Journal of Visualized Experiments

Solid phase 11C-methylation, purification and formulation for the production of PET **tracers**--Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video	
Manuscript Number:	JoVE60237R2	
Full Title:	Solid phase 11C-methylation, purification and formulation for the production of PET tracers	
Keywords:	Carbon-11, Radiolabeling, Positron Emission Tomography, Imaging, [11C]PiB, [11C]ABP688, 11C-methylation, Solid phase supported synthesis, Solid phase extraction, Automation	
Corresponding Author:	Alexey Kostikov McGill University Montreal, QC CANADA	
Corresponding Author's Institution:	McGill University	
Corresponding Author E-Mail:	alexey.kostikov@mcgill.ca	
Order of Authors:	Thomas A. Singleton	
	Mehdi Boudjemeline	
	Robert Hopewell	
	Dean Jolly	
	Hussein Bdair	
	Alexey Kostikov	
Additional Information:		
Question	Response	
Please indicate whether this article will be Standard Access or Open Access.	e Standard Access (US\$2,400)	
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Montreal, Quebec, Canada	

1 TITLE:

2 Solid Phase ¹¹C-Methylation, Purification and Formulation for the Production of PET Tracers

3 4

AUTHORS AND AFFILIATIONS:

- 5 Thomas A. Singleton^{1*}, Mehdi Boudjemeline^{1*}, Robert Hopewell¹, Dean Jolly¹, Hussein Bdair¹,
- 6 Alexey Kostikov^{1,2}
- ¹McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal,
- 8 QC, Canada
- ²Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- 10 *These authors contributed equally.

11 12

Email addresses of Co-authors:

- 13 Thomas A. Singleton (thomas.singleton@mcgill.ca)
- 14 Mehdi Boudjemeline (mehdi.boudjemeline.chum@ssss.gouv.qc.ca)
- 15 Robert Hopewell (robert.hopewell@mcgill.ca)
- 16 Dean Jolly (dean.jolly@mcgill.ca)
- 17 Hussein Bdair (hussein.bdair@mail.mcgill.ca)

18 19

Corresponding Author:

20 Alexey Kostikov (alexey.kostikov@mcgill.ca)

21 22

KEYWORDS:

carbon-11, radiolabeling, positron emission tomography, imaging, [¹¹C]PiB, [¹¹C]ABP688, ¹¹C-methylation, solid phase supported synthesis, solid phase extraction, automation

242526

27

28

29

30

23

SUMMARY:

We report an efficient carbon-11 radiolabeling technique to produce clinically relevant tracers for Positron Emission Tomography (PET) using solid phase extraction cartridges. ¹¹C-methylating agent is passed through a cartridge preloaded with precursor and successive elution with aqueous ethanol provides chemically and radiochemically pure PET tracers in high radiochemical yields.

313233

ABSTRACT:

34 Routine production of radiotracers used in positron emission tomography (PET) mostly relies on 35 wet chemistry where the radioactive synthon reacts with a non-radioactive precursor in solution. 36 This approach necessitates purification of the tracer by high performance liquid chromatography 37 (HPLC) followed by reformulation in a biocompatible solvent for human administration. We recently developed a novel 11C-methylation approach for the highly efficient synthesis of carbon-38 39 11 labeled PET radiopharmaceuticals, taking advantage of solid phase cartridges as disposable 40 "3-in-1" units for the synthesis, purification and reformulation of the tracers. This approach obviates the use of preparative HPLC and reduces the losses of the tracer in transfer lines and 41 42 due to radioactive decay. Furthermore, the cartridge-based technique improves synthesis 43 reliability, simplifies the automation process and facilitates compliance with the Good 44 Manufacturing Practice (GMP) requirements. Here, we demonstrate this technique on the

example of production of a PET tracer Pittsburgh compound B ($[^{11}C]$ PiB), a gold standard in vivo imaging agent for amyloid plaques in the human brains.

INTRODUCTION:

Positron emission tomography (PET) is a molecular imaging modality which relies on detecting the radioactive decay of an isotope attached to a biologically active molecule to enable the in vivo visualization of biochemical processes, signals and transformations. Carbon-11 ($t_{1/2} = 20.3$ min) is one of the most commonly used radioisotopes in PET because of its abundance in organic molecules and short half-life which allows for multiple tracer administrations on the same day to the same human or animal subject and reduces the radiation burden on the patients. Many tracers labeled with this isotope are used in clinical studies and in basic health research for in vivo PET imaging of classical and emerging biologically relevant targets – [11 C]raclopride for D_2/D_3 receptors, [11 C]PiB for amyloid plaques, [11 C]PBR28 for translocator protein – to name just a few.

Carbon-11 labeled PET tracers are predominantly produced via 11C-methylation of nonradioactive precursors containing -OH (alcohol, phenol and carboxylic acid), -NH (amine and amide) or -SH (thiol) groups. Briefly, the isotope is generated in the gas target of a cyclotron via a $^{14}N(p,\alpha)^{11}C$ nuclear reaction in the chemical form of $[^{11}C]CO_2$. The latter is then converted into [11C]methyl iodide ([11C]CH3I) via either wet chemistry (reduction to [11C]CH3OH with LiAlH₄ followed by quenching with HI)¹ or dry chemistry (catalytic reduction to [¹¹C]CH₄ followed by radical iodination with molecular I₂)². [¹¹C]CH₃I can then be further converted to the more reactive ¹¹C-methyl triflate ([¹¹C]CH₃OTf) by passing it over a silver triflate column³. The ¹¹Cmethylation is then performed by either bubbling the radioactive gas into a solution of nonradioactive precursor in organic solvent or via the more elegant captive solvent "loop" method^{4,5}. The ¹¹C-tracer is then purified by means of HPLC, reformulated in a biocompatible solvent, and passed through a sterile filter before being administered to human subjects. All of these manipulations must be fast and reliable given the short half-life of carbon-11. However, the use of an HPLC system significantly increases the losses of the tracer and production time, often necessitates the use of toxic solvents, complicates automation and occasionally leads to failed syntheses. Furthermore, the required cleaning of the reactors and HPLC column prolongs delays between the syntheses of subsequent tracer batches and increases the exposure of personnel to radiation.

The radiochemistry of fluorine-18 ($t_{1/2}$ = 109.7 min), the other widely used PET isotope, has been recently advanced *via* the development of cassette-based kits that obviate the need for HPLC purification. By employing solid phase extraction (SPE) cartridges, these fully disposable kits allow for the reliable routine production of ¹⁸F-tracers, including [¹⁸F]FDG, [¹⁸F]FMISO, [¹⁸F]FMC and others, with shorter synthesis times, reduced personnel involvement and minimal maintenance of the equipment. One of the reasons carbon-11 remains a less popular isotope in PET imaging is a lack of similar kits for the routine production of ¹¹C-tracers. Their development would significantly improve synthetic reliability, increase radiochemical yields and simplify automation and preventive maintenance of the production modules.

 Currently available production kits take advantage of inexpensive, disposable, SPE cartridges instead of HPLC columns for the separation of the radiotracer from unreacted radioactive isotope, precursor and other radioactive and non-radioactive by-products. Ideally, the radiolabeling reaction also proceeds on the same cartridge; for example, the [18F]fluoromethylation of dimethylaminoethanol with gaseous [18F]CH₂BrF in the production of prostate cancer imaging PET tracer [18F]fluoromethylcholine occurs on a cation-exchange resin cartridge⁶. Although similar procedures for the radiolabeling of several ¹¹C-tracers on cartridges have been reported^{7,8} and became especially powerful for the radiosynthesis of [11C]choline⁹ and [11C]methionine10, these examples remain limited to oncological PET tracers where the separation from the precursor is often not required. We recently reported the development of "[11C]kits" for the production of [11C]CH₃I¹¹ and subsequent 11C-methylation, as well as solid phase-supported synthesis¹² in our endeavours to simplify the routine production of ¹¹C-tracers. Here, we wish to demonstrate our progress using the example of the solid phase supported radiosynthesis of [11C]PiB, a radiotracer for Aβ imaging which revolutionized the field of Alzheimer's disease (AD) imaging when it was first developed in 2003 (Figure 1)^{13,14}. In this method, volatile [11C]CH3OTf (bp 100 °C) is passed over 6-OH-BTA-0 precursor deposited on the resin of a disposable cartridge. PET tracer [11C]PiB is then separated from the precursor and radioactive impurities by elution from the cartridge with biocompatible aqueous ethanol. Further, we automated this method of [11C]PiB radiosynthesis using a remotely operated radiochemistry synthesis module and disposable cassette kits. Specifically, we implemented this radiosynthesis on a 20-valve radiochemistry module, equipped with syringe drive (dispenser) which fits standard 20 mL disposable plastic syringe, gas flow controller, vacuum pump and gauge. Due to the simplicity of this method, we are confident that it can be modified to most commercially available automated synthesizers, either cassette-based or those equipped with stationary valves. This solid phase supported technique facilitates [11C]PiB production compliant with Good Manufacturing Practice (GMP) regulations and improves synthesis reliability. The technique described here also reduces the amount of precursor required for radiosynthesis, uses only "green" biocompatible solvents and decreases the time between consecutive production batches.

