Journal of Visualized Experiments

A minimally invasive lesion technique for muscles intrinsic to the odontophore of Aplysia californica. --Manuscript Draft--

Article Type:	Methods Article - JoVE Produced Video		
Manuscript Number:	JoVE60030R2		
Full Title:	A minimally invasive lesion technique for muscles intrinsic to the odontophore of Aplysia californica.		
Keywords:	Aplysia, Biomechanics, Neurobiology, Minimally invasive surgery, Feeding, Lesions		
Corresponding Author:	Hillel J. Chiel Case Western Reserve University Cleveland, OH UNITED STATES		
Corresponding Author's Institution:	Case Western Reserve University		
Corresponding Author E-Mail:	hillel.chiel@case.edu		
Order of Authors:	Catherine Eliza Kehl, PhD		
	Hillel J. Chiel		
Additional Information:			
Question	Response		
Please indicate whether this article will be Standard Access or Open Access.	Open Access (US\$4,200)		
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Cleveland, OH, USA		

Cover Letter

Dear Editor,

We are very grateful for the helpful comments and feedback you provided on our revised manuscript. We have carefully made corrections to the text as well as answered a number of question that were raised and documented these changes in an additional response document. We believe that the revised version of the protocol should now be suitable for publication in the Journal of Visualized Experiments.

We look forward to hearing from you soon, Catherine Kehl and Hillel Chiel 1 TITLE:

2 A Minimally Invasive Lesion Technique for Muscles Intrinsic to the Odontophore of *Aplysia californica*

AUTHORS AND AFFILIATIONS:

Catherine Kehl¹, Hillel J. Chiel^{1,2,3,4}

- ¹Department of Biology, Case Western Reserve University, Cleveland, OH, USA
- 10 ²Department of Biology, Case Western Reserve University, Cleveland, OH, USA
- 11 ³Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
- 12 ⁴Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA

- 14 Email Address of Co-Author:
- 15 Catherine Kehl (cek19@case.edu)

- 17 Corresponding Author
- 18 Hillel J. Chiel (hjc@case.edu)

KEYWORDS:

Aplysia, biomechanics, neurobiology, minimally invasive surgery, feeding, lesions

SUMMARY:

Here we present a protocol for minimally invasive surgical lesioning of muscles intrinsic to the feeding apparatus of the marine mollusk *Aplysia californica* to understand the roles of these muscles during feeding behavior.

ABSTRACT:

Aplysia californica is a model system for studying the neural control of learning and behavior. This animal has a semi-open circulatory system, making it possible to access many of its internal structures without causing any significant damage. Many manipulations can be easily performed both in vivo and in vitro, making it a highly tractable model for the analysis of behavior and neural circuitry. To better understand the functions of muscles within the feeding grasper, we have developed a technique for lesioning them without opening the main body cavity of the animal or damaging the outer layers of the feeding organ (i.e., the buccal mass). In this technique, the grasper is partially everted, allowing direct access to the musculature. This procedure allows animals to recover quickly and reliably. This has made it possible to lesion the 17 muscles and sub-radular fibers, allowing us to show that both muscles significantly contribute to the opening in vivo.

INTRODUCTION:

 The feeding system of *Aplysia californica* has a long history of use as a model system for understanding learning and memory¹, motivated behaviors^{2,3}, and the interaction between behavior, biomechanics and neural control during feeding⁴. It has highly accessible neural circuitry, with a relatively small number of large, identifiable neurons. The animal has a semi-open circulatory system, making it possible to access many of its internal structures without causing significant damage. It is also robust to many manipulations both in vivo and in vitro, making it a highly tractable model for the analysis of behavior and neural circuitry.

To understand the neural patterns that give rise to feeding behaviors, it is important to describe the underlying mechanics of the soft structure that makes up the feeding organ, the buccal mass⁴. While there has been work done to characterize the outer muscles that make up the buccal mass^{5,6}, the inner muscles of the underlying structure within the buccal mass that controls the surface of the grasper, the odontophore, have been largely inaccessible to in vivo experimentation. Although there have been in vitro studies on the functions of some of these muscles^{7,8}, the lack of direct access to these muscles has made it difficult to study their role in intact, behaving animals.

Most techniques for electrode implantation or lesions in Aplysia or similar molluscan species require that the body wall be opened^{9-12.} Opening the body wall causes epithelial injury, and the incision must be securely sealed to prevent hemolymph escape. Even more serious difficulties are posed when attempting to reach the inner muscles of the grasper of *Aplysia* (muscles underlying the radular surface or within the odontophore): having entered through the main body cavity, one must then go through some portion of the muscular wall of the buccal mass to gain access to the interior structures (**Figure 1A**). This accumulated injury and difficulty of access has made the approach through conventional means problematic because animals do not recover well from these surgeries (of animals with full eversions, only 17% regained any feeding ability, N=12. Around 85% of non-everted animals regained the ability to feed, N=84).

The I7 muscle, which has been characterized as a radular opener⁸, is deep inside the odontophore itself, further complicating access. It stretches between the base of the radular stalk (**Figure 1C**) and the underside of the radular surface, through a lumen in the odontophore (**Figure 1C**). On three sides of the I7 muscles are walls of muscle, and the fourth wall consists of the radular stalk. For the purposes of a biomechanical study, major impairment to any of these structures would compromise the normal function of the feeding apparatus. We developed a novel approach of working the odontophore out through the jaws, and conducting the surgery through an incision to the thin, cartilaginous radular surface, that made it possible to lesion the I7 muscle, as well as newly-described fine muscle fibers that run just beneath the radular surface, which we refer to as the sub-radular fibers (**Figure 1C**).

