Journal of Visualized Experiments Pooled CRISPR-based Genetic Screens in Mammalian Cells --Manuscript Draft--

Invited Methods Article - JoVE Produced Video	
JoVE59780R2	
Pooled CRISPR-based Genetic Screens in Mammalian Cells	
CRISPR-Cas9, sgRNA libraries, Toronto-KnockOut, genome-wide CRISPR screening, pooled drop-out screens, functional genomics, essential genes, cell fitness, proliferation	
Jason Moffat	
CANADA	
j.moffat@utoronto.ca	
Katherine Chan	
Amy Hin Yan Tong	
Kevin R Brown	
Patricia Mero	
Jason Moffat	
Response	
Standard Access (US\$2,400)	
Toronto, Ontario, Canada	

43

44

1 TITLE: 2 Pooled CRISPR-Based Genetic Screens in Mammalian Cells 3 4 **AUTHORS AND AFFILIATIONS:** 5 Katherine Chan*1, Amy Hin Yan Tong*1, Kevin R, Brown1, Patricia Mero1, Jason Moffat1,2,3 6 7 ¹Donnelly Centre, University of Toronto, Toronto, Canada 8 ²Department of Molecular Genetics, 1 King's College Circle, University of Toronto, Toronto, 9 Canada 10 ³Institute for Biomaterials and Biomedical Engineering, Rosebrugh Building, University of 11 Toronto, Toronto, Canada 12 13 *These authors contributed equally. 14 15 **Corresponding Author:** 16 Jason Moffat (j.moffat@utoronto.ca) 17 **Email Addresses of Co-authors:** 18 19 Katherine Chan (katiesk.chan@utoronto.ca) 20 **Amy Tong** (amy.tong@utoronto.ca) 21 22 **KEYWORDS:** 23 CRISPR-Cas9, sgRNA libraries, Toronto-Knock-out, genome-wide CRISPR screening, pooled drop-24 out screens, functional genomics, essential genes, cell fitness, proliferation 25 26 **SUMMARY:** 27 CRISPR-Cas9 technology provides an efficient method to precisely edit the mammalian genome 28 in any cell type and represents a novel means to perform genome-wide genetic screens. A 29 detailed protocol discussing the steps required for the successful performance of pooled 30 genome-wide CRISPR-Cas9 screens is provided here. 31 32 **ABSTRACT:** 33 Genome editing using the CRISPR-Cas system has vastly advanced the ability to precisely edit 34 the genomes of various organisms. In the context of mammalian cells, this technology 35 represents a novel means to perform genome-wide genetic screens for functional genomics 36 studies. Libraries of guide RNAs (sgRNA) targeting all open reading frames permit the facile 37 generation of thousands of genetic perturbations in a single pool of cells that can be screened 38 for specific phenotypes to implicate gene function and cellular processes in an unbiased and 39 systematic way. CRISPR-Cas screens provide researchers with a simple, efficient, and 40 inexpensive method to uncover the genetic blueprints for cellular phenotypes. Furthermore, 41 differential analysis of screens performed in various cell lines and from different cancer types 42 can identify genes that are contextually essential in tumor cells, revealing potential targets for

specific anticancer therapies. Performing genome-wide screens in human cells can be daunting,

as this involves the handling of tens of millions of cells and requires analysis of large sets of

data. The details of these screens, such as cell line characterization, CRISPR library considerations, and understanding the limitations and capabilities of CRISPR technology during analysis, are often overlooked. Provided here is a detailed protocol for the successful performance of pooled genome-wide CRISPR-Cas9 based screens.

INTRODUCTION:

CRISPR-Cas, short for clustered regularly interspaced short palindromic repeats and CRISPR-associated nuclease, consists of a single nuclease protein (e.g., Cas9) in complex with a synthetic guide RNA (sgRNA). This ribonucleoprotein complex targets the Cas9 enzyme to induce double-stranded DNA breaks at a specific genomic locus¹. Double-stranded breaks can be repaired via homology directed repair (HDR) or, more commonly, through non-homologous end joining (NHEJ), an error prone repair mechanism that results in insertion and/or deletions (INDELS) that frequently disrupt gene function¹. The efficiency and simplicity of CRISPR enables a previously unattainable level of genomic targeting that far surpasses previous genome editing technologies [i.e., zinc finger nucleases (ZNF) or transcription activator-like effector nucleases (TALENS), both of which suffer from heightened design complexity, lower transfection efficiency, and limitations in multiplex gene editing²].

The basic research application of CRISPR single-guide RNA-based genome editing has allowed scientists to efficiently and inexpensively interrogate the functions of individual genes and topology of genetic interaction networks. The ability to perform functional genome-wide screens has been greatly enhanced by use of the CRISPR-Cas system, particularly when compared to earlier genetic perturbation technologies such as RNA interference (RNAi) and gene trap mutagenesis. In particular, RNAi suffers from high off-target effects and incomplete knockdown, resulting in lower sensitivity and specificity compared to CRISPR³⁻⁵, while gene trap methods are only feasible in haploid cells for loss-of-function screens, limiting the scope of cell models that can be interrogated⁶. The ability of CRISPR to generate complete gene knock-out provides a more biologically robust system to interrogate mutant phenotypes, with low noise, minimal off-target effects and consistent activity across reagents⁵. CRISPR-Cas9 sgRNA libraries that target the entire human genome are now widely available, allowing simultaneous generation of thousands of gene knock-outs in a single experiment^{3,7-9}.

We have developed unique CRISPR-Cas9 genome-wide sgRNA lentiviral libraries called the Toronto Knock-out (TKO) libraries (available through Addgene) that are compact and sequence-optimized to facilitate high resolution functional genomics screens. The latest library, TKOv3, targets ~18,000 human protein-coding genes with 71,090 guides optimized for editing efficiency using empirical data¹⁰. Additionally, TKOv3 is available as a one-component library (LCV2::TKOv3, Addgene ID #90294) expressing Cas9 and sgRNAs on a single vector, alleviating the need to generate stable Cas9-expressing cells, enabling genome-wide knock-out across a broad range of mammalian cell types. TKOv3 is also available in a vector without Cas9 (pLCKO2::TKOv3, Addgene ID# 125517) and can be utilized in cells that express Cas9¹¹.

- A genome-wide CRISPR-Cas9 edited cell population can be exposed to different growth conditions, with the abundance of sgRNAs over time quantified by next-generation sequencing, providing a readout to assess drop-out or enrichment of cells with traceable genetic perturbations. CRISPR knock-out libraries can be harnessed to identify genes that, upon perturbation, cause cellular fitness defects, moderate drug sensitivity (e.g., sensitive or resistant genes), regulate protein expression (e.g., reporter), or are required for a certain pathway function and cellular state¹²⁻¹⁴. For example, differential fitness screens in a cancer cell line can identify both depletion or reduction of oncogenes and enrichment or an increase of tumor suppressors genes^{3,14,15}. Similarly, using intermediate doses of therapeutic drugs can reveal both drug resistance and sensitization genes^{16,17}.
- Provided here is a detailed screening protocol for genome-scale CRISPR-Cas9 loss-of-function screening using the Toronto Knock-out libraries (TKOv1 or v3) in mammalian cells from library generation, screening performance to data analysis. Although this protocol has been optimized for screening using the Toronto Knock-out libraries, it can be applied and become scalable to all CRISPR sgRNA pooled libraries.

PROTOCOL:

The experiments outlined below follows the institute's Environmental Health and Safety Office guidelines.

1. Pooled CRISPR sgRNA lentiviral library plasmid amplification

- 1.1 Dilute the ready-made CRISPR sgRNA plasmid DNA library to 50 ng/ μ L in TE (e.g., TKOv3).
- 1.2 Electroporate the library using electrocompetent cells. Set up a total of four electroporation
 reactions as described below.
- 1.2.1 Add 2 μ L of 50 ng/ μ L TKO library to 25 μ L of thawed electrocompetent cells to pre-118 chilled cuvettes (1.0 mm) on ice.
- 120 1.2.2 Electroporate using optimal settings suggested by the manufacturer's protocol. Within 121 10 s of the pulse, add 975 μ L of Recovery Medium (or SOC medium) to the cuvette.
- 1.2.3 Transfer electroporated cells to a culture tube and add 1 mL of Recovery Medium.

 1.2.4 Incubate tubes in a shaking incubator at 250 rpm for 1 h at 37 °C.
- 1.3 Set up a dilution plate to titer the library and estimate transformation efficiency.
- 1.3.1 Pool all 8 mL of recovered cells and mix well. Transfer 10 μ L of the pooled cells to 990 μ L of Recovery Medium for an 800-fold dilution and mix well.

Page 2 of 6 revised November 2017

- 131 1.3.2 Plate 20 μ L of the dilution onto a pre-warmed 10 cm LB + carbenicillin (100 μ g/L) agar plate. This results in a 40,000-fold dilution of the transformants that will be used to calculate
- the transformation efficiency.

134

135 1.3.3 Plate 400 μ L of recovered cells on each plate across a total of 20 pre-warmed 15 cm LB + carbenicillin agar plates. Incubate the plates for 14–16 h at 30 °C.