PROTOCOL:

89 90

91

92

93

94 95

96

97

98 99

100101

102

103104

105

106

107108

109

110

111

112

113

114

115116

117118119

120

121122123

124

125

128129

130 131

132

1. Preparation of buffers and eluents

- 1.1. Dissolve 2.72 g of sodium acetate trihydrate in 100 mL of water to prepare 0.2 M sodium acetate solution (solution A).
- 1.2. Dissolve 11.4 mL of glacial acetic acid in 1 L of water to prepare 0.2 M acetic acid solution 127 (solution B).
 - 1.3. Combine 50 mL of solution A with 450 mL of solution B to prepare the acetate buffer at pH 3.7 (buffer 1) according to the buffer reference center¹⁵. Verify the pH of the buffer with pH strips or a pH meter.

133 1.4. Combine 12.5 mL of absolute ethanol with 87.5 mL of buffer 1 to make 12.5% aqueous 134 EtOH solution (wash 1) in a 100 mL bottle.

135 136

136 1.5. Combine 15 mL of absolute ethanol with 85 mL of buffer 1 to make 15% aqueous EtOH solution (wash 2) in a 100 mL bottle.

138

139 1.6. Combine 5 mL of absolute ethanol with 5 mL of buffer 1 to make 50% aqueous EtOH solution (final eluent) and draw 2.5 mL of this solution into a 10 mL syringe.

141

142 **2.** Application of the precursor to the cartridge

143

144 2.1. Pass 10 mL of water followed by 5 mL of acetone through the tC18 cartridge to precondition it.

146

2.2. Dry the cartridge with a stream of nitrogen at 50 mL/min for 1 min.

148

2.3. Dissolve 2 mg of the precursor 6-OH-BTA-0 in 1 mL of anhydrous acetone.

150

2.4. Holding a Luer-tip 250 μL precision glass syringe downwards, withdraw 100 μL of the precursor solution and 50 μL of air cushion on top of the liquid. Remove the needle and apply the precursor solution on the tC18 cartridge from the female end by slowly pushing the plunger all the way down. Do not push the solution any further!

155

3. Setting up the manifold for automated synthesis

156157158

159

3.1. Secure the standard 5-port disposable manifold on the synthesis module and assemble it according to the **Figure 2** and steps 3.2 – 3.5 below.

160 161

NOTE: We recommend using acetone-resistant manifolds (see Table of Materials).

162

163 3.2. Port 1 has two positions. Connect the horizontal inlet to the automated dispenser fitted with a 20 mL syringe. Connect the vertical inlet to the bottle with wash 1.

165

3.3. Connect the output of the module which produces [¹¹C]CH₃OTf to port 2 of the manifold.

167

168 3.4. Install the tC18 cartridge loaded with precursor 6-OH-BTA-0 between ports 3 and 4.

169

3.5. Port 5 has two positions. Connect the horizontal outlet to the waste bottle which must hold at least 200 mL. Connect the vertical outlet to the sterile vial for tracer collection *via* the sterile filter.

173

174 4. Radiosynthesis of [11C]PiB

175

176 CAUTION: All manipulations involving radioactive isotopes must be performed in a lead-shielded

hot cell by personnel with adequate training to work with radioactive materials.

NOTE: This protocol does not cover the details of production of [11 C]CO₂ in the cyclotron and its conversion into [11 C]CH₃OTf using the radiochemistry module. These procedures will depend on the individual equipment of the radiochemistry lab and are outside the scope of this protocol. Our PET centre is equipped with an IBA cyclotron, which produces carbon-11 in the chemical form of [11 C]CO₂ *via* the 14 N(p, α) 11 C nuclear reaction with a N₂/O₂ gas mixture (99.5:0.5) in the gas target, and a commercially available module for production of [11 C]CH₃I *via* the "dry method" (catalytic reduction to [11 C]CH₄ followed by radical iodination). [11 C]CH₃OTf is produced by passing [11 C]CH₃I over a silver triflate column heated to 175 °C at 20 mL/min.

4.1. Deliver [11 C]CH $_3$ OTf into the manifold through port 2 and pass it through the loaded tC18 cartridge at 20 mL/min output flow regulated by the [11 C]CH $_3$ OTf module, *via* ports 3 and 4 and into the waste bottle as shown on **Figure 2A**.

4.2. Once all the radioactivity has been transferred and trapped on the tC18 cartridge as monitored by the radioactivity detector behind the cartridge holder, stop the flow of gas by closing port 2. Let the cartridge sit for 2 min to complete the reaction.

4.3. Withdraw 19 mL of wash 1 solution (see step 1.4) from the 100 mL bottle into the dispenser syringe through port 1 at 100 mL/min as shown on Figure 2B.

4.4. Dispense 18.5 mL of wash 1 solution from the dispenser through the tC18 cartridge *via* ports 3 and 4 and into the waste bottle at 50 mL/min as shown on **Figure 2C**. Ensure the absence of air bubbles in the manifold as they might diminish the separation efficiency.

4.5. Repeat steps 4.3 and 4.4 four times, withdrawing and dispensing 18.5 mL of wash 1 solution each time. The total volume of wash 1 solution passed through tC18 is 92.5 mL; however, it can vary within the 90 – 100 mL range depending on the particular synthesis module used.

4.6. Switch the input line on port 1 from wash 1 to wash 2 solution (see step 1.5).

4.7. Repeat steps 4.3 and 4.4 three times, withdrawing and dispensing 18.5 mL of wash 2 solution each time. The total volume of wash 2 solution passed through tC18 is 55.5 mL. However, it can vary within the 50 – 60 mL range depending on the particular synthesis module used.

4.8. Toggle valve 5 towards the final vial as shown on **Figure 2D**. Disconnect the line from the dispenser and connect it to the 10 mL syringe containing 2.5 mL of the final eluent solution (50% aqueous EtOH, see step 1.6) and 7.5 mL of air.

4.9. Holding the syringe downwards, manually push the final eluent solution (2.5 mL) followed by air (7.5 mL) through the tC18 cartridge *via* ports 3 and 4 and into the sterile vial for tracer collection *via* the sterile filter as shown on **Figure 2D**.

4.10. Disconnect the empty syringe, connect the 10 mL syringe containing 10 mL of the sterile phosphate buffer (recipe not included as it may vary) and push the entire volume through the tC18 cartridge into the sterile vial as described above (**Figure 2D**). Disconnect the syringe and flush the line with 10 mL of air using the same syringe.

4.11. Withdraw 0.7 mL of the final tracer formulation and collect samples for quality control procedures (0.1 mL), bacterial endotoxin test (0.1 mL) and sterility (0.5 mL).

5. Quality control procedures

CAUTION: Each batch of the radiotracer must be subjected to the appropriate quality control procedures (QC) prior to release to the PET imaging site for administration into human or animal subjects. The authors of this manuscript are not responsible for the compliance of the radiotracer produced at other centers with local health authority regulations.

5.1. Perform pre-release QC procedures, which must include tests for radiochemical identity (RCI), radiochemical purity (RCP), chemical purity and molar activity of the tracer as well as residual solvent content and pH of the formulation.

5.2. Determine the RCI, RCP, chemical purity and molar activity by means of analytical HPLC system equipped with UV (monitoring at 350 nm) and radioactivity detectors, and a reversed-phase column. Determine the retention times of 6-OH-BTA-0 and 6-OH-BTA-1 and calibrate the instrument to quantify the content of each compound.

5.3. Determine the residual solvent content by means of analytical gas chromatography system equipped with a capillary column. Determine the retention times of acetone and ethanol and calibrate the instrument to quantify the content of each solvent.