[Insert Figure 1]

PROTOCOL:

Aplysia are invertebrates and thus not subjected to IAUC approval. To minimize discomfort to animals, ensure that they are fully anesthetized before applying the surgical techniques described below.

1. Animal selection and anesthetization

1.1. Select an active animal by offering it seaweed and confirming that bite intervals are no greater than between 3 and 5 s.

1.2.1. Anesthetize the animal with 0.333 molar magnesium chloride (see **Table 1**) by injecting near the head with an 18 G needle on a 60 mL syringe so that the highest concentration of anesthetic will be around the buccal mass.

1.2.2. Take care to penetrate both the outer epithelium and the inner tissue layer with the needle. Ensure that the injection is roughly under the rhinophore, halfway between the rhinophore and the foot, and the needle should enter obliquely, pointing in the direction of the jaws.

1.3. After 10 min, gently attempt to insert a pin into the gill and rhinophore, verifying that these do not retract, to ensure sufficient anesthetization.

110 1.4. Ensure that the lips and jaw of the slug are relaxed so that the odontophore can be exposed.

NOTE: The wrinkling on the lips of **Figure 2A** indicates that the animal's lips and jaw are not sufficiently relaxed for the surgical procedure to be performed without damage. The smooth, relaxed lips of **Figure 2B** indicate that the jaws are fully relaxed.

[Insert Figure 2]

1.5. If an animal's lips are not relaxed, inject an additional 30 mL of magnesium chloride and wait another 5 min. If this does not result in lip relaxation, return them to an isolated container with good water flow to allow them to recover (see step 4) and proceed with a different animal.

2. Exposing the radular surface

2.1. Position the slug so that the head hangs downward, allowing the buccal mass to settle against the jaws.

2.2. Apply pressure with the thumb and forefinger to push the buccal mass toward the jaws,
 holding the buccal mass in place.

2.3. Rotate the jaws so that they are visible. At the same time, maintain the pressure on the buccal mass so that the prow of the buccal mass is visible through the jaws. (**Figure 3**).

[Insert Figure 3] 2.4. Gently work the tips of the blunt forceps into the cleft of the odontophore and use them to lever the radular surface through the jaws. If the jaws are not sufficiently relaxed, use the forceps to gently grasp the edge of the cleft to assist this process. CAUTION: This pressure does risk greater damage to the animal. 2.5. Once the surface is exposed, work the jaws clear of the anterior portion of the radular surface all the way around the perimeter. This makes the odontophore less likely to retract (**Figure 4**). Ensure that no more than half of the walls of the odontophore is exposed. [Insert Figure 4] NOTE: A full eversion of the odontophore will cause major muscle damage from which the animals are very slow to recover. 3. Surgical incisions 3.1. Once the radular surface is fully exposed, arrange the slug under a dissection scope for the surgery. 3.1.1. Alternatively, use a wide rubber band and a third hand to stabilize the jaws and radular surface for the surgery, especially while learning. This, however, adds time and increased tissue damage to the procedure, which makes it less ideal over the long term. 3.2. Place the radular surface so that the cleft side faces the investigator. 3.3. Gently grasp the radular surface, near the radular base, so that a horizontal fold is formed perpendicular to the anatomical crease. Use fine scissors to cut through this fold, making an incision along the anatomical crease (Figure 5). [Insert Figure 5] 3.4. Extend this initial incision to 3-5 cm to allow access to the interior of the buccal mass. 3.5. Adjust light so that it points directly back through this incision. 3.6. Part the edges of the incision so that the back of the lumen of the odontophore and the thin vertical strands of the I7 muscle are visible. (Figure 6) [Insert Figure 6]

177 3.7. Reach into through the incision, grasp both strands of I7, and pull them up through the incision, where as much as the muscle can be cut away as is practical (**Figure 7**).

[Insert Figure 7]

NOTE: With practice, it is usually more effective to locate I7 by feel than by sight.

4. Post-operative care

4.1. After lesions have been performed, grasp the anterior tentacles, and push down on the radular surface to return the slug to its original configuration.

4.2. Place post-surgical animals in a protected environment with good water flow. Increased oxygenation speeds the recovery. Ensure that the animals are alert and responsive on the day after surgery. If this is not the case, it can be assumed that they will not recover.

NOTE: Animals will usually begin to feed on the first or second day after surgery. Even animals that are having trouble biting should be offered seaweed, as it is our anecdotal observation that an animal's recovery is improved by its attempts to eat.

5. For sub-radular fiber lesion

5.1. Follow the steps from 1.1 through 3.5

5.2. Insert the tip of a small straight scalpel blade (#11 or similar) through the incision with the sharp edge angled upwards. Gently scrape the fine muscular fibers from the underside of the radular surface. (Figure 8).

[Insert Figure 8]

5.3. Return to step 4.1.

REPRESENTATIVE RESULTS:

Previous work had suggested that the I7 muscle contributed to the opening of the grasper⁸. Our own anatomical studies suggested that the sub-radular fibers might also contribute to grasper opening. To test these hypotheses, animals were induced to generate bites both before and after receiving a surgical procedure. Sham animals were subjected to all the surgical steps, including the incision in the radular surface, but no internal muscles were removed. Animals subjected to an I7 lesion had both I7 muscles removed. Animals subjected to a sub-radular fiber lesion had ~25% of the sub-radular fibers removed immediately beneath the incision. Sham lesions had no significant effect on the width of the opening at the peak of biting, whereas both I7 and sub-radular fibers lesions did significantly reduce bite width (**Figure 9**).

221 [Insert Figure 9]

FIGURE AND TABLE LEGENDS:

Table 1: Magnesium Chloride dosage by bodyweight.

