neutrophils have spores exclusively on their surface (e.g. non-phagocytic cells). This would provide an understanding (e.g. 10% of the population) of how many leukocytes failed to internalize their targets at the times examined. In addition, how sensitive is this assay for measuring meaningful changes in the phagocytic potential of human leukocytes? Do PBLs from immunocompromised donors demonstrate reduced abilities to engulf these pathogens? If so, can the current protocol be used to accurately detect a reduced phagocytic potential? Overall, I think this would be a very important aspect of the study.

As to distinguish the double positive population (FITC+ APC+) of cells with attached and potentially phagocytosed conidia, we took the chance to analyze this population microscopically and found

between 8 and 20% of these cells to harbor only attached conidia (see new Figure 1 C). To point out the fact in the manuscript, the respective part from the Representative Results sections now reads:

"FITC-labeled conidia that are attached to the cells but not internalized, render cells also positive for FITC but also provide a target for the anti-FITC antibody which makes these cells double positive for FITC and APC (FITC+, APC+). When analyzed microscopically, this population contained up to 20% of cells with attached conidia only in our experiments."

The reviewer was also enquiring after usage of the assay to detect changes in the phagocytic potential of human leukocytes. We have tested leukocytes from immunocompromised donors (having undergone allogenic stem cell transplantation) with our assay and found their ability to engulf *A. fumigatus* conidia diminished. Because these data in their entirety will be presented in a separate manuscript being in preparation, we present an example here in the new Figure 3. At all tested time points phagocytosis of patient monocytes lacked behind healthy cells (Figure 3 A).

Reviewer #3:

Manuscript Summary:

The authors describe a protocol for assessment of phagocytosis of Aspergillus conidia by primary human phagocytes with flow cytometry

Major Concerns:

The protocol is well described and seems straightforward

Minor Concerns:

The use of FITC-labeling for conidia of other fungi (e.g. Mucorales) is not so efficient as compared to Aspergillus and this protocol might not be applicable in general to other molds. If the authors have data on other molds it would be nice to provide them

In addition, calculation of phagocytosis rate and index should be provided and explained for the general reader and the performance of the assay with different MOI should be given

Reviewer 3 asked for the application of the technique to pathogens other than *A. fumigatus*. To address this issue we tested other clinically relevant molds of the genus *Aspergillus* and several Mucorales species. As shown in the new Figure 3 B, all these species can be investigated with our phagocytosis assay.

The phagocytosis ratio and index are quantities that relate the number of phagocytosed pathogens to either the total number of pathogens present or number of (host) cells, respectively. However, determination of exact numbers of phagocytosed and adherent conidia by flow cytometry is difficult. The green fluorescence is conveyed to the cells by ingestion of a single FITC-labelled conidium as well as by ingestion of several conidia. FITC fluorescence intensities vary between cells in a continuous gradient that does not allow a reliable correlation between number of phagocytosed conidia and fluorescence intensity.

As with all experimental parameters, such as the applied cells, the specific pathogen or the incubation time, MOIs have to be titrated to suit the particulars of the experiment. In our case, MOI 2

was a reliable ratio of phagocytes and conidia within the range of investigated swelling and incubation times. A note regarding using different MOIs was added in the discussion.

"Although gating is straight forward and easy in the beginning, the more conidia are internalized by cells, the blurrier gating may become. Using MOIs > 2 increases phagocytosis at initial time points but gating issues might arise earlier as well. Therefore, MOIs should be carefully determined with the specific cells and pathogen of interest."

We hope that the improvements made to manuscript due to the reviewer's helpful advice now make it acceptable for publication in the Journal of Visualized Experiments.

Yours sincerely,

Susann Hartung

On behalf of the authors

https://onlinelibrary.wiley.com/page/journal/15524930/homepage/permissions.html

Permissions

Permission to reproduce Wiley journal Content:

Requests to reproduce material from John Wiley & Sons publications are being handled through the RightsLink® automated permissions service.

Simply follow the steps below to obtain permission via the Rightslink® system:

- Locate the article you wish to reproduce on Wiley Online Library (http://onlinelibrary.wiley.com)
- Click on the "Request Permissions" link on the content you wish to use. This link can be found next to the book, on article abstracts, tables of contents or by clicking the green "Information" icon.
- Follow the online instructions and select your requirements from the drop down options and click on 'quick price' to get a quote
- Create a RightsLink® account to complete your transaction (and pay, where applicable)
- Read and accept our Terms & Conditions and download your license
- For any technical queries please contact customercare@copyright.com
- For further information and to view a Rightslink® demo please visit <u>www.wiley.com</u> and select Rights & Permissions.

AUTHORS - If you wish to reuse your own article (or an amended version of it) in a new publication of which you are the author, editor or co-editor, prior permission is not required; formal acknowledgement of original publication venue is required. However, a formal grant of license can be downloaded free of charge from RightsLink by selecting "Author of this Wiley article" as your requestor type.

Individual academic authors who are wishing to reuse up to 3 figures or up to 400 words from this journal to republish in a new journal article they are writing should select **University/Academic** as the requestor type. They will then be able to download a free permission license.

Either of the above who are publishing a new journal article or book chapter with an **STM Signatory Publisher** may also select that requestor type and the STM Signatory publisher's name from the resulting drop-down list in RightsLink. This list is regularly updated. The requestor is required to complete the republication details, including the publisher name, during the request process. They will then be able to download a free permissions license.