5.4. Perform the bacterial endotoxins test using a cartridge reader equipped with suitable cartridges.

5.5. Perform the sterility analysis of the sample at least 14 day after the synthesis to ensure the absence of bacterial growth or send the sterility sample to a laboratory accredited by the local health authority.

REPRESENTATIVE RESULTS:

To summarize a typical radiosynthesis of [¹¹C]PiB, gaseous [¹¹C]CH₃OTf is first passed through a tC18 cartridge preloaded with a solution of precursor (**Figure 1**). Separation of the reaction mixture is then achieved by successive elution with aqueous ethanol solutions as follows. First, 12.5% EtOH elutes the majority of unreacted [¹¹C]CH₃OTf and 6-OH-BTA-0, then 15% EtOH washes out the residual impurities, and finally a 50% ethanol solution elutes the desired [¹¹C]PiB into a sterile vial. The tracer is then diluted with sterile phosphate buffer and undergoes strict QC procedures before release to the PET imaging site. Typical analytical HPLC UV and radioactivity chromatograms of the [¹¹C]PiB batch suitable for administration are represented in **Figure 3**.

The total radiosynthesis time is 10 min starting from the delivery of [11 C]CH₃OTf, the RCY of [11 C]PiB using 0.2 mg of precursor is 22% (starting from [11 C]CH₃OTf, not corrected for decay) and the molar activity is 190 GBq/µmol. The tracer must comply with all QC specifications of the multicenter Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU) for clinical trials: the radiochemical purity must be above 95%; the non-radioactive impurities content must be below 1.3 µg per 10 mL dose; the pH must be within the 4 – 8 range; and the ethanol and acetone contents must be below 10% and 3000 ppm, respectively. The samples must also be sterile and endotoxin free. The results of four typical radiosynthesis runs are summarized in **Table 1**.

For the reported technique to work properly, care must be taken during several critical steps described above. To apply the precursor on the tC18 cartridge (step 2.4) the solution must not be pushed towards the output, so as to not shorten the effective path for separation of the [11 C]PiB from the unreacted starting materials and possible side products. The flow of [11 C]CH $_{3}$ OTf through a cartridge during the transfer must not exceed 20 mL/min (step 4.1). Once the elution begins (step 4.4), it is very important to keep the cartridge wet and not let air through to avoid channeling effects which might result in lower purity of the tracer or lower RCY due to the losses of [11 C]PiB in the waste. If the 5-port manifold used in the radiosynthesis (step 3.1) is not resistant to acetone, such as a standard polycarbonate manifold like ACC-101, the amount of acetone must not exceed 100 µL as larger volumes might damage the manifold during the activity transfer and result in failed synthesis. In case the pH does not meet the specifications, the tC18 cartridge may optionally be rinsed with 10 mL of sterile water between steps 4.7 and 4.8 into the waste bottle.

FIGURE AND TABLE LEGENDS:

Figure 1. Radiosynthesis of [¹¹C]PiB by ¹¹C-methylation of 6-OH-BTA-0 precursor with [¹¹C]CH₃OTf. [¹¹C]PiB is one of the most widely used radiotracers for imaging of amyloid plaques associated with AD and other neurodegenerative conditions by PET. This tracer is commonly synthesized *via* ¹¹C-methylation of the aniline precursor called 6-OH-BTA-0 using [¹¹C]methyl triflate ([¹¹C]CH₃OTf) either in solution or in the dry HPLC injection loop (solvent captive technique).

Figure 2. Step-by-step synthesis and purification of [¹¹C]PiB on a tC18 cartridge. (A) Gaseous [¹¹C]CH₃OTf is passed through the cartridge loaded with 6-OH-BTA-0. As described in steps 4.1 and 4.2, [¹¹C]CH₃OTf is trapped on the cartridge containing the precursor and reacts with the precursor at room temperature for 2 min. (B) Wash 1 or wash 2 solution is withdrawn into the dispenser syringe. As described in step 4.3, the syringe pump of the module pulls the plunger of the clipped syringe upwards, withdrawing a solution of either eluent through a line connected to port 1 of the manifold. (C) The impurities are washed out into a waste bottle. As described in step 4.4, the syringe pump of the module moves the plunger of the clipped syringe downwards, pushing the withdrawn wash solution through the tC18 cartridge *via* ports 1, 3 and 4 of the manifold into a waste bottle. Steps represented on diagrams B and C are repeated in a cycle several times to wash out all unreacted materials from the cartridge, as described in steps 4.5 – 4.7. (D) [¹¹C]PiB is eluted with the final eluent into a sterile vial through a sterile filter. As described in steps 4.8 and 4.9, the syringe clipped into a syringe pump is disconnected from the

line and replaced first with a 10 mL syringe containing 2.5 mL of 50% aqueous ethanol. Port 5 of the manifold is then toggled towards the sterile vial and [¹¹C]PiB is eluted from the tC18 manually. The empty syringe is then replaced with another syringe containing 10 mL of sterile phosphate buffer and the entire contents are pushed through the tC18 to rinse the lines as described in step 4.10. The sterile vial now contains [¹¹C]PiB in a 12.5 mL 10% buffered aqueous ethanol solution. This figure has been modified from Boudjemeline et al.¹².

Figure 3. Quality control analytical HPLC of [¹¹**C]PiB**. (**A**) The retention times of [¹¹C]CH₃OH (from hydrolysis of [¹¹C]CH₃OTf), unreacted [¹¹C]CH₃OTf, and tracer [¹¹C]PiB on the radioactivity chromatogram are 2.1, 4.0 and 6.6 min, respectively. The analysis of the radioactivity trace shows that the RCP of [¹¹C]PiB is 98.0%. (**B**) The retention times of 6-OH-BTA-0 (precursor) and 6-OH-BTA-1 (tracer peak) on the UV chromatogram are 3.6 and 5.9 min, respectively. The analysis of the UV trace shows residual precursor concentration below the acceptable limit (1.3 μg) and the absence of other non-radioactive impurities. Thus, the radiochemical and chemical purity of the tracer is acceptable for clinical PET studies. HPLC conditions – column (**Table of Materials**): 5 μm, 100 x 4.0 mm; mobile phase: 40:60 acetonitrile/water flow rate: 0.7 mL/min.

Figure 4. Optimization of 6-OH-BTA-0 precursor amount. The lowest amount (0.1 mg) provides [¹¹C]PiB in a moderate radiochemical yield (RCY) of 18.1±3.8%. Radiosynthesis starting from 0.2 mg provides [¹¹C]PiB an RCY of 22.0±3.1%, while increasing the amount to 0.3 mg further improves the RCY to 32.1±3.7%, at the expense of a slightly higher amount of the precursor in the final product. All RCY's are not corrected for decay (radiosynthesis time of 10 min) starting from the radioactivity of the [¹¹C]CH₃OTf trapped on tC18 cartridge.

Figure 5. Quality control analytical HPLC of [11 C]ABP688. (A) Radioactivity chromatogram shows RCP of combined (*E*)- and (*Z*)-[11 C]ABP688 of 98.1%. (B) UV chromatogram shows residual precursor concentration above 10 µg. While the chemical purity might be acceptable for clinical PET studies, relatively low effective molar activity ($A_m < 37$ GBq/µmol) requires further purification optimization.

Table 1. Representative results of [11C]PiB production runs under optimized conditions. All batches are compliant with requirements for tracers intended for clinical PET studies.

DISCUSSION:

Despite the recent emergence and FDA approval of several ¹⁸F-labeled PET tracers, such as florbetapir, florbetaben and flutemetamol, [¹¹C]PiB remains a gold standard tracer for amyloid imaging due to the fast brain uptake and low non-specific binding. Currently this tracer is synthesized *via* either wet chemistry¹⁶ or using a "dry loop" approach^{4,17}. Both methods require HPLC purification followed by reformulation in aqueous ethanol, which takes approximately 20 – 30 min starting from [¹¹C]CH₃OTf. Inspired by some of the previous reports on solid phase supported ¹¹C-methylation techniques and the clinical importance of [¹¹C]PiB, we aimed to develop a radiosynthesis of this tracer using inexpensive disposable solid phase extraction (SPE) cartridges as a "3-in-1" entity for reaction, purification and formulation.