Figure 1: Anatomical Overview. (A) Location of the buccal mass within *Aplysia*. (B) External anatomy of odontophore. The surface of radula and radular sac are yellow; muscles composing the odontophore are shown in red, based on their actual colors. (C) Sagittal section of odontophore, showing the location of sub-radular fibers (curved pink line) and I7 muscle (straight pink line). Cross section of the I6 muscle is shown in dark red.

Figure 2: Tension and Relaxation in Anesthetized *Aplysia* **Mouths.** (A) *Aplysia* showing a high degree of muscle tension around the lips. This correlates with jaw tension and contraindicates proceeding with the surgery. (B) *Aplysia* with relaxed lips, showing the inside of jaws (light grey). Colors again correspond to those observed in the animal.

Figure 3: Supporting the Buccal Mass Against the Inside of the Jaws. Fingers support the buccal mass that has been pushed up against the inside edge of the jaws until the tip of the prow can be seen.

Figure 4: Partial Eversion of the Odontophore. The radular surface is fully exposed, but the sides of the odontophore are not uncovered, making this only a partial eversion. Further eversion will likely result in damage to the animal.

Figure 5: Location of Incision to the Radular Surface. (A) Radular surface, with an incision. (B) Radular surface with circles showing where the strands of the bilateral I7 muscle attach; dotted lines show the location of the descending muscles underneath the radular surface.

Figure 6: Location of I7 through the Radular Surface Incision. Looking through the incision, both strands of I7 can be seen between the inner surfaces of I4.

Figure 7: Pulling the I7 Muscle Strand Through the Incision. The I7 muscle is highly elastic and can be pulled up through the incision for removal.

Figure 8: Lesioning the Subradular Fibers. The edge of the scalpel blade is angled upwards through the incision to the underside of the radular surface so that it can gently scrape away the sub-radular fibers.

Figure 9: Results of Lesions on Opening Width During Peak Biting. Data shown are the differences between the averaged normalized opening width of the radula before and after the surgical procedure for 5 animals in each of the 3 groups (sham, I7 lesion, or SRF lesion), with each animal serving as its own control. Averages were taken of 5 bites before, and 5 bites after the surgical procedure to determine the mean normalized difference. Opening width was the

distance from the center of radula to the radular edge at the peak protraction, normalized by the distance from the inner surface of the radular base to the cleft-side edges of the radular surface. The differences are shown as the means plus or minus the standard deviation. After establishing that the difference data were normally distributed, the probability that the lesion had no effect was determined (i.e., the null hypothesis was tested that the effects of the surgical procedures would be zero, on average) by applying a paired t-test to each independent group. The data demonstrates that the sham lesion had no significant effect, whereas a lesion of the I7 muscles or a lesion of the sub-radular fibers did have a significant effect on radular opening (p < 0.031 for the I7 lesion group, indicated with a single asterisk, or p < 0.002 for the SRF lesion group, indicated by a double asterisk).

DISCUSSION:

The most critical steps within the protocol are the need to ensure that the animal is fully anesthetized, and that the eversion of the buccal mass is just enough to access the underlying muscles. It may require some practice to perfect these steps, but once they are mastered, the yield from surgeries is likely to be greater than 85% of all experiments done. The most important way to properly modify and troubleshoot the protocol is to spend time doing dissections of the buccal mass so that the locations of the internal muscles are completely clear to the investigator. Because the suggested incision through the radular surface inevitably causes some damage to the underlying sub-radular fibers, it may be appropriate to modify the exact location of the incision to avoid specific regions of these fibers.

One limitation of the surgical technique is that it may have non-specific effects on feeding responses, such as the strength of protraction. One way to overcome this limitation is to have animals serve as their own controls. In addition, it is critical to have a sham lesion group which is subjected to the entire surgical protocol except for the removal of the specific muscle (i.e., I7 or the SRFs). By following these suggestions, an investigator will reduce the effects of variability between animals and have an intrinsic measure of the non-specific effects of surgery.

Previous work has used approaches through the body wall to lesion or record either from nerves^{13,14}, or muscles^{15,16,17}. In our laboratory, we have anecdotally observed that body wall incisions are often accompanied by a significant loss of hemolymph and thus of body volume. Animals often require several days to recover from this, and if the body wall lesion is not carefully sutured, animals may not recover. In addition, post-mortem examination of the animals reveals considerable scarring around the incision and a strong immune response (anecdotal observations). In contrast, animals show no loss of hemolymph or change in body volume after recovery from the protocol described here (based on observations in 96 animals).

Future applications of the technique may extend it to other muscles within the feeding apparatus of *Aplysia*, and to other animals. We have focused on the removal of the I7 muscle and sub-radular fibers. These same general surgical techniques also allow access to most of the other muscles of the odontophore. Some of these, such as the internal portion of the I5 muscle, are best accessed through the radular surface. Others, like the inner leaflets of I4, may be better

reached through the exterior epithelium of the odontophore. We have made preliminary trials where an incision under the radular cleft of the partially everted odontophore allowed access for a sharpened hook to be inserted that could then be used to lesion another muscle within the odontophore, muscle I8⁸. Because the surgical protocol described here does not open the main body cavity, no suturing is required.

The protocol that we have described may be of general interest to other investigators working on soft tissue structures that would otherwise be difficult to manipulate, e.g., the feeding apparatus of other mollusks. More generally, this protocol could suggest other novel surgical approaches to the analysis of soft structures such as tongues, trunks or tentacles¹⁸.

ACKNOWLEDGMENTS:

We would like to acknowledge the hard work that Sherry Niggel, Sisi Lu, and Joey Wu put into improving and validating these protocols.