137

NOTE: Growth at this lower temperature minimizes the recombination between long-terminal repeats (LTR)¹⁸.

140

- 1.3.4 To calculate the transformation efficiency, count the number of colonies on the 40,000fold dilution plate (step 1.3.2). Multiply the number of colonies counted by 40,000 to obtain the
- total number of colonies on all plates. Proceed if the total number of colonies represents a
- library coverage equivalent to minimum of 200x colonies per sgRNA (most optimal is 500-
- 145 1000x).

146

1.3.4.1. For example, the minimal colony number for TKOv3 library (71,090 sgRNA) is 1.4 x 10⁷, which is equivalent to 200x colonies per sgRNA. If colony representation is insufficient, increase the number of electroporations in step 1.2 based on the number of colonies on the dilution plate to achieve the minimum library coverage.

151 152

1.4 Harvest the colonies as described below

153154

155

1.4.1 To each 15 cm plate, add 7 mL of LB + carbenicillin (100 μ g/L) medium, then scrape the colonies off with a cell spreader. With a 10 mL pipette, transfer the scraped cells into a sterile 1 L conical flask or bottle.

156 157

158 1.4.2 Once again rinse the plate with 5 mL of LB + carbenicillin medium and transfer the solution to the bottle.

160 161

1.4.3 Repeat for all plates to pool cells from 20 plates into a sterile bottle.

162163

164

1.5 Mix collected cells with a stir bar for 1 h at room temperature (RT) to break up cell clumps. Transfer cells to pre-weighed centrifuge bottles and centrifuge at $7,000 \times g$ to pellet bacteria, then discard media.

165 166 167

1.6 Weigh the wet cell pellet and subtract the weight of the centrifuge bottle to determine the final weight of the wet pellet. Purify plasmid DNA using a maxi- or mega-scale plasmid purification kit depending on the amount of bacterial pellet each column can process.

169 170 171

168

2. Large-scale CRISPR sgRNA library lentivirus production

NOTE: All steps in this section of the protocol are performed in a BSL2+ facility in a Class II, Type A2 biosafety cabinet.

2.1 Calculate the number of 15 cm plates required for virus production based on the estimate
 that 18 mL of virus is typically harvested from one 15 cm plate.

2.2 Prepare cells for transfection by seeding HEK-293T packaging cells in low-antibiotic growth
 media (DMEM + 10% FBS + 0.1x pen/strep) at 8 x 10⁶ cells per 15 cm plate in 20 mL of media.
 Incubate cells overnight at 37 °C, 5% CO₂. Ensure that the plated cells are 70%–80% confluent
 and evenly spread at moment of transfection.

2.3 Prepare three transfection plasmids mixture as outlined in **Table 1** for 15 cm plates. Calculate the amount of plasmid needed for one transfection and make a mix of plasmids for the number of plates, plus one to be transfected.

2.4 Prepare a lipid-based transfection reagent for each transfection as outlined in **Table 2.**Aliquot reduced serum media into individual 1.5 mL microcentrifuge tubes for the number of plates to be transfected. Add transfection reagent, mix gently, and incubate for 5 min at RT.

2.5 Following 5 min incubation, add the amount of DNA required for one transfection to the transfection reagent for a 3:1 ratio of transfection reagent-to-µg of DNA complex. Mix gently and incubate for 30 min at RT.

NOTE: Subsequent transfections can be prepared in sets of five or less, with 5 min intervals to optimize for time and avoid over-incubation.

2.6 After 30 min of incubation, carefully transfer each transfection mix to each plate of packaging cells. Add the entire mix using a 1 mL pipette tip dropwise in a circular, zigzag motion without disturbing the cell monolayer. Incubate cells at 37 °C for 18 h at 5% CO₂.

2.7 Prepare viral harvest media: 500 mL of DMEM medium + 32 mL of BSA stock (20 g/100 mL, dissolved in DMEM, filter sterilized with 0.22 μ m filter) + 5 mL of 100x pen/strep.

2.8 After 18 h, remove media (use proper handling of lentivirus waste such as incubation in 1% sodium hypochlorite for 30 min before disposal). Gently replace with 18 mL of viral harvest media to each plate. Incubate cells at 37 $^{\circ}$ C for 18 h at 5% CO₂.

2.9 After 24 h, check packaging cells for abnormal and fused morphology as an indication of good virus production. Then, harvest the lentivirus by collecting all supernatant and transferring into a sterile conical centrifuge tube.

2.10 Spin the media containing virus at 300 x g for 5 min and pellet the packing cells. Aliquot the supernatant into a sterile polypropylene tube without disturbing the pellet.

2.11 Store the virus at 4 °C for short periods (less than 1 week) or immediately at -80 °C for long-term storage. Aliquot large-scale virus preps to single use volumes for long-term storage to avoid freeze/thawing.

220221

3. Cell line characterization for screening

222

3.1 Select the desired cell line.

224

3.1.1 Measure and record the approximate doubling time of the cells.

226

3.1.2 Determine optimal cell plating density for culturing cells every 3–4 cell doublings in a tissue culture vessel of choice (e.g., 15 cm tissue culture plates).

229

3.2 Determine the puromycin concentration to use in the desired cell line for selection of TKO
 libraries containing puromycin resistance markers as follows:

232

3.2.1 Seed cells in a 12 well plate at the density required to reach confluence after 72 h, then incubate overnight (37 °C, 5% CO₂).

235

3.2.2 The next day, change to a media containing a dilution range of puromycin concentrations from 0 μ g/mL to 10 μ g/mL, in 0.5 μ g/mL increments. Incubate the cells for 48 h.

238

3.2.3 After 48 h, measure the cell viability by cell counting or alamarBlue staining.

240

3.2.4 Determine the lowest concentration that kills 100% of cells in 48 h. Use this concentration to select for CRISPR library transduced cell populations in steps 4.6 and 5.2.6.

243244

245

246

NOTE: For cell lines with longer doubling times, longer incubations with puromycin can be tolerated. In these situations, determine the kill curve for the incubation time required for <3 cell doublings. Minimize the time for selection to avoid dropout of essential genes before the start of screening.

247248249

3.3 Check cells for sensitivity to hexadimethrine bromide (up to 8 μ g/mL) by performing a dose response curve in the same method as used for measuring puromycin sensitivity (step 3.2). If toxicity is observed with <8 μ g/mL of hexadimethrine bromide, do not use.

251252253

250

4. Functional titration of pooled CRISPR lentivirus library for determination of MOI

254

255 4.1 Thaw a fresh aliquot of pooled CRISPR gRNA library lentivirus (e.g., LCV2::TKOv3) and keep on ice.

257

4.2 Design a series of virus volumes to test between the ranges of 0–2 mL (i.e., 0 mL, 0.25 mL, 0.5 mL, 1 mL, and 2 mL).

- 4.3 Harvest target cells and seed cells in 15 cm plates at the density required to reach
 confluence in 72 h.
- 4.4 For each virus volume to be tested, prepare duplicate plates. Add cells, virus,
 hexadimethrine bromide (8 μg/mL), and media to a final volume of 20 mL. Mix plates
 thoroughly, sit plates level in incubator and incubate for 24 h (37 °C, 5% CO₂).
 - 4.5 After 24 h, remove virus containing media and dispose (use biosafety precautions for handling of lentivirus waste). Optionally, gently wash the plate with warm PBS to remove extraneous virus.
 - 4.6 For each virus condition, replace with 20 mL of media containing puromycin using the concentration determined to kill cells in section 3, to one replicate plate. To the other plate, add 20 mL of fresh media without puromycin. Incubate for 48 h (37 °C, 5% CO₂).
- 4.7 After 48 h, check that all uninfected cells (0 mL virus condition) treated with puromycin are
 dead. Harvest all plates individually and disperse cells by repeated gentle pipetting.
- 4.8 Count cells from all the plates and calculate the MOI for each virus volume by comparing cell counts with puromycin selection to cell counts without puromycin (i.e., +/- puromycin).
 - 4.9 Graph results to determine the virus volume that leads to 30%–40% cell survival with puromycin selection versus without puromycin. Use this virus volume to achieve a MOI of 0.3–0.4 during the screen under the same tissue culture conditions.
 - 5. Primary screen infection, selection, and cell passaging
- 5.1 Select the CRISPR sgRNA library coverage to be maintained throughout the screen
 (recommended minimum of 200-fold).
- 291 5.1.1 Based on the library coverage, determine the number of cells required to maintain this coverage per sgRNA and the number of cells required for infection at MOI 0.3 (**Table 3**).
 - 5.1.2 Determine the number of plates required to set up the infection (Table 4).
- 5.2 Infecting the cells with CRIPSR library

267268

269

270

271272

273

274

275

278

281 282

283

284

285286

287

290291

293294

295

299

304

- 298 5.2.1 Harvest cells and seed the required cell number to each 15 cm plate.
- 5.2.3 Add hexadimethrine bromide (8 μg/mL) to all plates.
- 302 5.2.4 Add the virus at the volume required for MOI 0.3 to screening and the Control 2 plates.
 303 For the Control 1, do not add virus, and replace that volume with media.