The most critical steps for successful production of PET tracers for in vivo imaging in human subjects are: 1) incorporation of the radioactive isotope into a tracer molecule; 2) separation of the tracer from unreacted radioactive and non-radioactive species; 3) reformulation of the tracer in a biologically compatible solvent; 4) compliance with quality control procedures. Based on the previously reported solvent captive method, we expected that the SPE-supported technique would require a lower amount of precursor compared to ¹¹C-methylation in solution. In particular, previously reported solvent captive procedures for the radiosynthesis of [11C]PiB require 0.5 - 1.0 mg of the precursor^{4,17}. Thus, we investigated not corrected for decay radiochemical yields of [11C]PiB starting from [11C]CH3OTf at three different amounts of 6-OH-BTA-0: 0.1, 0.2, and 0.3 mg. Even the lowest amount (0.1 mg) provides a moderate amount of [11C]PiB, albeit at relatively low and less reliable RCY (18.1±3.8%). Radiosynthesis starting from 0.2 mg provides an RCY of [11C]PiB (22.0±3.1%), while increasing the amount to 0.3 mg further improves RCY (32.1±3.7%), at the expense of a slightly higher amount of the precursor in the final product. In all cases, the radiosynthesis was completed in 10 min. Thus, the optimal precursor amount depends on the desired RCY and purity of [11C]PiB at particular PET centers. The results of the radiochemical yield optimization experiments based on precursor amount are summarized in Figure 4. Notably, radiosynthesis attempts using [11C]CH₃I as a methylating agent or ethanol as a reaction solvent did not yield the desired [11C]PiB (data not shown).

The quantitative separation of the radiosynthesis reaction mixture on a short SPE cartridge was the most challenging part of the described technique. We hypothesized that aromatic amines 6-OH-BTA-0 and 6-OH-BTA-1 predominantly exist in their protonated forms in acidic media and therefore would have sharper elution profiles from the reversed-phase solid phase. Hence, all aqueous ethanol solutions were prepared using 0.2 M acetate buffer at pH 3.7. Next, we determined that aqueous ethanol solutions with EtOH concentration up to 15% gradually elute unreacted precursor 6-OH-BTA-0 and [11 C]CH $_{3}$ OTf, while radiolabeled [11 C]PiB remains trapped on the tC18 cartridge. In order to prevent tailing of those impurities into a final tracer formulation the ethanol concentration was increased from 12.5% to 15% in a gradient elution. After all the impurities had been washed out of the cartridge, tracer elution was achieved using a minimal amount (2.5 mL) of the concentrated ethanol solution (50%). In order to keep the ethanol content under the 10% limit and to bring the pH of the formulated tracer within the acceptable range for human injection (4 – 8), the tracer was diluted with sterile phosphate buffer.

Following conditions optimization, the radiosynthesis of [11 C]PiB was automated using a commercially available automated synthesis unit (ASU), equipped with dispenser syringe and disposable manifold. The manifold setup for this particular ASU is straightforward as described in steps 3.1-3.5. Notably, this methodology can be easily implemented on most of the other available ASU's following the recipes described above. Under optimized conditions, batches of [11 C]PiB suitable for clinical application are synthesized with final activities ranging from 1.4 to 11 C]PiB of 11 C]PiB of 11 C]PiB suitable for clinical application are synthesized with final activities ranging from 1.4 to 11 C]PiB of 11

More recently, we applied the "3-in-1" technique for the radiolabeling of [11C]ABP688, a PET tracer for the imaging of metabotropic glutamate receptors type 5 (mGlu5)18,19. Radiosynthesis of this tracer relies on the 11C-methylation of the –OH group in the oxime; therefore, addition of

base is required to deprotonate the desmethyl precursor. Tetrabutylammonium hydroxide (as a 1 M solution in MeOH) was selected as a base because it is soluble in most polar organic solvents. In a preliminary radiolabeling experiment, a solution of precursor (0.5 mg) in DMSO (100 μ L) was mixed with 1 M TBAOH in MeOH (20 μ L) and the mixture was carefully applied on the tC18 cartridge as described above (see step 2.4). Gaseous [\$^{11}C]CH\$_3I was passed through the cartridge as described in steps 4.1 – 4.2 and the reaction was allowed to proceed at room temperature for 5 min. Sequential elution with dilute ethanol solutions in 0.2 M sodium bicarbonate buffer (pH 8.5 – 9.0) – 92 mL of 15% EtOH followed by 92 mL of 20% EtOH – washed out the unreacted [\$^{11}C]CH\$_3I and residual precursor. Radiochemically pure [\$^{11}C]ABP688 (RCY = 18.2%, RCP >98.0%) was then eluted with 50% EtOH solution in the same buffer through a sterile filter as described in steps 4.9 – 4.11. Despite the fact that over 98% of the precursor is removed with dilute ethanol washes, the presence of some unreacted precursor in the final tracer (up to 20 μ g) requires further optimization of the radiosynthesis procedure. This optimization is ongoing, and the results of this project will be published in due course. Representative analytical HPLC UV and radioactivity chromatograms of the [\$^{11}C]ABP688 batch is shown on **Figure 5**.

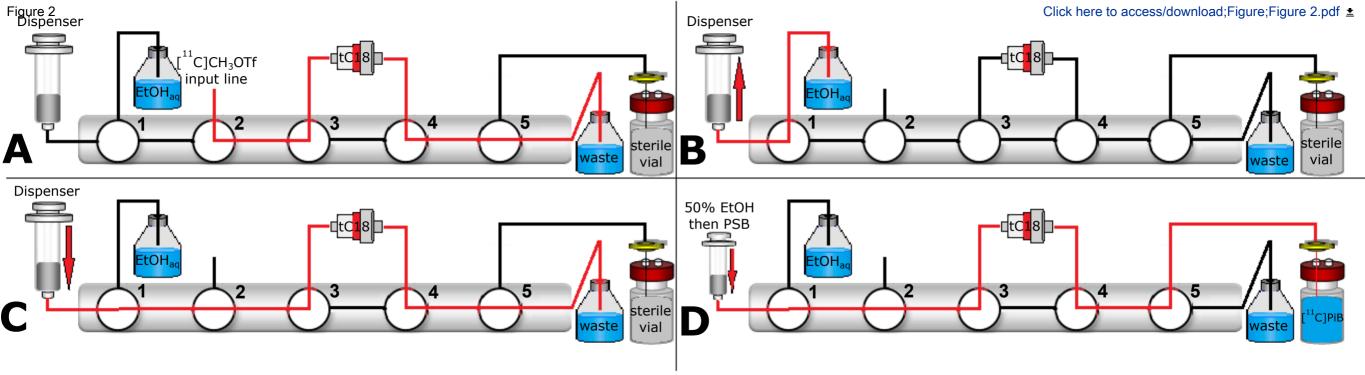
In conclusion, we have developed an efficient solid phase supported carbon-11 radiolabeling procedure using readily available inexpensive SPE cartridges as "3-in-1" entities for radiosynthesis, purification, and formulation of PET tracers used for clinical imaging. Tracers suitable for human injection are produced within 10 min starting from the addition of ¹¹C-methylating agent ([¹¹C]CH₃OTf or [¹¹C]CH₃I) in high RCY and molar activity. We fully automated this technique to make it compliant with Good Manufacturing Practice (GMP) regulations imposed by health and radiation safety authorities. Solid phase supported radiosynthesis requires a low amount of precursor, avoids the use of toxic solvents, decreases the synthesis time and radiation dose sustained by the personnel. Furthermore, avoiding HPLC-related failures improves radiosynthesis reliability and allows for development of disposable kits for routine tracer production.