DISCLOSURES:

314

319320

321

324 325

326

328 329

330

333

336

339

341

349

327 The authors have nothing to disclose.

REFERENCES:

- 1. Pinsker, H., Kupfermann, I., Castellucci, V., Kandel, E. Habituation and Dishabituation of the GM-Withdrawal Reflex in Aplysia. *Science.* **167**, 1740–1742 (1970).
- 334 2. Kupfermann, I. Feeding Behavior in *Aplysia*: A Simple System for the Study of Motivation.
 335 *Behavioral Biology.* 10, 1–26 (1974).
- 3. Susswein, A. J., Chiel, H. J. Nitric oxide as a regulator of behavior: New ideas from Aplysia feeding. *Progress in Neurobiology.* **97**, 304–317 (2012).
- 4. Chiel, H. J. Aplysia feeding biomechanics. *Scholarpedia*. **2**, 4165 (2007).
- 5. Neustadter, D. M., Drushel, R. F., Chiel, H. J. Kinematics of the buccal mass during swallowing based on magnetic resonance imaging in intact, behaving Aplysia californica. *Journal of Experimental Biology.* **205**, 939–958 (2002).
- 6. Neustadter, D. M., Herman, R. L., Drushel, R. F., Chestek, D. W., Chiel, H. J. The kinematics of multifunctionality: comparisons of biting and swallowing in *Aplysia californica*. *Journal of Experimental Biology*. **210**, 238–260 (2007).
- 7. Brezina, V., Evans, C. G., Weiss, K. R. Characterization of the membrane ion currents of a model molluscan muscle, the accessory radula closer muscle of *Aplysia california*. I. Hyperpolarization-activated currents. *Journal of Neurophysiology.* **71**, 2093–2112 (1994).

353

8. Evans, C. G., S. Rosen, I. Kupfermann, K. R. Weiss, E. C. Cropper. Characterization of a Radula Opener Neuromuscular System in *Aplysia*. *Journal of Neurophysiology*. 76 (2), 1267–81 (1996).

356

9. Cullins, M. J., Chiel, H. J. Electrode Fabrication and Implantation in *Aplysia californica* for Multi-channel Neural and Muscular Recordings in Intact, Freely Behaving Animals. *Journal of Visualized Experiment.* (40), pii: 1791. (2010).

360

10. Dudek, F. E., Cobbs, J. S., Pinsker, H. M. Bag cell electrical activity underlying spontaneous egg laying in freely behaving *Aplysia brasiliana*. *Journal of Neurophysiology*. **42**, 804–817 (1979).

363

364 11. Hermann, P., Maat, A., Jansen, R. The Neural Control of Egg-Laying Behaviour in the Pond
 365 Snail *Lymnaea Stagnalis*: Motor Control of Shell Turning. *Journal of Experimental Biology.* 197,
 366 79–99 (1994).

367

12. Jansen, R. F., Pieneman, A. W., Maat, A. ter. Pattern Generation in the Buccal System of Freely Behaving *Lymnaea stagnalis*. *Journal of Neurophysiology*. **82**, 3378–3391 (1999).

370

13. Kupfermann, I. Dissociation of the appetitive and consummatory phases of feeding behavior in *Aplysia*: a lesion study. *Behavioral Biology.* **10**, 89–97 (1974).

373

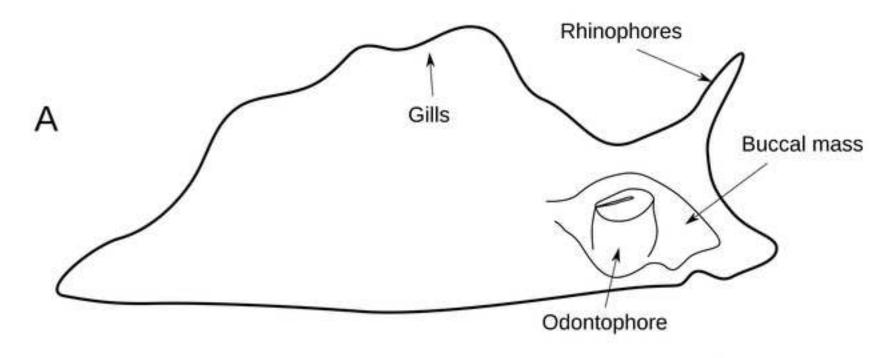
14. Scott, M. L., Kirk, M. D. Recovery of consummatory feeding behavior after bilateral lesions of the cerebral-buccal connectives in Aplysia california. *Brain Research.* **585**, 272–274 (1992).