Page 6 of 6 revised November 2017

- 305 5.2.5 Mix plates thoroughly by tilting. Place plates in incubator, making sure they are level.
- NOTE: Batch infections can be done by combining a master mix of virus, media, and hexadimethrine bromide to cells in suspension before plating.
- 5.2.6 Remove media and replace with fresh media containing puromycin at the concentration determined in step 3.2.4 to the screening and control 1 plates 24 h after virus infection. Add fresh media with no puromycin to the control 2 plate. Incubate cells for 48 h (37 °C, 5% CO₂).
- 5.2.7 48 h after puromycin addition, ensure that all uninfected cells are dead (control 1) to confirm puromycin activity, then harvest the infected cells.
- 317 5.3 Harvesting infected cell population and cell passaging

- 5.3.1 Harvest the puromycin-selected cells from all screening plates into one sterile container.
 Collect the cells from each control plate separately. Disperse cells by gentle repeated pipetting.
- 5.3.2 Count cells from pooled screening cells, control 1, and control 2 separately and calculate the number of cells per 1 mL.
- 325 5.3.3 Calculate MOI and fold coverage achieved as follows:
- i) $MOI = total\ cells\ per\ screening\ plate\ \div\ total\ cells\ in\ control\ 2\ plate$ ii) $Fold\ coverage = (number\ of\ cells\ infected\ \times\ final\ MOI)\ \div\ sgRNA\ library\ size$
 - 5.3.4 Collect three replicates of cell pellets from the pooled cells at the selected library coverage for genomic DNA extraction. Centrifuge the cells at 500 x g for 5 min. Wash with PBS. Label the tubes and freeze-dry the cell pellets at -80 °C (these are T0 reference samples).
 - 5.3.5 Split the pool of infected cells into three replicate groups (e.g., replicate A, replicate B, replicate C), while maintaining library coverage within each replicate. Seed cells at the same seeding density as would normally be used when expanding them. Use the same number of cells for each replicate plate and same total number of cells between replicates.
 - 5.3.6 Continue to passage cells and harvest three replicates of cell pellets from each replicate of pooled-infected cells as above, every 3–8 days depending on the cell line, for up to 15–20 cell doublings. At each passage, harvest the cells from all plates in each replicate group with each other (i.e., all cells from replicate A plates are re-mixed together, etc.).
 - 5.3.7 Label each pellet with a time (T) and replicate designation. This corresponds to the number of days post-T0 the pellet is collected (e.g., T3_A, T6_B, T_C, etc).

Page 7 of 6 revised November 2017

- 5.4 For the negative selection drug screens, allow cells to recover for at least one passage after T0 before treatment. At T3 or T6, split the cells from each replicate group (A, B, C) into drug treatment and control populations, using the same seeding density used in step 5.3.5.
- 5.4.1 Separately pool the number of cells required for library coverage for each replicate in the drug treatment group. Add the drug at intermediate concentrations (IC₂₀-IC₅₀). Seed the cells and incubate (37 °C, 5% CO₂) until next passage.
- 5.4.2 Separately pool the number of cells required for library coverage for each replicate in the vehicle control group. Add the vehicle control using the same volume as the drug (<0.5% v/v). Seed the cells and incubate (37 °C, 5% CO₂) until the next passage.
- 5.4.3 Continue to passage the cells and harvest the cell pellets for genomic DNA every 3 days
 as described in step 5.3.5, while refreshing the drug or vehicle at each passage.
 - 5.5 For the positive selection or drug resistance screens, split each replicate group according to the number of cells required for library coverage. Add IC_{90} drug concentrations to each replicate. At IC_{90} , a majority cells will be killed. Allow resistant populations to grow and collect cell pellets (1–2 x 10^7 cells) for genomic DNA extraction.

6. CRISPR sample preparation and sequencing

6.1 Genomic DNA purification

351

355

359

363

364

365

366

367 368

369 370

371372

381

385

388

390

373
374
6.1.2 Add 1.4 mL of PBS to a 50 mL centrifuge tube containing a cell pellet. Vortex for 20 s to resuspend the cells and rest for 1 min. If required, pipette 15x with P1000 to break up the

6.1.1 Incubate the frozen cell pellets for 5–10 min at RT for thawing.

- resuspend the cells and rest for 1 min. If required, pipette 15x with P1000 to break up the remaining cell clumps. If transferring cells from a 15 mL or 1.5 mL tube, resuspend the cells with 1 mL of PBS, then transfer cells to a 50 mL tube and rinse the original tube with 400 µL of PBS.
- 378
- 379 6.1.3 Add 5 mL of Nuclei Lysis Solution to the resuspended cells. Using a 10 mL pipette, mix the sample by pipetting up and down 5x.
- 6.1.4 Add $32~\mu$ L of RNase A (20 mg/mL; to obtain a final concentration of 100 μ g/mL) to the nuclear lysate and mix the sample by inverting the tube 5x. Incubate the mixture at 37°C for 15 min and allow sample to cool for 10 min at RT.
- 386 6.1.5 Add 1.67 mL of Protein Precipitation Solution to the lysate and vortex vigorously for 20 s. Small protein clumps may be visible after mixing.
- 389 6.1.6 Centrifuge at 4,500 x g for 10 min at RT.

Page 8 of 6 revised November 2017

391 6.1.7 Using a 10 mL pipette, transfer the supernatant to a 50 mL centrifuge tube containing 5 mL of isopropanol. Gently mix the solution 10x by inversion until the DNA is observed.

393

NOTE: DNA can be observed as white, thread-like strands that form a visible mass.

395

396 6.1.8 Centrifuge at 4,500 x q for 5 min at RT to pellet the DNA.

397

6.1.9 Using a 10 mL pipette, carefully remove the supernatant and avoid dislodging the DNA pellet. Add 5 mL of 70% ethanol at RT to the DNA. Gently rotate the tube to wash the DNA pellet and sides of the centrifuge tube.

401

402 6.1.10 Centrifuge at 4,500 x *q* for 5 min at RT.

403

404 6.1.11 Using a 10 mL pipette, carefully remove the 70% ethanol and avoid dislodging the DNA pellet. Air-dry genomic DNA for 10 min at RT.

406

- 407 6.1.12 Add 400 μ L of TE solution to the tube and let the DNA dissolve by incubating at 65 °C for
- 408 1 h. Mix the DNA by gently flicking the tube every 15 min. If the DNA does not dissolve
- completely, incubate tube at 65 °C for an additional 1 h whiel gently flicking the tube every 15
- 410 min, and leave it at 4 °C overnight.

411

- 412 6.1.13 Centrifuge at 4,500 x g for 1 min at RT and transfer genomic DNA to a 1.5 mL low-
- 413 binding tube.

414

6.1.14 Quantify and measure the purity of genomic DNA on both the spectrophotometer (for total nucleic acid content) and fluorometer (for double-stranded DNA content).

417

418 6.2 Optionally, precipitate genomic DNA if there are issues with downstream PCR amplification of the sgRNA as follows.

420

421 6.2.1 Transfer 400 μL genomic DNA into a 1.5 mL microcentrifuge tube.

422

423 6.2.2 Add 18 μ L of 5 M NaCl (final concentration of 0.2 M) and 900 μ L of 95% ethanol.

424

425 6.2.3 Invert tube 10x until thoroughly mixed, then centrifuge at 16,000 x g for 10 min at RT.

426

6.2.4 Carefully remove the supernatant and avoid dislodging the DNA pellet. Wash the DNA pellet with 500 μ L of 70% ethanol. Gently rotate the tube to wash the DNA pellet.

429

430 6.2.5 Centrifuge at 16,000 x g for 5 min at RT.

431

432 6.2.6 Carefully remove supernatant and avoid dislodging DNA pellet. Air-dry genomic DNA for 433 10 min at RT.

434 435 6.2.7 Add 300 µL of TE to dissolve DNA as described in steps 6.1.12. 436 437 6.2.8 Quantify and measure the purity of genomic DNA as described in step 6.1.14. 438 439 6.3 CRISPR sequencing library preparation 440 441 6.3.1 Set up PCR 1 as outlined in **Table 5** using a total of 100 μg of genomic DNA. Add 3.5 μg 442 of genomic DNA per 50 μL reaction and set up identical 50 μL reactions to achieve the desired coverage. **Table 6** lists examples of primer sequences for amplification of LCV2::TKOv3 443 444 sequencing libraries. Table 7 lists examples of primer sequences for amplification of 445 pLCKO2::TKOv3 sequencing libraries. 446 447 6.3.2 Amplify PCR 1 reactions in a thermocycler using the program outlined in **Table 8**. 448 449 6.3.3 Check PCR 1 amplification by running 2 μL of the PCR product on a 1% agarose gel. PCR 450 1 yields a product of 600 bp. 451 452 6.3.4 Pool all individual 50 µL reactions for each genomic DNA sample and mix by vortexing. 453 454 6.3.5 Set up one PCR 2 reaction (50 μL) for each sample as outlined in **Table 9** using 5 μL of 455 the pooled PCR 1 product as a template. Use unique index primer combinations for each 456 individual sample to allow pooling of sequencing library samples. 457 458 6.3.6 Amplify the PCR2 reaction in a thermocycler using the program outlined in **Table 10**. 459 460 6.3.7 Clean agarose gel equipment for purifying amplified products with 0.1 N HCl for 10 min 461 prior to casting a gel. Prepare a 2% agarose gel containing DNA stain for purifying PCR 2 462 amplified products. 463 464 6.3.8 Run the PCR 2 product on the 2% agarose gel at low voltage (1.0–1.5 h run). PCR 2 yields a product of 200 bp. 465 466 6.3.9 Visualize the PCR products on a blue light transilluminator. Excise the 200 bp band and 467 purify DNA from the agarose gel slice using a gel extraction kit. Quantify and measure the purity 468 469 of the sequencing library on both the spectrophotometer and fluorometer. 470 471 NOTE: A typical gel-purified sequencing library concentration ranges from 5–10 ng/μL and a

Page 10 of 6 revised November 2017

6.4.1 Sequence the CRISPR sequencing libraries on next-generation sequencers.

472

473 474

475 476 6.4

total yield of 150-300 ng.