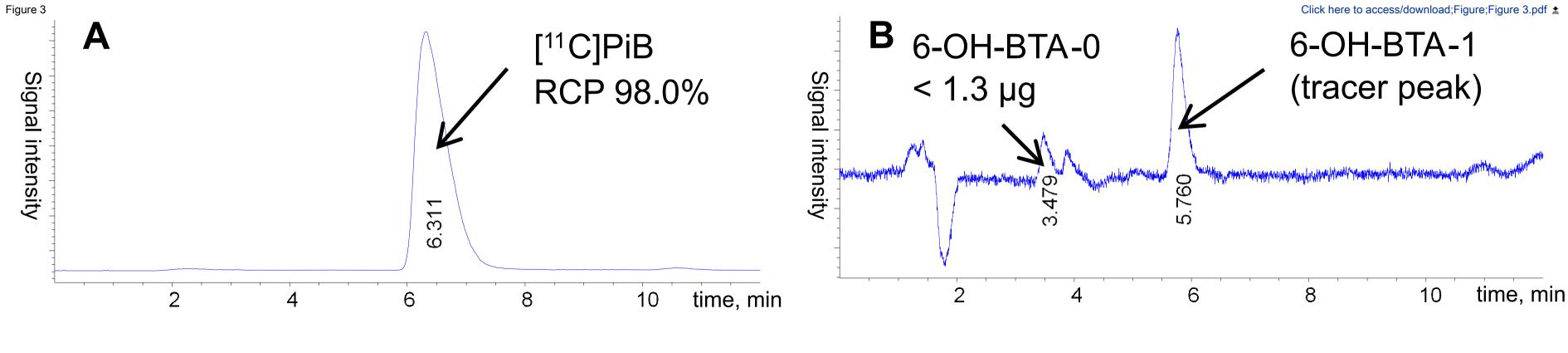
ACKNOWLEDGMENTS:

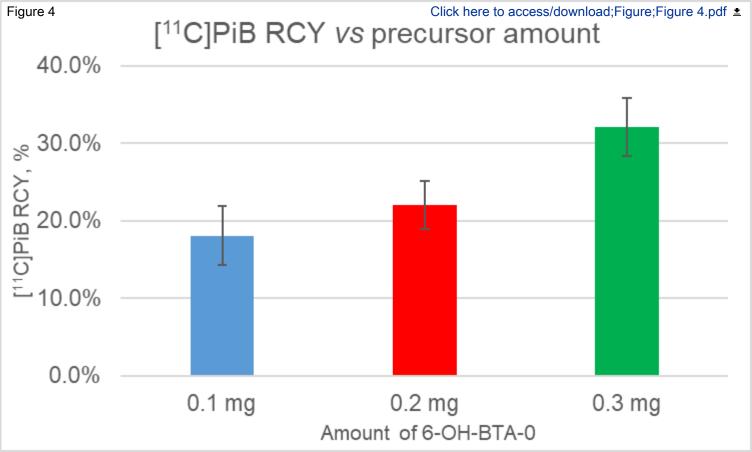
The authors would like to acknowledge the McGill University Faculty of Medicine, Montreal Neurological Institute and McConnell Brain Imaging Centre for support of this work. We also thank Mrs. Monica Lacatus-Samoila for help with quality control procedures and Drs. Jean-Paul Soucy and Gassan Massarweh for access to radioisotopes and the radiochemistry facility.

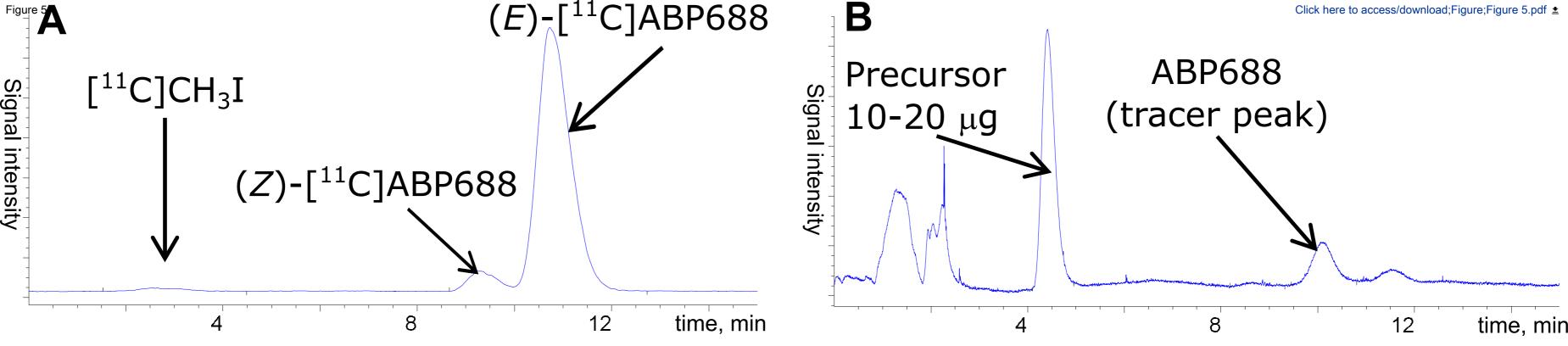
DISCLOSURES:

The authors declare that they have no competing financial interests.


REFERENCES:


- 1 Langstrom, B. & Lundqvist, H. The preparation of 11C-methyl iodide and its use in the synthesis of 11C-methyl-L-methionine. *The International journal of applied radiation and isotopes.* **27** (7), 357-363 (1976).
- Larsen, P., Ulin, J., Dahlstrøm, K. & Jensen, M. Synthesis of [11C]iodomethane by iodination of [11C]methane. *Applied radiation and isotopes.* **48** (2), 153-157 (1997).
- 3 Jewett, D. M. A simple synthesis of [11C]methyl triflate. *International journal of radiation*


- 441 applications and instrumentation. Part A, Applied radiation and isotopes. **43** (11), 1383-442 1385 (1992).
- 443 4 Wilson, A. A., Garcia, A., Houle, S. & Vasdev, N. Utility of commercial radiosynthetic 444 modules in captive solvent [11C]-methylation reactions. *Journal of Labelled Compounds* 445 *and Radiopharmaceuticals.* **52** (11), 490-492 (2009).
- Wilson, A. A., Garcia, A., Jin, L. & Houle, S. Radiotracer synthesis from [(11)C]iodomethane: a remarkably simple captive solvent method. *Nuclear medicine and* biology. **27** (6), 529-532 (2000).
- Fedorova, O. S., Vaitekhovich, F. P. & Krasikova, R. N. Automated Synthesis of [18F]Fluoromethylcholine for Positron-Emission Tomography Imaging. *Pharmaceutical Chemistry Journal.* **52** (8), 730-734, doi:10.1007/s11094-018-1889-z, (2018).
- Jewett, D. M., Ehrenkaufer, R. L. & Ram, S. A captive solvent method for rapid radiosynthesis: application to the synthesis of [1-(11)C]palmitic acid. *The International journal of applied radiation and isotopes.* **36** (8), 672-674 (1985).
- Watkins, G. L., Jewett, D. M., Mulholland, G. K., Kilbourn, M. R. & Toorongian, S. A. A captive solvent method for rapid N-[11C]methylation of secondary amides: application to the benzodiazepine, 4'-chlorodiazepam (RO5-4864). *International journal of radiation applications and instrumentation. Part A, Applied radiation and isotopes.* **39** (5), 441-444 (1988).
- 460 9 Hockley, B. G., Henderson, B. & Shao, X. in *Radiochemical Syntheses* 167-175 (2012).
- Lodi, F. *et al.* Reliability and reproducibility of N-[11C]methyl-choline and L-(S-methyl-[11C])methionine solid-phase synthesis: a useful and suitable method in clinical practice. *Nuclear Medicine Communications.* **29** (8), 736-740, doi:10.1097/MNM.0b013e3282ffb44c, (2008).
- Jolly, D. *et al.* Development of "[(11)C]kits" for a fast, efficient and reliable production of carbon-11 labeled radiopharmaceuticals for Positron Emission Tomography. *Applied radiation and isotopes.* **121** 76-81, doi:10.1016/j.apradiso.2016.11.020, (2017).
- Boudjemeline, M. *et al.* Highly efficient solid phase supported radiosynthesis of [(11) C]PiB using tC18 cartridge as a "3-in-1" production entity. *Journal of Labelled Compounds and Radiopharmaceuticals.* **60** (14), 632-638, doi:10.1002/jlcr.3569, (2017).
- 471 13 Mathis, C. A. *et al.* A lipophilic thioflavin-T derivative for positron emission tomography
 472 (PET) imaging of amyloid in brain. *Bioorganic and medicinal chemistry letters.* **12** (3), 295473 298 (2002).
- 474 14 Mathis, C. A. *et al.* Synthesis and evaluation of 11C-labeled 6-substituted 2-475 arylbenzothiazoles as amyloid imaging agents. *Journal of medicinal chemistry.* **46** (13), 476 2740-2754, doi:10.1021/jm030026b, (2003).
- 477 15 < http://www.sigmaaldrich.com/life-science/core-bioreagents/biological-buffers/learning-center/buffer-reference-center.html (
- 479 16 Philippe, C., Mitterhauser, M. & Wadsak, W. in *Radiochemical Syntheses* 177-189 480 (2012).
- 481 17 Shao, X., Fawaz, M. V., Jang, K. & Scott, P. J. H. in *Radiochemical Syntheses* 207-232 (2015).
- 483 18 Ametamey, S. M. *et al.* Radiosynthesis and preclinical evaluation of 11C-ABP688 as a probe for imaging the metabotropic glutamate receptor subtype 5. *Journal of Nuclear*