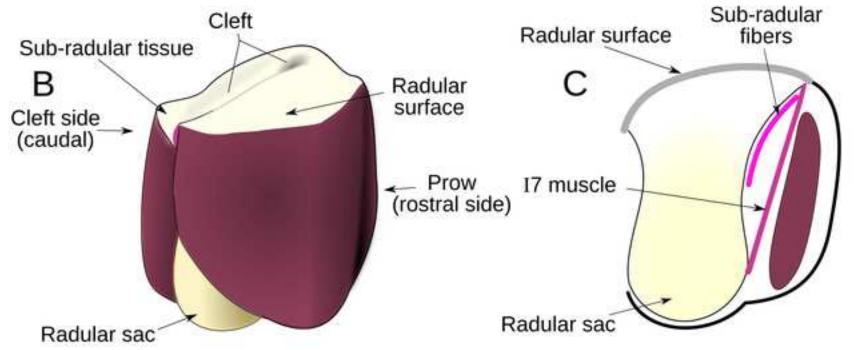
376

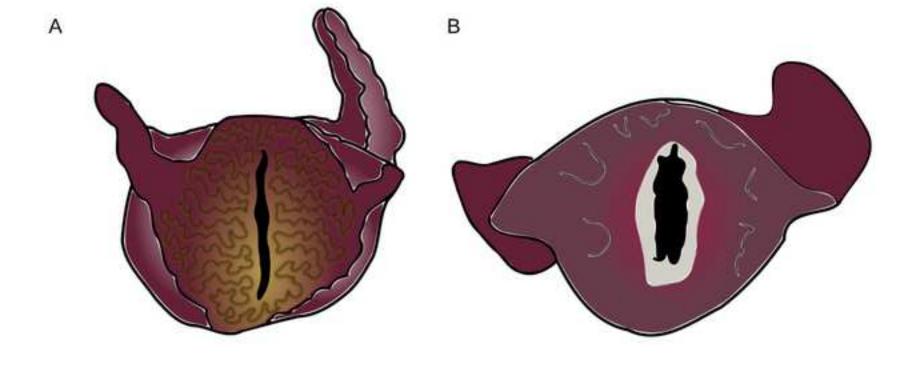
15. Boer, P. A. C. M. de, Jansen, R. F., Maat, A. ter, Straalen, N. M. van, Koene, J. M. The distinction between retractor and protractor muscles of the freshwater snail's male organ has no physiological basis. *Journal of Experimental Biology.* **213**, 40–44 (2010).

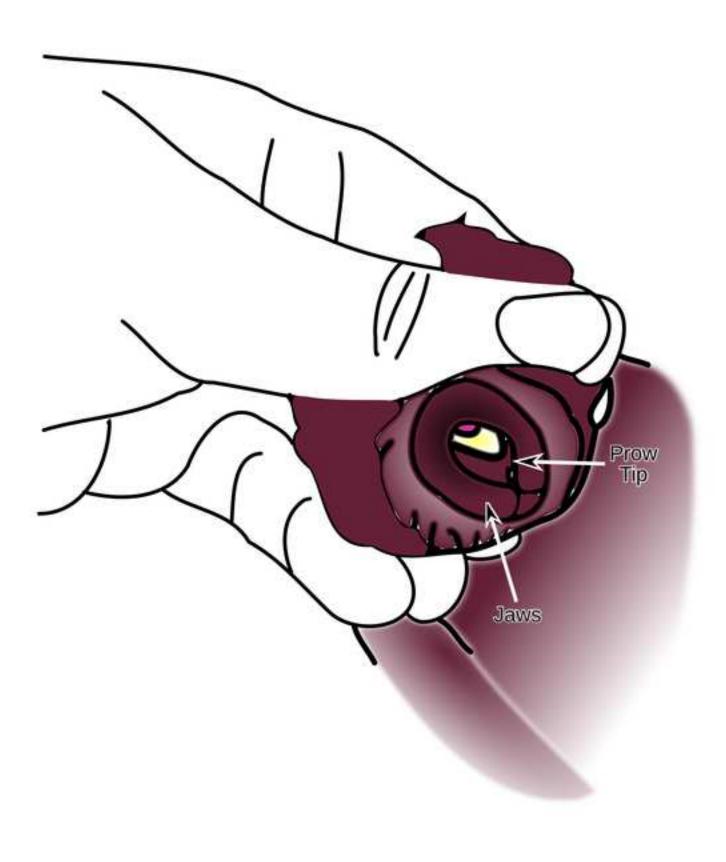
380

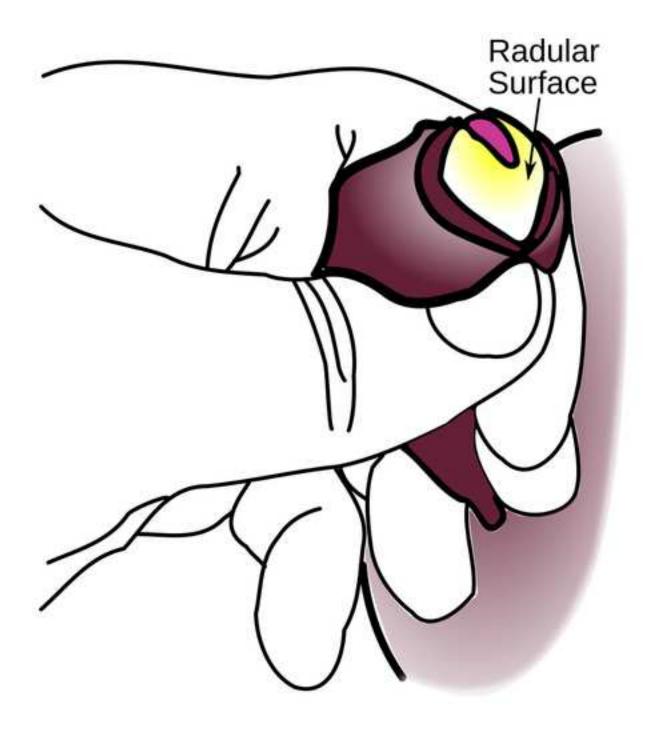
16. Chiel, H. J., Weiss, K. R., Kupfermann, I. An identified histaminergic neuron modulates feeding motor circuitry in *Aplysia*. *Journal of Neuroscience*. **6**, 2427–2450 (1986).