High-throughput sequencing

6.4.2 Sequence reference TO samples at higher read depth of 400- to 500-fold library
 coverage. Sequence experimental timepoint samples for drop-out screens at a minimum read
 depth of 200-fold. For strong positive selection screens, a minimum of read depth of 50-fold
 coverage is sufficient for identification of enriched sgRNAs.

NOTE: It is critical to sequence the TO sample to determine library representation for a particular screen and serve as a reference for the determining sgRNA fold changes over time.

7. Data analysis

NOTE: Depending on the sequencing platform used, raw sequence reads may require preprocessing and trimming before they can be mapped to the reference sgRNA sequence library (provided for all ready-made libraries).

7.1 Align sequence using programs such as Bowtie to map sequence reads to the reference library using the following parameters: -v2 (allowing two mismatches) and -m1 (discarding any read that mapped to more than one sequence in the library).

7.2 Normalize the number of uniquely mapped reads for each sgRNA for a given sample to 10 million reads per sample as follows:

499 normalized reads per $sgRNA = \frac{reads \ per \ sgRNA}{total \ reads \ for \ all \ sgRNA \ in \ sample} \ x10^7$

7.3 Calculate the log2 fold change of each sgRNA for each replicate at each timepoint (Tn) compared to the T0 sample (Tn/T0). Add a pseudo count of 0.5 reads to all read counts to prevent discontinuities from zeros. Exclude sgRNAs with <30 raw reads in the T0 sample from fold-change calculation and downstream analysis.

7.4 Analyze fold changes with the Bayesian Analysis of Gene Essentiality (BAGEL) algorithm https://github.com/hart-lab/bagel, using the core essential and non-essential training sets defined previously¹⁹ for gene essentiality screens (**Supplementary Table S1**) or DrugZ https://github.com/hart-lab/drugZ for drug screens²⁰.

- 512 7.5 Calculate the precision and recall for screen performance assessment using BF scores.
- 513 Use the essential set from step 7.4 as the true positive list for the precision_recall_curve
- function of the Scikit-learn library for Python, along with the above BF score subset.
- Alternatively, perform the same using the PRROC package in R.

7.6 Calculate the mean fold change of all guides for each gene. Generate density plots for the essential and non-essential genes (see step 7.4) in R or equivalent software. In R, if x.ess is a

Page 11 of 6

vector containing the log fold change values of essential genes and x.nonEss contain non-essential genes, plot using the following command:

```
plot( density( x.ess ), xlab="mean logFC",col="red",lwd=2 )
lines( density( x.nonEss ), col="blue",lwd=2 )
```

NOTE: For Python version details and packages used, see scikit-learn v0.19.1: (published by Pedregosa et al.²¹).

REPRESENTATIVE RESULTS:

Overview of genome-scale CRISPR screening workflow

Figure 1 illustrates an overview of the pooled CRISPR screening work flow, starting with infection of target cells with CRISPR library lentivirus at a low MOI to ensure single integration events and adequate library representation (typically 200- to 1000-fold). Following infection, cells are treated with the antibiotic puromycin to select for transduced cells. After selection, a baseline T0 cell pellet is collected to assess library distribution at the start of screening. The remaining cells, comprised of a heterogeneous population of genetic perturbations, are passaged at desired library representation every 3–4 days for 15–20 doublings to allow gene editing and the resulting effects to manifest. Screens with drug treatments are typically added at T3 or T6 after the cells have recovered from virus infection and puromycin selection. Cells are harvested at the desired library representation at every passage for genomic DNA, to determine guide abundance by next generation sequencing at desired timepoints.

It is recommended to collect multiple samples in case of any failures that may occur in the downstream sequencing library preparation steps. Pooled screens are typically viability-based assays that are designed for either positive or negative selection of essential sgRNAs. Positive screens identify genes that show resistance or increase survival under specific selection pressure (e.g., drugs or mutant cell line). In this case, most cells will die from the selection, and cells that remain will be enriched for sgRNAs targeting genes that are resistant for the drug or condition being tested. Negative selection screens or "drop-out" screens identify gene knockouts with increased sensitivity to or loss of survival under the screen selection pressure. To identify perturbations that have a phenotypic effect such as a growth defect, guide abundance at each timepoint is quantified by next-generation sequencing and compared to T0 to assess drop-out or enrichment of guides over the course of the screen. Using analysis platforms, log-fold changes are measured for guides, and algorithms such as the BAGEL can be applied to enable ranking of gene hits.

Library amplification and maintenance of library representation in pooled CRISPR screens Figure 2 illustrates the expected distribution of guides after amplification of the plasmid library. TKOv3 library consists of 71,090 sgRNAs with four sgRNAs per gene, targeting ~18,000 protein coding genes¹⁰. An ideal library should have every single sgRNA represented at similar quantities. Therefore, it is recommended to confirm the distribution of guides in the amplified library by next-generation sequencing. Shown here is an amplified library with very tight

Page 12 of 6

distribution of sgRNAs, confirming that >95% of all sgRNAs are within 4-fold distribution range (**Figure 2**). A wider distribution of sgRNAs will indicate that the abundance of library guides are not equally represented and can contribute to the noise in pooled screens.

Evaluation of screen performance

Figure 3 illustrates that the performance quality of a screen can be evaluated by assessing the fold change distribution of all sgRNA against a gold standard reference list of essential (684 genes) and nonessential genes (927 genes) and visualized as precision-recall curves¹⁰. Using the gold-standard reference sets, Bayes Factor (BF) scores are calculated for the screen endpoint, and precision-recall curves are plotted. BF scores are calculated by analyzing the log-fold change for all guides targeting a gene using a Bayesian framework (the BAGEL algorithm described previously¹⁹) to compare distributions of known essential and non-essential guide sets. False discovery rates (FDR) are derived empirically using the same gold standard reference sets. A high performing screen should recover a high number of essential genes at a threshold of BF >6 and FDR <5%, as evidenced by a sharp "elbow" in most curves and a straight line to the terminal point as shown by the blue line in Figure 3A. The dropout of guides targeting essential and nonessential genes should also be examined (Figure 3B). Guides targeting the reference nonessentials genes should show a largely symmetric distribution of log-fold changes centered at zero, as shown by the dashed line in Figure 3B. The fold change distribution of guides targeting essential genes shows a strong negative shift relative to the distribution of guides targeting nonessential genes, as shown by the solid line in Figure 3B.

Essential genes

One of the basic applications of pooled genome-wide drop-out screens is to identify essential genes. Essential genes, a subcategory of fitness genes, are genes whose perturbation causes cell lethality, also considered loosely as proliferation genes. In the context of cancer biology, it is possible to identify context-specific essentials in order to identify dependencies for a particular tumor cell line. **Figure 4**, shows the gene rank of essential genes using Bayes Factor scores, derived from the BAGEL algorithm. Bayes Factor (BF) represents a confidence measure that the gene knock-out results in a fitness defect. More positive scores indicate higher confidence that the perturbation causes a decrease in fitness.

Positive selection screen

Genome-wide knock-out pools can be cultured in the presence of excess drug agent to look for suppressor/resistance genes. Shown here is an example of HCT116 cells screened in the presence of thymidine to look for suppressors of G1/S arrest³. Details of this screen can be found in a previous publication³. Briefly, 6 days after selection of CRISPR library infected cells, cells were split into replicates maintaining library coverage and treated with thymidine. Cells were passaged in the presence of drug until ample resistant cells were recovered for genomic DNA sampling. Positive selections can be sequenced (read depth) at lower coverage than negative screens since only a small fraction of guides will remain due to the strong selective pressure. In this example, sequencing was obtained with a few million reads, and 11 of 12 sgRNAs targeting thymidine kinase (TK1) were recovered and enriched as expected (Figure 5).