485		Medicine. 47 (4), 698-705 (2006).
486	19	Ametamey, S. M. et al. Human PET studies of metabotropic glutamate receptor subtype
487		5 with 11C-ABP688. Journal of Nuclear Medicine. 48 (2), 247-252 (2007).
488		

Batch	Run 1	Run 2	Run 3	Run 4
[¹¹ C]CH ₃ OTf, GBq	9.21	11.25	7.84	6.44
[¹¹ C]PiB, GBq	2.26	2.37	2.11	1.41
RCY, %*	24.5	21.1	26.9	21.8
RCP, %	98	97.2	97.8	99.2
Molar activity, GBq/μmol	154.6	322.6	121.1	162.1
Residual precursor, μg	0.32	0.55	0.58	0.87
рН	5	5	5	5
EtOH content, %	9.4	8.8	7.7	8.1
Acetone content, ppm	33	38	46	33
BET test	N/A	<10 EU/mL	<10 EU/mL	<10 EU/mL
Sterility test	N/A	No Growth	No Growth	No Growth

^{*} Footnote: From $[^{11}C]CH_3OTf$, not corrected for decay

Name of Material/Equipment	Company
	ABX advanced biochemical
6-OH-BTA-0	compounds
	ABX advanced biochemical
6-OH-BTA-1	compounds
Agilent 1200 HPLC system	Agilent
Ethanol absolute	Commercial alcohols
Hamilton syringe (luer-tip, 250 μL)	Hamilton
MZ Analytical PerfectSil 120	MZ-Analysentechik GmbH
Perkin Elmer Clarus 480 GC system	Perkin Elmer
polycarbonate manifold	Scintomics
Restek MTX-Wax column (30 m, 0.53 mm)	Restek
Scintomics GRP module	Scintomics
Sep-Pak tC18 Plus	Waters
solvent-resistant manifold	Scintomics
Spinal needle	BD
Sterile extension line	B. Braun
Sterile filter	Millipore
Sterile vial (20mL)	Huayi
Sterile water	Baxter
Synthra Melplus Research	Synthra
Syringe (10 mL)	BD

Syringe (1mL)	BD
Syringe (20 mL)	B. Braun
Vent filter	Millipore

Catalog Number	Comments/Description	
	Non-radioactive precursor	
5101	of [¹¹ C]PiB	
	Non-radioactive standard	
5140	of [¹¹ C]PiB	
Agilent 1200	Analytical HPLC system	
432526		
HAM80701		
MZ1440-100040	Analytical HPLC column	
Clarus 480	Gas chromotograph	
ACC-101	Synthesis manifold	
70625-273	Analytical GC column	
Scintomics GRP	Automated synthesis unit	
	Solid phase extraction	
WAT020515	cartridge	
ACC-201	Synthesis manifold	
405181		
8255059		
SLLG013SL		
SVV-20A		
JF7623		
Melplus Research	[¹¹ C]CH ₃ I/[¹¹ C]CH ₃ OTf module	
309604		

	309659		
4617207V		Dispenser syringe	
TEFG02525			

Title of Article

ARTICLE AND VIDEO LICENSE AGREEMENT

ritle of Article.	Solid phase cartridges as reactors for 11C-methylation in production of PET tracers
Author(s):	Thomas A. Singleton, Mehdi Boudjemeline, Robert Hopewell, Dean Jolly, Hussein Bdair, Alexey Kostikov
	Author elects to have the Materials be made available (as described a .com/publish) via: Access Open Access
tem 2: Please se	lect one of the following items:
The Auth	or is NOT a United States government employee.
	nor is a United States government employee and the Materials were prepared in the fhis or her duties as a United States government employee.
	or is a United States government employee but the Materials were NOT prepared in the

ARTICLE AND VIDEO LICENSE AGREEMENT

- Defined Terms. As used in this Article and Video 1. License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-
- nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion

- of the Article, and in which the Author may or may not appear.
- 2. **Background.** The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and(c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. **Retention of Rights in Article.** Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. **Grant of Rights in Video Standard Access.** This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video - Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this **Section 6** is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. **Protection of the Work.** The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. **Likeness, Privacy, Personality.** The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

ARTICLE AND VIDEO LICENSE AGREEMENT

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 13. **Fees.** To cover the cost incurred for publication, JoVE must receive payment before production and publication of the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 14. **Transfer, Governing Law.** This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDING AUTHOR

Name:	Alexey Kostikov		
Department: Neurology and Neurosurgery			
Institution:	McGill University		
Title:	Assistant Professor		
		1	
Signature:	AKOC	Date:	May 6, 2019

Please submit a **signed** and **dated** copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

Editorial comments:

The manuscript has been modified and the updated manuscript, **60223_R0.docx**, is attached and located in your Editorial Manager account. **Please use the updated version to make your revisions.**

1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues.

We thoroughly proof-red the manuscript to eliminate spelling and grammar errors to the best of our abilities.

2. Please obtain explicit copyright permission to reuse any figures from a previous publication. Explicit permission can be expressed in the form of a letter from the editor or a link to the editorial policy that allows re-prints. Please upload this information as a .doc or .docx file to your Editorial Manager account. The Figure must be cited appropriately in the Figure Legend, i.e. "This figure has been modified from [citation]."

According to the "Journal of Labelled Compounds and Radiopharmaceuticals" policies, authors do not require permissions to reuse their own articles:

"AUTHORS - If you wish to reuse your own article (or an amended version of it) in a new publication of which you are the author, editor or co-editor, prior permission is not required (with the usual acknowledgements). However, a formal grant of license can be downloaded free of charge from RightsLink by selecting "Author of this Wiley article" as your requestor type."

Nevertheless, we obtained a license and attached it to our submission

3. Please add a one-line space between each of your protocol steps.

We added the space lines as suggested

4. There is a 2.75 page limit for filmable content. Please highlight 2.75 pages or less of the Protocol steps (including headings and spacing) in yellow that identifies the essential steps of the protocol for the video, i.e., the steps that should be visualized to tell the most cohesive story of the Protocol.

The filmable content was highlighted

5. Step 5.1-5.5: Please write these steps in the imperative tense.

Steps have been rewritten

6. Each figure must be accompanied by a title and a description after the Representative Results of the manuscript text.

We added description of figures and tables where necessary.

7. Please do not abbreviate journal titles for references.

We now provide full journal names in the references.

- 8. Please revise the table of materials to include all essential supplies, reagents, and equipment.
- 9. Please sort the items in alphabetical order according to the name of material/equipment.

We have added missing essential reagents and materials to the table and organized them in alphabetical order.

10. Unfortunately, there are a few sections of the manuscript that show significant overlap with previously published work. Though there may be a limited number of ways to describe a technique, please use original language throughout the manuscript. Please rewrite lines 99-101.

We have rewritten the lines 99-101 to avoid overlap with our previously published work.

Reviewers' comments:

Reviewer #1:

Manuscript Summary:

This submission from Dr. Kostikov's lab demonstrates a method for solid-phase radiopharmaceutical synthesis using carbon-11 methylation. The method developed is a significant advance that could improve accessibility of some key radiotracers like [11C]PiB. As the work deals heavily with a new technical approach to conducting these reactions and purifications, it is very suitable for a video manuscript.

We thank the reviewer for the positive evaluation of our work and suggested improvements.

Minor Concerns:

The title and abstract of the manuscript are appropriate. The title could be improved by emphasizing that the solid-phase cartridges are not merely reactors, but also media for purification and reformulation, as described in the abstract.

We thank the reviewer for this suggestion and we changed the title of this manuscript to "Solid phase 11C-methylation, purification and formulation for the production of PET tracers."

The authors discuss other applications of their work ([11C]ABP688). I am hesitant to suggest further iterations, as they would know the possibilities and limitations more intimately.

Indeed, the application of this methodology to labeling of [11 C]ABP688 tracer is not complete at the moment due to the presence of residual, albeit relatively small (10-20 µg, which is <4% of the initial load), amount of the precursor in the final tracer formulation. Furthermore, two diastereomers (E)- and (Z)-[11 C]ABP688 are not separable on a short cartridge and they are difficult to separate even by HPLC, please see more detailed comment below. Nevertheless, the RCY we obtained shows the general applicability of this procedure to 11 C-methylation of hydroxyl group in a presence of a strong organic base TBAOH as a proof of principle.