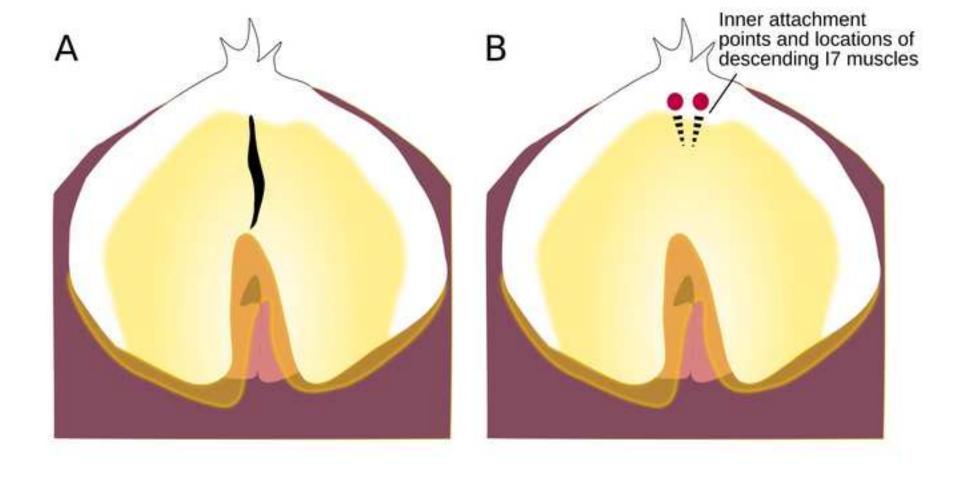

383

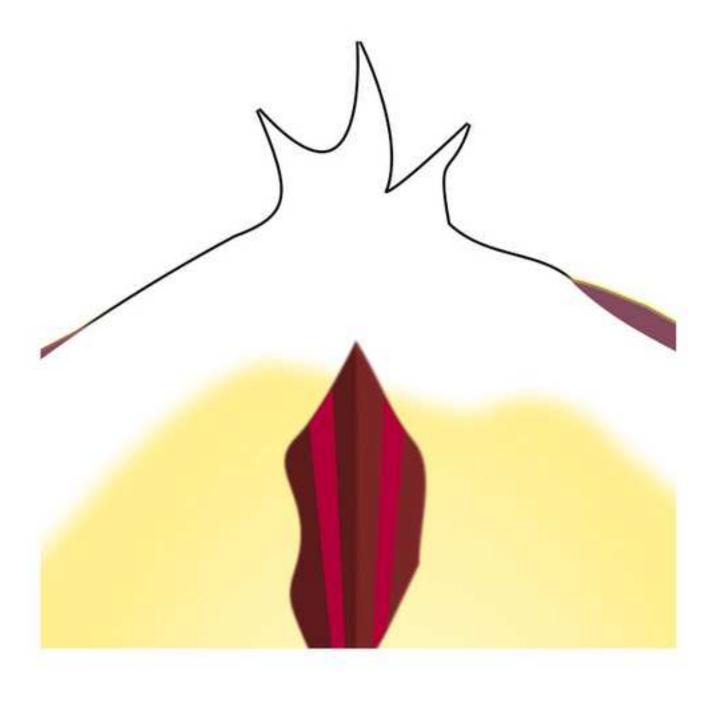

17. Hurwitz, I., Neustadter, D., Morton, D. W., Chiel, H. J., Susswein, A. J. Activity patterns of the B31/B32 pattern initiators innervating the I2 muscle of the buccal mass during normal feeding movements in *Aplysia californica*. *Journal of Neurophysiology*. **75**, 1309–1326 (1996).