Page 13 of 6 revised November 2017

607	FIGURE AND TABLE LEGENDS:
808	
609	Table 1: Recommended amount of plasmid for TKOv3 transfection.
610	
611	Table 2: Lipid-based transfection reagent set-up.
612	
613	Table 3L Determination of cell numbers required for TKOv3 CRISPR library infection and cell
614	plating at various fold-coverage.
615	Table A. Calculation for infestion and
616	Table 4: Calculation for infection set-up.
617 618	Table Et DCD 1 set up
619	Table 5: PCR 1 set-up.
620	Table 6: PCR primers for amplification of LCV2::TKOv3 sequencing libraries.
621	rable 6. FeR printers for amplification of Lev2TROVS sequencing libraries.
622	Table 7: PCR primers for amplification of pLCKO2::TKOv3 sequencing libraries.
623	
624	Table 8: PCR 1 cycle parameters.
625	, .
626	Table 9: PCR 2 set-up.
627	
628	Table 10: PCR 2 cycle parameters.
629	
630	Supplementary table S1. TKO reference gene sets
631	
632	Figure 1: Schematic overview of pooled screening workflow. (A) Target cell population is
633	infected with CRISPR library lentivirus at low MOI to ensure that most cells receive one viral
634	integration and that library representation is maintained. The different colors represent
635	different sgRNAs in each viral particle. Genetically modified cell pools are selected. Once
636 637	selection is complete, cells are sampled for TO reference and serially passaged. (B) At the first
638	passage after T0, cells have recovered from infection and drug treatments can be added, if required. Following treatment, cell populations are serially passaged for several weeks. During
639	each passage, cells are collected for genomic DNA and reseeded at the required fold coverage
640	of the sgRNA library. (C) Two types of screens can be performed: 1) positive selection screens,
641	which identify mutant cells that show resistance or increased survival under the specific
642	selection pressure (e.g., drugs or mutant cell line), as they will be enriched during the screen; or
643	2) negative selection screens, which identify mutant cells with increased sensitivity to or loss of
644	survival under the screen selection pressure, as they will be lost during the screen. (D) Genomic
645	DNA is harvested and PCR-amplified to enrich for guide regions. (E) Guide abundance is
646	quantified by next-generation sequencing and enriched, or depleted guides are determined for
647	"hit" identification.
548	

Figure 2: Quality of amplified CRISPR sgRNA library. Amplified library plasmids are analyzed by

next-generation sequencing (recommended reads: 30 million reads, corresponding to ~400-fold

revised November 2017

649

650

Page 14 of 6

representation of the library). Shown here is a library with tight distribution of sgRNAs, with >95% of all sgRNAs within a 4-fold distribution range.

Figure 3: **Evaluation of drop-out screen quality using gold-standard essential gene reference sets**. **(A)** Precision recall analysis of screening results in recovering of essential genes at a threshold of BF >6 and FDR of 5%. High performing screen are represented by blue line and low performing screens are represented by red line. **(B)** Fold change distribution of sgRNA targeting essential genes (solid line) and nonessential genes (dotted lines).

Figure 4: Determination of gene essentiality. Bayes Factor ranking of gene essentially in a particular screen. Bayes Factor (BF) represents a confidence measure that the gene knock-out results in a fitness defect. Higher Bayes Factors indicate increased confidence that gene knock-out results in fitness defect, (red dots). Lower Bayes Factors scores suggest knock-out provides growth advantage (blue dots).

Figure 5: Positive selection screen for suppressor of thymidine block in HCT116 cells.

Normalized read counts for all sgRNAs at T0 plotted against mean normalized read counts for thymidine treated samples. For positive selection screens (i.e., using an IC90 concentration of drug), the number of perturbations that will confer resistance to the drug is expected to be small. For this reason, read depth can be lower than what is needed for negative screens, in which most of the library is expected to be represented. *TK1* sgRNAs are circled in red. This figure has been modified from a previous publication³.

DISCUSSION:

Due to its simplicity of use and high pliability, CRISPR technology has been widely adopted as the tool of choice for precise genome editing. Pooled CRISPR screening provides a method to interrogate thousands of genetic perturbations in a single experiment. In pooled screens, sgRNA libraries serve as molecular barcodes, as each sequence is unique and is mapped to the targeted gene. By isolating the genomic DNA from the cell population, genes causing the phenotype of interest can be determined by quantifying sgRNA abundance by next generation sequencing. Massively parallel sequencing methods are utilized to quantify sgRNAs in samples, meaning that multiple independent cell populations can be pooled into the same sequencing lane to minimize cost.

Before embarking on a large-scale screening project, it is important to have a well-characterized and technically optimized model. Genetic background, growth rate, and transduction efficiency are important factors when choosing your cell lines for screening. For example, growth rates and editing efficiency will determine scalability and technical suitability of the model. In order to adequately represent large sgRNA libraries, tens of millions of cells are required, therefore cell number could be a limiting factor in screening feasibility for cell lines with slower doublings or ones that do not have good proliferative capacity (e.g., primary cells). Based on growth rates, cell culture conditions such as cell seeding density and plate size for screening should be selected accordingly. It is recommended to culture cells in the largest vessel that is practical and technically feasible for the screen.

Page 15 of 6 revised November 2017

Lentivirus transduction efficiencies vary between cell types, as cells differ in inherent infectivity. As a result, the volume of virus required to achieve sufficient infection in one cell type will not necessarily be the same in another. Therefore, it is critical to functionally titer each batch of lentivirus library produced in the cell line to be screened to ensure sufficient coverage of the library and mostly single transduction events per cell by transducing at lower MOIs around 0.3 (section 4). Transduction efficiencies can also be influenced by cell culture conditions; therefore, functional titers should be determined using the same cell conditions that will be used in the screen. That is, it is important to use the same tissue culture vessels, media constituents and volume, cell plating density, and virus preps without prior thaws. Measurements made in different formats or conditions will not reliably scale to the screening format.

Despite the advantage of using all-in-one CRISPR-Cas9 guide libraries such as LCV2::TKOv3, the gene encoding Cas9 is quite large, making it difficult to efficiently package into viral particles (10⁵–10⁶ TU/mL). Delivering lower lentiviral titers can be a limitation for cell lines that are difficult to transduce, as they will have even more difficulty with the all-one-CRISPR libraries. To mitigate this, Cas9 should be expressed in the cell line in advance, followed by delivery of CRISPR libraries only containing sgRNAs (e.g., pLCKO2::TKOv3), which can be made at much higher titers (10⁷–10⁸ TU/mL). The ploidy of a cell line is also important, as it determines the number of target loci that need to be modified. The ability to generate complete knock-outs in haploid cells is more efficient than in cells with multiple copies of a given gene. Therefore, screens in haploid cells may be more sensitive and yield higher quality data than screens performed in diploid or aneuploid cell lines⁶. Testing known genes that are linked to the phenotype will help determine the screen-ability of a cell line model. For example, for essentiality screens, guides targeting a subunit of the 26S proteasome, *PSMD1* (Addgene: plasmid #74180), a core essential gene, can be used to test editing efficiency and infectibility of cell lines, as perturbation of *PSMD1* will result in cell death.

The robustness of pooled screens highly depends on sgRNA representation. This is an important metric that determines library performance during a screen and the ability to identify hits. Library diversity is biased in the representation of each sgRNA; therefore, the population of cells to be screened and analyzed should be sufficiently large to ensure the capture of underrepresented sgRNAs⁶. 200- to 1000-fold representation of each sgRNA is the typical coverage that has been used in published screens (i.e., 200–1000 cells per sgRNA)^{10,15}. This representation should be maintained when amplifying the library plasmid (section 1) and throughout the screen by infecting and passaging the required cell number (section 5) to represent the desired library coverage and during sequencing library preparation (protocol 6), as described throughout the protocol. For example, to achieve ~200-fold coverage of the TKOv3 library requires selection and passaging of 15 million infected cells. During sequencing, assuming a diploid human genome contains ~7.2 pg of DNA and 1 sgRNA per genome, a total of 100 μg of genomic DNA is required to generate the sequencing library for 15 million sequence reads. The decision of coverage will depend on the size of the library, as coverage of larger

Page 16 of 6 revised November 2017

libraries will require culturing larger number of cells that can be difficult to maintain and not technically practical. A minimum of 200-fold coverage is recommend with TKOv3 libraries, as 200-fold provides an optimal balance between the logistics of screening large number of cells and maintaining sufficient dynamic range to detect true biological sgRNA drop-outs with limited noise from random depletions^{22,23}. Higher fold library representations will result in improved reproducibility and ensure sufficient window for detection of changes in sgRNA abundance, especially for negative selections. A limiting feature of negative screens is that the perturbation is only depleted to the extent that it was present in the starting library²⁴. In comparison, the dynamic range of positive selection screens is much larger, as they rely on enrichment of cells, and could enrich to 100% of the final population²³. Therefore, for positive selection screens (e.g. drug resistance screens), library coverage and read depth can be reduced to 50- to 100-fold representation since only a small cell population is expected to survive.