Not all of the required materials are listed in the table: for example ethanol, water (DI, sterile? should be specified). Should the instrument(s) used for automation be listed (scintomics and syringe pump)? The levels of activity used would seem to preclude manual work with the manifold during the synthesis. Also, equipment and supplies for quality control may be important to note. Are the manifolds altered in any way, such as adding longer tubing for manual elution in step 4.9, and if so, the materials used should be described.

We added ethanol, sterile water, sterile extension line, synthesis module and other supplies to the table of materials. We are hesitant to add quality control equipment to this table as this will depend on the individual setup of the radiochemistry lab. However, we noted our QC equipment

in section 5 of the protocol.

The steps listed should lead to the desired outcome, though radiochemistry is always challenging to reproduce exactly. For example, 2.4 appears to be a critical step and it would be important to get this right. This step should be highlighted and more detail provided.

This is an excellent point and we have rewritten this and other steps in a lot more detail.

As mentioned above, some steps could be described in more detail, such as set up of the instrument, when valves are changed and how, and how the dispenser operates. Also, in figure 2, parts B and C are mislabeled (or the text is wrong). See steps 4.3 and 4.4 to compare. After 4.9 and 4.10, are the lines flushed with air/gas to release eluent still on the cartridge or in tubing? This will have an effect based on tubing volumes and could change the final concentration of the product.

We thank the reviewer for catching that the B and C labels on figure 2 were reversed, this has been fixed. We also specified that the lines should be flushed with air after steps 4.9 and 4.10.

While the likelihood of success is high, it would be useful to suggest some controls or approaches to troubleshooting if the synthesis fails or yields and purities are lower than reported.

We have added the troubleshooting paragraph to the representative result section of the manuscript as follows: "For the reported technique to work properly, care must be taken during several critical steps described above. To apply the precursor on the tC18 cartridge (step 2.4.) the solution must not be pushed towards the output as to not shorten the effective path for separation of the [11C]PiB from the unreacted starting materials and possible side products. The flow of [11C]CH3OTf through the cartridge during the transfer must not exceed 20 mL/min (step 4.1). Once the elution begin (step 4.4.) it is very important to keep the cartridge wet and not let air through to avoid channeling effect which might result in lower purity of the tracer or lower RCY due to the losses of [11C]PiB in the waste. If the 5-port manifold used in the radiosynthesis (step 3.1.) is not resistant to acetone, such as a standard polycarbonate manifold ACC-101, the amount of acetone must not exceed 100 µL as larger volumes might damage the manifold during the activity transfer and result in failed synthesis. In case the pH does not meet the specifications, the tC18 cartridge maybe optionally rinsed with 10 mL of sterile water between steps 4.7 and 4.8 into the waste bottle."

The anticipated results are useful to readers. Some numbers are reported in ways that do not conform to the latest "consensus nomenclature", such as ndc RCY. It should be made clear throughout and in Fig4 how RCY is calculated. Likewise "[11C]kits" is technically contrary to the "consensus".

We have rewritten one sentence in the Discussion section as follows: "Thus, we investigated not corrected for decay radiochemical yields of [11C]PiB starting from [11C]CH3OTf at three different amounts of 6-OH-BTA-0: 0.1, 0.2, and 0.3 mgs.". We have added another sentence regarding the synthesis time: "In all cases, the radiosynthesis was completed in 10 minutes.". Because the short synthesis time is one of the strengths of our procedure, we wanted to emphasize the RCY not corrected for decay, which is still used in some publications. As for the "[11C]kits" terminology, while it is currently technically incorrect, it refers to the previously published paper

which has this term in its title.

A couple stray concerns: figure 5b really doesn't look like 98% RCP. What is the big peak at 9-10 minutes? Since separation of precursor is a challenge and limitation for this method, perhaps a discussion is in order regarding what situations this would be important for apparent molar activity in PET imaging.

This is a very good point. Due to the asymmetrically substituted C=N double bond in its structure, [11 C]ABP688 tracer has two diastereomers (E)- and (Z)-, which are not separable on a short cartridge. We have revised Figure 5 to indicate the presence of 2 diastereoisomers. At the time we were not able to separate them even by HPLC, although lately we developed a new procedure for production of diastereomerically pure (E)-[11 C]ABP688 (an active form of this tracer), which we currently employ in our PET centre. Hence, the data on [11 C]ABP688 tracer synthesis in this manuscript serves as a proof of principle of applicability towards labeling of other C-11 labeled PET tracers on resin, rather than a complete procedure. If in the reviewer's opinion this data cannot be included in the manuscript as is, we will remove it.

References to the most prevalent methods for synthesis of [11C]PiB would be welcome, such as the Radiochemical Syntheses Vol 1, or other sources showing clinical implementation.

The references for both "reactor" method (Philippe et al. Radiochemical Syntheses Vol 1) and "dry loop" method (Shao et al. Radiochemical Syntheses Vol 2 and Wilson et al. J Labelled Compd. Radiopharm.) have been added.

I recommend for moving forward with video production after addressing the suggestions above.

Reviewer #2:

Manuscript Summary:

The submitted manuscript by Singleton et al. describes a novel procedure where [11C]methylation reactions could be performed rapidly on SPE cartridge. The described procedure improves the reproducibility, reduces production time and ultimately increases the overall radiochemical yield of 11C-labeled radiopharmaceuticals. As a proof-of-concept, the well-known radiopharmaceutical, [11C]PIB, was produced, purified and finally formulated all using a single C18 SPE cartridge. The produced [11C]PIB was shown to fulfill all quality control criteria for in Human use.

The manuscript is well written and the results are presented in a nice way. This referee recommends acceptance of the manuscript after some corrections.

We thank the reviewer for the positive evaluation of our work and suggested improvements.

Major Concerns:

A general comment to the Protocol section 4 (Page 3-4, Line 146-182). Figure 2 does not correspond to what is described in the text. For example, point 4.3) it is written, "Withdraw 19 mL of wash 1 solution (see 1.4.) from the 100 mL bottle into the dispenser syringe through port 1 at 100 mL/min as shown on figure 2, B.". However, Figure 2, B does not show that step. Make sure that figure 2 illustrates what is being described in the text. This is very important.

We thank the reviewer for catching that the labels B and C on figure 2 were reversed, this has been fixed.

Minor Concerns:

1) Introduction (Page 1, line 66): This referee recommends the author includes the original article which describes 11C-MeI to 11C-MeOTf.

Jewett DM (1992) A simple synthesis of [11C]methyl triflate. Int Appl Radiat Isot 43:1383-1385

We thank the reviewer for this suggestion, this reference has been now replaced

2) Protocol (Page 2, Line 132): This referee recommends that the part number of the Hamilton Syringe is specified, as Hamilton syringes comes in many different forms and sizes. For example, does this version have a laur-lock fitting to connect to the SPE cartridge. Please clarify point 2.4.

Thank you for pointing this out, we specified the type of Hamilton syringe being used in this step and also added a part number to the table of materials.

3) Protocol (Page 3, Line 136): Please insert a reference to Figure 2 after "on the synthesis module.". Moreover, it would also be helpful if the automated synthesis module is described in more detail. What components are included, e.g. syringe pump drivers, gas-flow controlling etc.

We included the details of the Scintomics GRP synthesis module in the introduction by adding two sentences: "In particular, we implemented this radiosynthesis on a 20-valve Scintomics GRP module, equipped with syringe drive (dispenser) which fits standard 20 mL B-Braun syringe, gas flow controller, vacuum pump and gauge. Due to simplicity of this method, we are confident that it can be modified to most commercially available automated synthesizers, either cassette-based or the ones equipped with stationary valves."

We referenced Figure 2 in step 3.1. This step will also appear in the video protocol.

4) Protocol (Page 3, Line 161-162): The authors write, "Dispense 18.5 mL of wash 1 solution from the dispenser through the tC18 cartridge via ports 3 and 4 and into the waste bottle at 50 mL/min as shown on figure 2, C.". How is this flowrate controlled? I assume that an automated syringe driver is used. Please clarify.

We hope that the sentence describing the Scintomics GRP module which we now added to the introduction clarifies that it is equipped with a syringe drive (dispenser).

5) Protocol (Page 3, Line 168): The authors write, "Switch the input line on port 1 from wash 1 to wash 2 solution (see 1.5)." How is this physically done? Since, the module at this stage will be highly radioactive. Are the washing solutions located outside the hot cell? Please clarify.