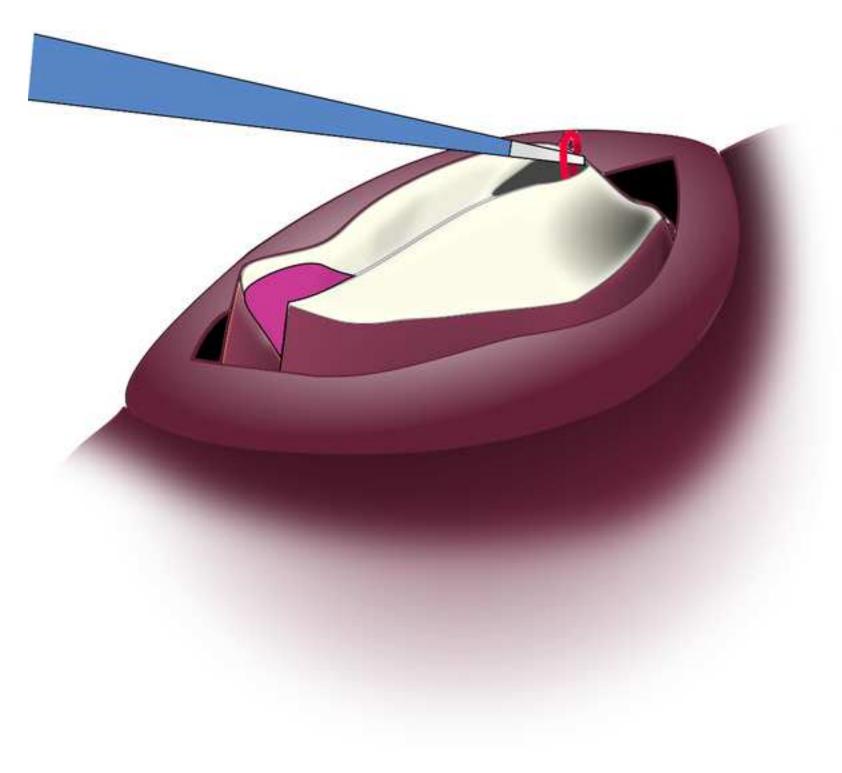

387

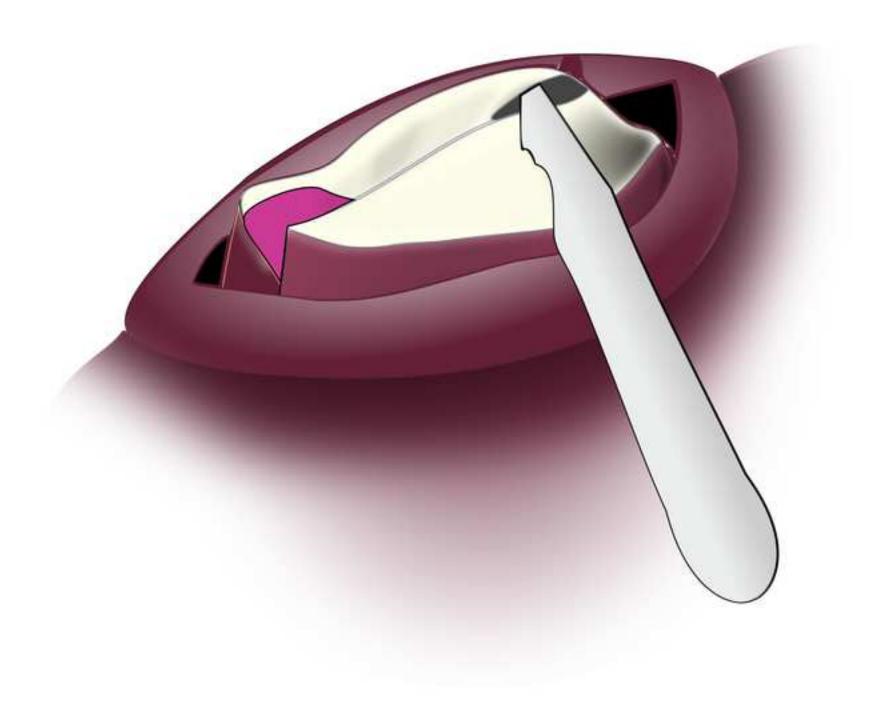

18. Kier, W. M. The diversity of hydrostatic skeletons. *Journal of Experimental Biology.* **215**, 1247–1257 (2012).

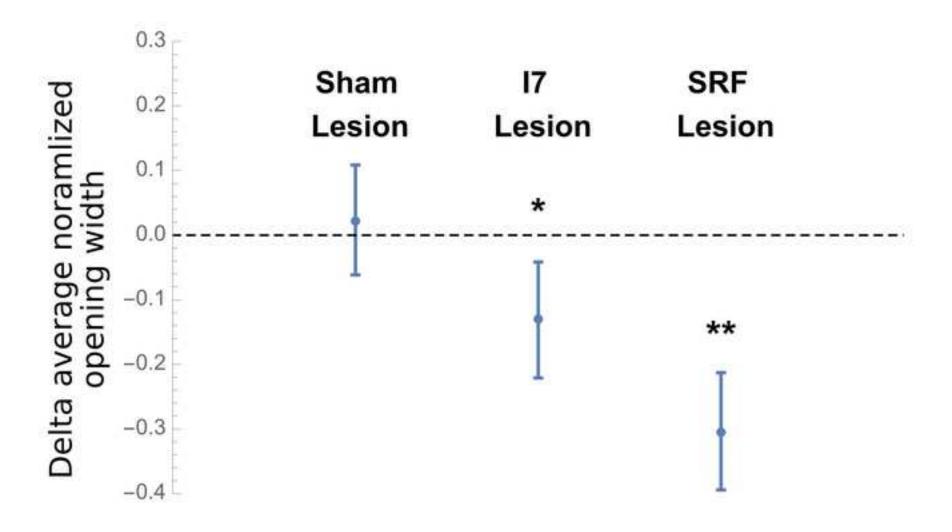

390











Sheet1

Body Weight	Magnesium Chloride Dose
<200g	½ bodyweight
200-350g	1/3 bodyweight
350-450g	¼ bodyweight

Table 1 Magnesium Chloride dosage by bodyweight.

Name of Material/ Equipment	Company	Catalog Number	Comments/Description
Blunt forceps	Fine Science Tools	11210-10	2 pair
Scalpel blade (#11)	Fine Science Tools	10011-00	
Spring scissors	Fine Science Tools	15024-10	
Webcam	Logitech	c920	for recording data

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	A novel, minimally invasive surgical technique for lesioning muscles intrinsic to the odontophore of Aplysia californica. Catherine Kehl, Ph.D., Hillel J. Chiel, Ph.D.				
Author(s):					
Item 1: The Author elects to have the Materials be made available (as described at http://www.jove.com/publish) via: Standard Access Open Access					
Item 2: Please se	elect one of the following items:				
X The Auth	nor is NOT a United States government employee.				
☐The Aut	hor is a United States government employee and the Materials were prepared in the of his or her duties as a United States government employee.				
	nor is a United States government employee but the Materials were NOT prepared in the of his or her duties as a United States government employee.				

ARTICLE AND VIDEO LICENSE AGREEMENT

Defined Terms. As used in this Article and Video 1. License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-

nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments: "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion

- of the Article, and in which the Author may or may not appear.
- 2. **Background.** The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and(c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. **Retention of Rights in Article.** Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. **Grant of Rights in Video Standard Access.** This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video - Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this **Section 6** is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. **Protection of the Work.** The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. **Likeness, Privacy, Personality.** The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

ARTICLE AND VIDEO LICENSE AGREEMENT

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to

the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 13. **Fees.** To cover the cost incurred for publication, JoVE must receive payment before production and publication of the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 14. **Transfer, Governing Law.** This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDING AUTHOR

• •						
Name:	Hillel J Chiel					
Department:	Biology					
Institution:	Case Western Reserve University					
Title:	Professor					
ſ		1				
Signature:	Hillel J. Chiel	Date:	March 22, 2019			

Please submit a **signed** and **dated** copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

Please ensure that the title is crisp and avoid the use of the word novel.