The sequencing library protocol described here is a two-step PCR optimized for TKOv3 CRISPR libraries in both vector backbones and sequenced on the Illumina sequencing platform. These sequencing libraries can also be generated using a single PCR protocol, similar to that described in Hart et al.³. For other ready-made libraries, the primers and sequencing protocols provided for those libraries should be consulted. When preparing genomic DNA and PCR samples, it is essential to be considerate of contamination precautions. For example, a dedicated area for genomic DNA purification is highly recommended. It should also be physically distinct from bacterial plasmid preps, which are common contaminants found in genomic DNA samples. PCR reactions should be set up in a dedicated PCR hood, as this will minimize contamination from plasmids and other sequencing libraries. For good practice, a no-template negative control can be included to help monitor for PCR contamination.

Data analysis to translate sequencing reads from screens is a non-trivial task, given the size and diversity of these datasets. Once the sequence reads have been aligned and normalized, several bioinformatic tools are available to assist with evaluating screen performance (**Figure 3**) and hit identification (**Figure 4**). BAGEL is described in this protocol as the key tool for data analysis. BAGEL uses a Bayesian framework to compare the distributions of known essential and non-essential gene sets to the log-fold change of all guides targeting a gene. This method is described in detail in Hart et al³. In addition to BAGEL, other algorithms designed to identify both enriched and depleted sgRNAs, such as MAGeCK²⁵ can also be used. For drug screens, it is recommended to use the DrugZ algorithm to identify both synergistic and suppressor chemical genetic interactions. DrugZ was designed to compare the relative abundance of sgRNA in a treated population to the relative abundance of sgRNA in an untreated population at the same timepoint (Wang BiorXvi REF).

A limitation of CRISPR screens is that Cas9 does not always lead to a knock-out, as there is always a possibility that the indels created are in-frame mutations, leaving the gene function intact¹³. This results in a mixed population, making the screen "noisy" and interpretation of data challenging. Using multiple independent sgRNAs targeting a gene can build-in redundancy, reducing the effect of sgRNAs with low activity. An additional caveat to CRISPR studies is the effect of the double strand breaks created by Cas9 nuclease, which can lead to cellular lethality Page 17 of 6

independent of the gene being targeted. This anti-proliferative effect increases with target site copy number, leading to false positive identification of genes within highly amplified regions²⁶. Computational methods like CERES have been developed to correct for copy number effects²⁷. These workflows consider the copy number effect to estimate gene dependency levels in knock-out-based essentiality screens. Careful examination of genomic locations of hit genes in amplified regions can help determine false positives that are due to multiplicity of cutting effects¹³. Primary screens can only identify potential hits. It is important to follow-up with a secondary screen or protocol to validate the hits and distinguish on-target from off-target effects, weeding out false positives and ensuring genes that those scored weakly due to ineffective perturbations are not left behind as false negatives²³.

This protocol focuses on viability-based screening approaches, in which the condition of study should lead to a proliferation defect or death of cells. For processes that do not lead to a change in cellular viability, the viability-based pooled screening method can be restrictive. An alternative is to perform screens using reporter or marker-based assays and enrichment by fluorescence activated cell sorting (FACS) approaches. In marker-based selection screens, the phenotype is based on mutations that regulate marker gene expression rather than cell health^{13,23}. Arrayed CRISPR formats are also available for one-gene per well screening. Arrayed formats are more amenable to complex or microscopy-based read outs. However, arrayed formats require automated equipment and large amounts of reagents²⁸.

The screening protocol discussed here uses S. pyogenes Cas9 nuclease to create null alleles, which is the most widely used for genetic screens and for which many libraries are available (Addgene: Pooled Libraries). Alternative options to knock-out libraries are also available, which use a catalytically dead dCas9 tethered to chromatin modifier proteins to inhibit (CRISPRi) or activate (CRISPRa) transcription of genes. Similar to RNAi, CRISPRi offers the ability to study phenotypic effects at different gene doses and essential genes that cannot tolerate complete knock-out, while CRISPRa can be used to perform gain-of-function screens. Each of these technologies have their advantages, but in general, the CRISPR knock-out approach is the most developed. It has been proven to perform well with low noise, minimal off-target effects, and experimental consistency, especially in lethality-based essential gene screens, when compared to knock-down approaches using either CRISPRi and shRNAs⁵. Despite its extensive applicability to date, CRISPR screening technology remains in its early stages. New tools are continuing to be built from the basic components of CRISPR. These include combinatorial gene editing strategies that can target multiple genomic loci, optimization of orthogonal Cas enzymes, and modifications with chromatin functional domains to diversify Cas9 activities. As CRISPR technology continues to grow, its coupling to genetic screening approaches will serve as a powerful platform for functional discovery in genetics.

ACKNOWLEDGMENTS:

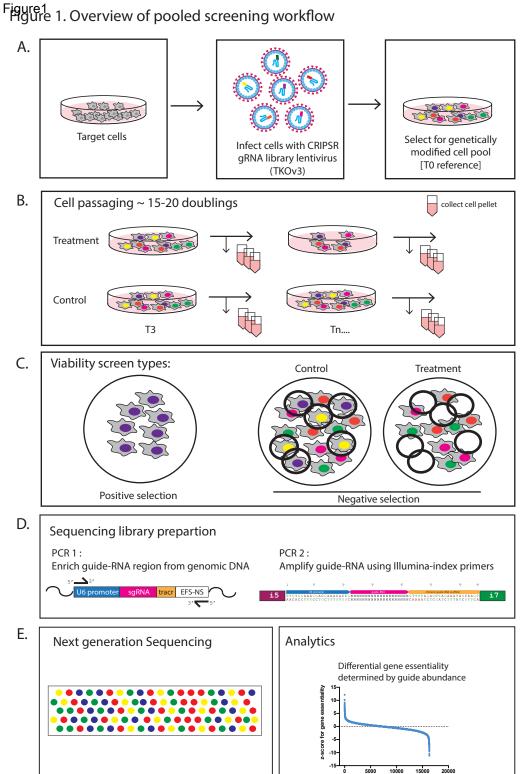
This work was supported by Genome Canada, the Ontario Research Fund, and the Canadian Institutes for Health Research (MOP-142375, PJT-148802).

DISCLOSURES:

Page 18 of 6 revised November 2017

The authors declare no competing financial interests.

826827828


REFERENCES:

- Jiang, F., Doudna, J. A. CRISPR-Cas9 Structures and Mechanisms. *Annual Review of Biophysics.* **46**, 505-529, (2017).
- 831 2 Baliou, S. et al. CRISPR therapeutic tools for complex genetic disorders and cancer
- 832 (Review). *International Journal of Oncology.* **53** (2), 443-468 (2018).
- 833 3 Hart, T. et al. High-Resolution CRISPR Screens Reveal Fitness Genes and Genotype-
- 834 Specific Cancer Liabilities. *Cell.* **163** (6), 1515-1526 (2015).
- 835 4 Morgens, D. W., Deans, R. M., Li, A., Bassik, M. C. Systematic comparison of CRISPR/Cas9
- and RNAi screens for essential genes. *Nature Biotechnology*. **34** (6), 634-636 (2016).
- 837 5 Evers, B. et al. CRISPR knock-out screening outperforms shRNA and CRISPRi in
- identifying essential genes. *Nature Biotechnology.* **34** (6), 631-633 (2016).
- 839 6 Miles, L. A., Garippa, R. J., Poirier, J. T. Design, execution, and analysis of pooled in vitro
- 840 CRISPR/Cas9 screens. *The FEBS Journal.* **283** (17), 3170-3180 (2016).
- Wang, T., Wei, J. J., Sabatini, D. M., Lander, E. S. Genetic screens in human cells using
- the CRISPR-Cas9 system. Science. **343** (6166), 80-84 (2014).
- 843 8 Wang, T. et al. Identification and characterization of essential genes in the human
- 844 genome. *Science*. **350** (6264), 1096-1101 (2015).
- Sanson, K. R. et al. Optimized libraries for CRISPR-Cas9 genetic screens with multiple
- 846 modalities. *Nature Communications.* **9** (1), 5416 (2018).
- 847 10 Hart, T. et al. Evaluation and Design of Genome-Wide CRISPR/SpCas9 Knock-out
- 848 Screens. *G3: Genes | Genomes | Genetics.* **7** (8), 2719-2727 (2017).
- 849 11 Mair B, T. J. et al. Essential gene profiles for human pluripotent stem cells identify
- uncharacterized genes and substrate dependencies *Cell Reports.* **27** (2), 599-615.E512 (2019).
- Shalem, O. et al. Genome-scale CRISPR-Cas9 knock-out screening in human cells.
- 852 *Science.* **343** (6166), 84-87 (2014).
- 853 13 Sharma, S., Petsalaki, E. Application of CRISPR-Cas9 Based Genome-Wide Screening
- 854 Approaches to Study Cellular Signalling Mechanisms. *International Journal of Molecular*
- 855 *Sciences.* **19** (4), (2018).
- 856 14 Steinhart, Z. et al. Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a
- druggable vulnerability of RNF43-mutant pancreatic tumors. *Nature Medicine*. **23** (1), 60-68
- 858 (2017).
- 859 15 Wang, T. et al. Gene Essentiality Profiling Reveals Gene Networks and Synthetic Lethal
- 860 Interactions with Oncogenic Ras. Cell. 168 (5), 890-903 e815 (2017).
- 862 PARP-trapping lesions. *Nature.* **559** (7713), 285-289 (2018).
- Deans, R. M. et al. Parallel shRNA and CRISPR-Cas9 screens enable antiviral drug target
- 864 identification. *Nature Chemical Biology.* **12** (5), 361-366 (2016).
- 865 18 Trinh, T. J. J., Bloom, F., Hirsch, V. STBL2: an Escherichia coli strain for the stable
- propagation of retroviral clones and direct repeat sequences. Focus. 18, 78-80 (1994).
- 867 19 Hart, T., Moffat, J. BAGEL: a computational framework for identifying essential genes
- from pooled library screens. *BMC Bioinformatics.* **17,** 164 (2016).