The "methyl iodide" module (Synthra) is located in a separate hot cell in our lab and the total amount of radioactivity transferred to the hot cell where ¹¹C-methylation occurs does not exceed 300 mCi. The manual manipulation to switch the input line between two solutions takes about 3 seconds with one hand and the distance between that line and the source of activity (tC18 cartridge) is about 50 cm, thus the hand dose received during such manipulations is quite small.

Nevertheless, we stacked several lead bricks between the solvent bottles and the source of activity to further reduce the dose.

6) Protocol (Page 3, Line 173): Continuing on my previous argument. The authors write, "Disconnect the line from the dispenser and connect it to the 10 mL syringe containing 2.5 mL of the final eluent solution (50% aqueous EtOH, see 1.6.).". How is this physically done? Are all these connectors located outside the hot cell? And what about the syringe driver? Please clarify.

Similarly to our previous response, the amount of time necessary to pull out the syringe from the dispenser unit and undo the connection to the line is about 5 seconds. In combination with a 50 cm distance from the activity and lead protection, the hand radiation dose received during this manipulation is quite small. The final elution with an eluent and sterile phosphate buffer can be done from the outside of the hot cell.

7) Discussion (Page 6, Line 267-269): The authors write, "Even the lowest amount (0.1 mg) provides a moderate amount of [11C]PiB, albeit at relatively low and less reliable RCY (18.1±3.8%). Radiosynthesis starting from 0.2 mg provides excellent RCY of [11C]PiB (22.0±3.1%), while further increasing the amount to 0.3 mg improves RCY (32.1±3.7%), at the expense of a slightly higher amount of the precursor in the final product.". I would argue that saying 18.1±3.8% is a moderated RCY (at 0.1 mg) and 22.0±3.1% is an excellent RCY (at 0.2 mg) is not a fair description. It is only 4% in RCY between the two. This referee suggest to remove the word "excellent".

We fully agree with this assessment and removed the word "excellent".

Reviewer #3:

Manuscript Summary:

The manuscript described the fully automated synthesis of very important PET radioligand for AD, [11C]PiB via on-line cartridge based 11C-methylation. This approach is widely used in PET radiochemistry in the cartridge-based synthesis of L-[11C]methyl methionine (see for example "Reliability and reproducibility of N-[11C]methyl-choline and L-(S-methyl-[11C])methionine solidphase synthesis: A useful and suitable method in clinical practice. Nucl Med Comm 29 (8):736-740"). However the application of this approach for the preparation of PET radioligands is much more difficult due to necessity to separate the 11C-labelled product from labeling precursor. To solve the problem the authors suggest the original elution protocol using different concentration of an aqueous ethanol. Also they were able to achive high r11C-methylation yields using low amounts of precursor (0.1-0.3 mg). The novelty of this radiolabeling and purification procedures is doubtless. The authors successfully implemented their method on the commonly used cassette-based automation platform SCINTOMICS GRP. All the experiments were well planned and very well performed. The desired product formulation suits well to all the required QC parameters. The feasibility of this approach was also confirmed by the preparation of [11C]ABP688, a PET radiotracer for the imaging of metabotropic glutamate receptors type 5 (mGlu5)PET radioligand.

The paper is concise and well-organized and methods are thoroughly described. I would recommend publication provided the following concerns can be addressed:

We thank the reviewer for the positive evaluation of our work and suggested improvements.

Major Concerns:
No

Minor Concerns:

- 11C-methylating agent, [11C]CH3OTf, is produced using Synthra automated module. Please specify whether the agent is prepared via "wet" (LiAlH4/HI) method or by means of a gas-phase process? Second, which type of the gas target was used for generating 11C (methane target or CO2 target?)

We modified the preface paragraph to step 4 as follows: "Our PET centre is equipped with an IBA cyclotron (Cyclone® 18/9 IBA, Louvain-La-Neuve, Belgium), which produces carbon-11 in the chemical form of [11 C]CO $_2$ *via* the 14 N(p, α) 11 C nuclear reaction with a N $_2$ /O $_2$ gas mixture (99.5:0.5) in the gas target (Nitra), and a commercially available Synthra module for production of [11 C]CH $_3$ I *via* the "dry method" (catalytic reduction to [11 C]CH $_4$ followed by radical iodination). [11 C]CH $_3$ OTf is produced by passing [11 C]CH $_3$ I over a silver triflate column heated to 175 °C at 20 mL/min."

- Line 229 "the non-radioactive impurities content must be below 1.3 μg per 10 mL dose" Please provide the corresponding references supporting this limit value.

These requirements come from the "multicenter Dominantly Inherited Alzheimer Network Trials Unit (DIAN-TU)" clinical trials which we participated in. We could not find a published source of QC requirements to reference, but we specified these clinical trials in the text.

- Line 253 "Currently this tracer is synthesized via either wet chemistry or using a "dry loop" approach". Please provide the corresponding references.

The references for both "reactor" method (Philippe et al. Radiochemical Syntheses Vol 1) and "dry loop" method (Shao et al. Radiochemical Syntheses Vol 2 and Wilson et al. J Labelled Compd. Radiopharm.) have been added.

- Line 262-66. "Based on the previously reported solvent captive method, we expected that the SPE-supported technique would require lower precursor amount compared to 11C-methylation in solution. Thus, we investigated radiochemical yields of [11C]PiB at three different amounts 265 of 6-OH-BTA-0: 0.1, 0.2, and 0.3 mgs". Please compare the amounts of precursors applied in the solvent captive method (please give a reference).

We added the amount of precursor (0.5 - 1.0 mg) reported for solvent captive method by two independent groups (Shao et al. Radiochemical Syntheses Vol 2 and Wilson et al. J Labelled Compd. Radiopharm.)

- In the introduction please insert the references on the application of on-line cartridge-based 11C-methylation in the synthesis of PET radiotracers.

We have added the references for the radiosynthesis of [11C]choline and [11C]methionine.

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

Jun 11, 2019

This Agreement between Alexey Kostikov ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

License Number 4605950679601 Jun 11, 2019 License date

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication Journal of Labelled Compounds and Radiopharmaceuticals

Licensed Content Title Highly efficient solid phase supported radiosynthesis of [11C]PiB

using tC18 cartridge as a "3-in-1" production entity

Licensed Content Author Mehdi Boudjemeline, Robert Hopewell, Pierre-Luc Rochon, et al

Licensed Content Date Nov 30, 2017

Licensed Content Volume 60 Licensed Content Issue 14 Licensed Content Pages

Type of use Journal/Magazine

Requestor type Author of this Wiley article

Is the reuse sponsored by or no

associated with a

pharmaceutical or medical

products company?

Print and electronic **Format**

Figure/table Portion

Number of figures/tables

Original Wiley figure/table

number(s)

Figure 2 with modifications

Will you be translating?

Title of new article Solid phase cartridges as reactors for 11C-methylation in production

of PET tracers.

Publication the new article is Journal of Visualized Experiments

Publisher of new article MyJove Corp.

Author of new article Thomas A. Singleton, Mehdi Boudjemeline, Robert Hopewell, Dean

Jolly, Hussein Bdair, Alexey Kostikov

Expected publication date of Sep 2019

new article

Estimated size of new article 10

(pages)

Alexey Kostikov Requestor Location

Montreal Neurological Institute

3801 University St room MP024

Montreal, QC H3A 2B4

RightsLink Printable License

6/11/2019 Canada

Attn: Alexey Kostikov

Publisher Tax ID

EU826007151

Total

0.00 CAD

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This license, and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly granted by the terms of the license, no part of the Wiley Materials may be copied, modified, adapted (except for minor reformatting required by the new Publication), translated, reproduced, transferred or distributed, in any form or by any means, and no derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. For STM Signatory Publishers clearing permission under the terms of the STM Permissions Guidelines only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.
- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of https://s100.copyright.com/AppDispatchServlet

- 6/14/ACC The right to reproduce the Wiley Materials pursual to the Petrion during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto
- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.
- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION, WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.
- Should any provision of this Agreement be held by a court of competent jurisdiction
 to be illegal, invalid, or unenforceable, that provision shall be deemed amended to
 achieve as nearly as possible the same economic effect as the original provision, and
 the legality, validity and enforceability of the remaining provisions of this Agreement
 shall not be affected or impaired thereby.
- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.

- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.
- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor Type was misrepresented during the licensing process.
- This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The <u>Creative Commons Attribution License (CC-BY)</u> allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

Use % / Wimmercial "for-profit" organizations

RightsLink Printable License

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? $\underline{\text{customercare@copyright.com}}$ or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.