We have changed the title to: "A minimally invasive lesion technique for muscles intrinsic to the odontophore of *Aplysia californica*."

Please also include what is being done in brief and what result and conclusion you derive from it in brief.

We have reworded the abstract to be more concise and be clearer about the purpose of the experiments.

Old: "Aplysia californica is a model system for studying the neural control of learning and behavior. To better understand the feeding behavior, we have developed a novel protocol for lesioning muscles that lie deep within the feeding grasper. This new protocol does not require opening the main body cavity of the animal or damaging the outer layers of the feeding organ (the buccal mass). The ability to access muscles within the odontophore makes it possible to study their biomechanical functions as well as test hypotheses regarding the neural circuits that control them. In this novel technique, the grasper is partially everted, allowing direct access to the musculature. The new procedure allows animals to recover quickly and reliably. This has made it possible to lesion the I7 muscles and sub-radular fibers, allowing the quantification of their roles in radular opening."

New: "Aplysia californica is a model system for studying the neural control of learning and behavior. To better understand the functions of muscles within the feeding grasper, we have developed a technique for lesioning them without opening the main body cavity of the animal or damaging the outer layers of the feeding organ (the buccal mass). In this technique, the grasper is partially everted, allowing direct access to the musculature. This procedure allows animals to recover quickly and reliably. This has made it possible to lesion the I7 muscles and sub-radular fibers, allowing us to show that both muscles significantly contribute to opening *in vivo*."

Will you have the animal available during the filming of the procedure?

Our animal facility that is usually well stocked with *Aplysia*. My hope was to have multiple animals available during filming, both to show the procedure, and then, if there is interest, to show animals that have recently had the procedure performed and are performing our usual feeding assays.

Select from where? Do you rear these in the lab? How? Do you collect from the sea?

We maintain an animal facility (four 189 liter tanks at 16 °C with a 12/12 hour light dark cycle) with *Aplysia* that are live-caught off the Californian coast and shipped to us overnight. At any given time, there are many animals of an appropriate size available within the aquaria within our laboratory.

We cannot film the anesthesia process.

We understand, that is fine.

1.4, Note What is done in this case? Do you start fresh with another animal? Do you wait? Please provide all specific details with respect your experiment.

We have added an additional step to address this:

1.5 If an animal's lips are not relaxed, give them an additional 30 ml of magnesium chloride and wait another five minutes. If this does not result in lip relaxation, return them to an isolated container with good water flow to recover (see section 4) and proceed with a different animal.

We cannot have non numbered step in the protocol section. So, I have numbered this part as well.

Please expand all abbreviations during the first-time use.

Please write exactly how you would do this. You could refer to the previously stated step but include the step numbers. Please use complete sentences and bring out clarity in this part of the protocol.

We have reworked this section to address these concerns. It now reads:

- 5. For sub-radular fiber lesion:
- 5.1. Follow the steps from 1.1 through 3.5

<insert Figure 8>

- 5.1 Insert the tip of a small straight scalpel blade (#11 or similar) through the incision with the sharp edge angled upwards. Gently scrape the fine muscular fibers from the underside of the radular surface. (Figure 8).
- 5.2 Return to step 4.1.

Please describe the result with respect to your experiment, you performed an experiment, how did it helped you to conclude what you wanted to and how is it in line with the title. How do these results show the technique, suggestions

We have re-written this section to give better context with regard to the previous our research objectives. Our new text reads:

Previous work had suggested that the I7 muscle contributed to opening of the grasper⁸. Our own anatomical studies suggested that the sub-radular fibers might also contribute to grasper opening. To test these hypotheses, animals were induced to generate bites both before and after receiving a surgical procedure. Sham animals were subjected to all the surgical steps, including the incision in the radular surface, but no internal muscles were removed. Animals subjected to an I7 lesion had both I7 muscles removed. Animals subjected to a sub-radular fiber lesion had ~25% of the sub-radular fibers removed immediately beneath the incision. Sham lesions had no significant effect on the width of opening at the peak of biting, whereas both I7 and sub-radular fibers lesions did significantly reduce bite width (Figure 9).

Please include the color shadings details in the figure legend. What each color represent?

Thank you for this feedback; we have added explanatory notes in the listed figured legends, and the requested figured labels. In general, the colors reflect the colors observed in the animals.

Each Figure Legend should include a title and a short description of the data presented in the Figure and relevant symbols. The Discussion of the Figures should be placed in the Representative Results. Details of the methodology should not be in the Figure Legends, but rather the Protocol.

The protocol focuses solely on the surgical technique, and therefore we are not including the behavioral measurements as part of the protocol. Because the effects of the surgery can be measured in many different ways, we do not think it is appropriate to make this a part of the protocol. If an investigator wished to understand the significance of the representative results, however, they would need the additional information that is provided in this legend.

[Figure 9] In the figure please include the x and y axis? What does it represent?

The labels along the x axis provide descriptive labels for the three independent groups; their position is otherwise unimportant. To the left of the y axis, we have now added a descriptive title: "Delta average normalized opening width".

Data or results to support this claim?

We have added text in this section to address this issue: "Animals often require several days to recover from this, and if the body wall lesion is not carefully sutured, animals may not recover. In addition, post-mortem examination of the animals reveals considerable scarring around the incision and a strong immune response (anecdotal observations). In contrast, animals show no loss of hemolymph or change in body volume after recovery from the protocol described here (based on observations in 96 animals)."

Please ensure that the references appear as the following: [Lastname, F.I., LastName, F.I., LastName, F.I., LastName, F.I. Article Title. Source. Volume (Issue), FirstPage – LastPage, (YEAR).] For more than 6 authors, list only the first author then et al.

We have made these changes.