Page 19 of 6 revised November 2017

- Wang, G. Z. M. et al. Identifying drug-gene interactions from CRISPR knock-out screens
- 870 with drugZ. *bioRxiv*. https://doi.org/10.1101/232736, (2017).
- Pedregosa, F. V., G. et al. Scikit-learn: Machine Learning in Python. *Journal of Machine*
- 872 *Learning Research.* **12,** 2825-2830 (2011).
- 873 22 Ketela, T. et al. A comprehensive platform for highly multiplexed mammalian functional
- 874 genetic screens. *BMC Genomics*. **12**, 213 (2011).
- 875 23 Doench, J. G. Am I ready for CRISPR? A user's guide to genetic screens. *Nature Review*
- 876 *Genetics.* **19** (2), 67-80 (2018).
- 877 24 Hartenian, E., Doench, J. G. Genetic screens and functional genomics using CRISPR/Cas9
- 878 technology. FEBS Journal. 282 (8), 1383-1393 (2015).
- 879 25 Li, W. et al. MAGeCK enables robust identification of essential genes from genome-scale
- 880 CRISPR/Cas9 knock-out screens. *Genome Biology.* **15** (12), 554 (2014).
- Sheel, A., Xue, W. Genomic Amplifications Cause False Positives in CRISPR Screens.
- 882 *Cancer Discovery.* **6** (8), 824-826 (2016).
- 883 27 Meyers, R. M. et al. Computational correction of copy number effect improves
- specificity of CRISPR-Cas9 essentiality screens in cancer cells. Nature Genetics. 49 (12), 1779-
- 885 1784 (2017).

- Henser-Brownhill, T., Monserrat, J., Scaffidi, P. Generation of an arrayed CRISPR-Cas9
- 887 library targeting epigenetic regulators: from high-content screens to in vivo assays. *Epigenetics*.
- 888 **12** (12), 1065-1075 (2017).

Click here to access/download; Figure; Figure 1-REV2.ai ±

Figure2

Figure 2.

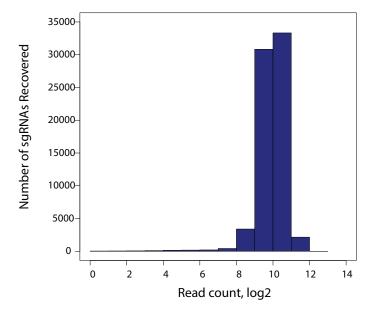
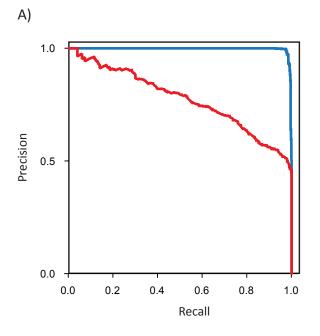



Figure 3.

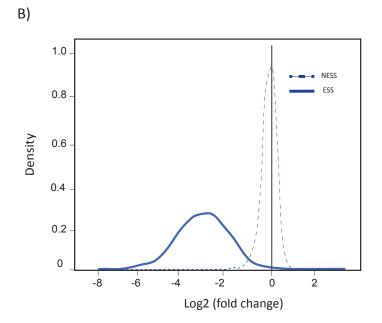
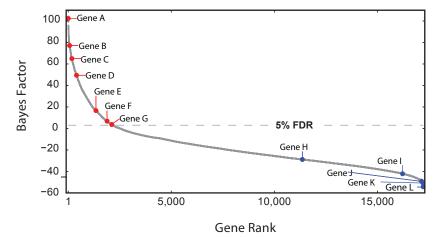
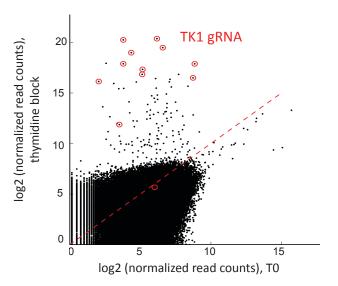



Figure4


Figure 4.

Click here to access/download;Figure;Figure 4-REV2.ai **≛**

Figure5 Figure 5.

Tabel 1. Recommended amount of plasmid for TKOv3 transfection

Amounts were determined based on molar ratio of 1:1:1

Component	Amount per 15-cm plate ^a	
Component	LCV2::TKOv3	pLCKO2::TKOv3
psPAX2	4.8 μg	7.0 µg
pMD2.G	3.8 μg	4.0 μg
TKOv3 ^b	8.0 μg	5.0 μg

^aAmounts determined based on most productive plasmid combination for TKO library at 1:1:1 molar

^bAmount TKO plasmid based on CRISPR library vector backbone. LCV2 all-in-one vector =13 kb, non-

r ratio

Cas9 pLCKO2 vector = 7.6 kb

Table 2. Lipid-based transfection reagent set up

Component	Amount per 15-cm plate
Opti-MEM	800 μL
Transfection reagent	48 μL

Table 3. Determination of cell numbers required for TKOv3 CRISPR

Fold-coverage	Number of cells per sgRNA ^b
	(sgRNA library size ^a × fold coverage)
200	1.5 x 10 ⁷
500	3.6 x 10 ⁷
1000	7.1 x 10 ⁷

^a Based on TKOv3 library size = 71,090 sgRNA

^b Numbers are rounded up

library infection and cell plating at various fold-coverage

Number of cells required for infection	b
(sgRNA library size × fold coverage ÷ 0.3	MOI)
5 x 10 ⁷	
1.2 x 10 ⁸	
2.4 x 10 ⁸	

Table 4. Calculation for infection set up

	Treatment
Screening plates	Virus, + puromycin
Control 1	No virus, + puromycin (0% survival control)
Control 2	Virus, + No puromycin (100% survival control)

^a Include extra plates to accommodate for MOI fluctuations and gr

Number of plates required for infection

(sgRNA library size \times 200-fold) \div 0.3 MOI \div cell seeding density at infection = number of plates required^a

1

1

owth rates

Table 5. PCR 1 set up

Reagents	Amount per 1x reaction
2x Master Mix	25 μL
10 μM PCR 1 LCV2 forward primer	2.5 μL
10 μM PCR 1 LCV2 reverse primer	2.5 μL
Genomic DNA	3.5 μg
Water	up to 50 μL
Total	50 μL

r amplification of LCV2::TKOv3 sequencing libraries

:es

GAGGGCCTATTTCCCATGATTC

GTTGCGAAAAAGAACGTTCACGG

Primer Sequences for Illumina Sequencer

i5 or i7 index (see Table 3) annealing sequence

ers

AATGATACGGCGACCACCGAGATCTACACTATAGCCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGGAAAGGACGAAACACCG

AATGATACGGCGACCACCGAGATCTACACATAGAGGCACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGGAAAGGACGAAACACCG

AATGATACGGCGACCACCGAGATCTACACCCTATCCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGGAAAGGACGAAACACCG

AATGATACGGCGACCACCGAGATCTACACGGCTCTGAACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGGAAAGGACGAAACACCG

AATGATACGGCGACCACCGAGATCTACACAGGCGAAGACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGGAAAGGACGAAACACCG

AATGATACGGCGACCACCGAGATCTACACTAATCTTAACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGGAAAGGACGAAACACCG

ers

CAAGCAGAAGACGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATGGAATCTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATTTCTGAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATACGAATTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATAGCTTCAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATTTCTAGCTCTAAAAC

Table 7. PCR primers for $\boldsymbol{\epsilon}$

PCR 1 - Primer Sequences
pLCKO2 forward primer
pLCKO2 reverse primer
PCR 2 - i5 and i7 Index Pr
Red sequence denotes i5
Blue sequence denotes ar
PCR 2 - i5 forward primer
S501-F
S502-F
S503-F
S504-F
S505-F
S506-F
PCR 2 – i7 reverse primer:
D701-R
D702-R
D704-R
D705-R
D706-R
D707-R

amp	lification	of I	pLCKO2::1	rKOv3	seque	ncing	libraries
~		•					

GAGGGCCTATTTCCCATGATTC

CAAACCCAGGGCTGCCTTGGAA

imer Sequences for Illumina Sequencer

or i7 index

S

inealing sequence

AATGATACGGCGACCACCGAGATCTACACTAGATCGCACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGG

AAAGGACGAGGTACCG
AATGATACGGCGACCACCGAGATCTACACCTCTCTATACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGGA

AAGGACGAGGTACCG
AATGATACGGCGACCACCGAGATCTACACTATCCTCTACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGGA

AAGGACGAGGTACCG
AATGATACGGCGACCACCGAGATCTACACAGAGTAGAACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGG

AAAGGACGAGGTACCG
AAAGGACGAGGTACCG
AAAGGACGAGGTACCG
AATGATACGGCGACCACCGAGATCTACACGTAAGGAGACACTCTTTCCCTACACGACGCTCTTCCGATCTTTGTGG

AAAGGACGAGGTACCG

CAAGCAGAAGACGGCATACGAGATCGAGTAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTAT
TTCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATTCTCCGGAGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTAT
TTCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATGGAATCTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTAT
TTCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATTTCTGAATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATT
TCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTATT
TCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATACGAATTCGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTAT
TTCTAGCTCTAAAAC
CAAGCAGAAGACGGCATACGAGATAGCTTCAGGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTTGCTAT
TTCTAGCTCTAAAAC

Table 8. PCR 1 cycle parameters

Step	Temperature	Time	
1	98°C	30 sec	_
2	98°C	10 sec	
3	66°C	30 sec	25 cycles (step 2 – 4)
4	72°C	15 sec	,
5	72°C	2 min	-
6	10°C	Hold	

Table 9. PCR 2 set up

Reagents
2x Master Mix
10 μM i5 forward primer
10 μM i7 reverse primer
PCR 1 product
Water
Total

Amount per 1x reaction	
25 μL	
2.5 μL	
2.5 μL	
5 μL	
15 μL	
50 μL	

Table 10. PCR 2 cycle parameters

Step	Temperature	Time	
1	98°C	30 sec	_
2	98°C	10 sec	
3	55°C	30 sec	10 cycles (step 2 – 4)
4	65°C	15 sec	
5	65°C	5 min	
6	10°C	Hold	

Name of Material/ Equipment	Company	Catalog Number	
0.22 micron filter			
30°C plate incubator			
37°C shaking incubator			
37°C, 5% CO ₂ incubator			
5 M NaCl	Promega	V4221	
50X TAE buffer	BioShop	TAE222.4	
6 N Hydrochloric acid solution	BioShop	HCL666.500	
95% Ethanol			
Alamar blue	ThermoFisher Scientific	DAL1025	
Blue-light transilluminator	ThermoFisher Scientific	G6600	
Bovine Serum Albumin, Heat Shock	Bioshop	ALB001.250	
Dulbecco's Modification of Eagles Medium	Life Technologies	11995-065	
Electroporation cuvettes	BTX	45-0134	
Electroporator	BTX	45-0651	
Endura electrocompetent cells	Lucigen	90293	
Fetal Bovine Serum	GIBCO	12483-020	
HEK293T packaging cells	ATCC	CRL-3216	
Hexadimethrine Bromide (Polybrene)	Sigma	H9268	

Hexadimethrine Bromide (Polybrene)

LB agar plates with carbenicillin

LB medium with carbenicillin

Low molecular weight DNA ladder New England Biolabs N3233S

Nanodrop spectrophotometer ThermoFisher Scientific ND-ONE-W

NEBNext Ultra II Q5 Master Mix New England Biolabs M0544L

Opti-MEM Life Technologies 31985-070

Plasmid maxi purification kit Qiagen 12963

pMD2.G (envelope plasmid) Addgene Plasmid #12259

psPAX2 (packaging plasmid) Addgene Plasmid #12260

Puromycin Wisent 400-160-UG

QIAquick gel extraction kit Qiagen 28704

Qubit dsDNA BR assay ThermoFisher Scientific Q32853

Qubit fluorometer ThermoFisher Scientific Q33226

RNAse A Invitrogen 12091021

S.O.C recovery medium Invitrogen 15544034

SYRB Safe DNA gel stain ThermoFisher Scientific S33102

Toronto KnockOut CRIPSR library (TKOv3) - Addgene Addgene ID #90203


Caca included

Toronto KnockOut CRIPSR library (TKOv3) - Addgene Addgene ID #125517

non caco

Tris-EDTA (TE) solution, pH8.0

UltraPure agarose	ThermoFisher Scientific	16500500
Wizard genomic DNA purification kit	Promega	A1120
X-tremeGENE 9 DNA transfection reagent	Roche	06 365 809 001

Reduced serum media

lentiviral system

lentiviral system

Genome-wide CRISPR library , includes
Genome-wide CRISPR library, non-Cas9,
71,000 caphia

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:

Author	S	:
	- /	15

POOLED GENOME MAMMALLAN	SCALE	CKISPR-CAS9	SCREENS	12)
atherine Chan, ArmyT				

Item	1:	The	Author	elects	to	have	the	Materials	be	made	available	(as	described	at
http:/	/ww	w.jov	e.com/pu	ıblish) vi	ia:									
(∄st	andar	d Access					-[\Box 0	pen Acc	cess			

Item 2: Please	select one of	the following	items:
----------------	---------------	---------------	--------

ARTICLE AND VIDEO LICENSE AGREEMENT

Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-

nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion

of the Article, and in which the Author may or may not appear.

- 2. **Background.** The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. **Retention of Rights in Article.** Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. **Grant of Rights in Video Standard Access.** This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. **Protection of the Work.** The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. **Likeness, Privacy, Personality.** The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

ARTICLE AND VIDEO LICENSE AGREEMENT

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 13. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 14. Transfer, Governing Law. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDING AUTHOR

Name:	JASON MOFFAS		
Department:	DONNEUT CENTER, MOREULAR GENETICS		
Institution:	tion: Unweering of weading		
Title:	Professor		
Signature:	Date: FEB 1, 2019		

Please submit a signed and dated copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

March 20, 2019

Dear Vineeta,

Thank you for your review of this protocol. We have revised the manuscript as recommended by the editorial and reviewers' comments. Please find below answers and comments to the reviews in blue font.

Sincerely, Jason Moffat

Editorial comments:

Changes to be made by the Author(s):

- 1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues. The JoVE editor will not copy-edit your manuscript and any errors in the submitted revision may be present in the published version.
- 2. Unfortunately, there are a few sections of the manuscript that show overlap with previously published work. Though there may be a limited number of ways to describe a technique, please use original language throughout the manuscript. Please see lines: 36-38, much of the protocol, and 580-584. Much of the protocol text has been previously published and we require novel text throughout for publication.
- 3. Please sort the Materials Table alphabetically by the name of the material.
- 4. Please remove the embedded Table from the manuscript. All tables should be uploaded separately to your Editorial Manager account in the form of an .xls or .xlsx file. Each table must be accompanied by a title and a description after the Representative Results of the manuscript text.
- 5. JoVE cannot publish manuscripts containing commercial language. This includes trademark symbols (™), registered symbols (®), and company names before an instrument or reagent. Please remove all commercial language from your manuscript and use generic terms instead. All commercial products should be sufficiently referenced in the Table of Materials and Reagents.
- 6. Please ensure that all text in the protocol section is written in the imperative tense as if telling someone how to do the technique (e.g., "Do this," "Ensure that," etc.). The actions should be described in the imperative tense in complete sentences wherever possible. Avoid usage of phrases such as "could be," "should be," and "would be" throughout the Protocol. Any text that cannot be written in the imperative tense may be added as a "Note." However, notes should be concise and used sparingly. Please include all safety procedures and use of hoods, etc.
- 7. The Protocol should contain only action items that direct the reader to do something. Please move the discussion about the protocol to the Discussion.
- 8. Please add more details to your protocol steps. Please ensure you answer the "how" question, i.e., how is the step performed? Alternatively, add references to published material

specifying how to perform the protocol action.

- 9. Please obtain explicit copyright permission to reuse any figures from a previous publication. Explicit permission can be expressed in the form of a letter from the editor or a link to the editorial policy that allows re-prints. Please upload this information as a .doc or .docx file to your Editorial Manager account. The Figure must be cited appropriately in the Figure Legend, i.e. "This figure has been modified from [citation]."
- 10. Please do not abbreviate journal titles.

We have addressed the main issues in the editorial comments as follows:

- The protocol has been revised to use as much original language as possible to ensure that it is written in imperative tense. More detail is included throughout on the "how" question as well. The edits are tracked for the editor to review the changes.
- Discussions in the protocol are required pre-amble to help the user with the steps in the protocol and address the "how" and the "why". We feel this is important for the protocol user to understand the steps. Safety procedures and use of hoods have been updated throughout each step.
- All other editing details have been corrected as directed: 1) Materials table sorted alphabetically, 2) removal of TM symbols, 3) All figures will be provided as .ai

		•				
_	-	$1 \cap 1 \setminus 1 \cap 1$	Jrc.	com	าทา	ntc
г	/CV		=13	LUII		HILD.

Reviewer #1:

Manuscript Summary:

The manuscript "Pooled Genome Scale CRISPR-Cas9 Screens in Mammalian Cells" by Jason Moffat and colleagues describes a detailed protocol on how to do pooled CRISPR screens, from amplification of the library all the way through to sequencing and identification of hits. The protocol is very well written, very detailed and comprehensive and easy to follow. In my view, this would be the best guide to this technique that is currently out there, especially when combined with the video.

Major	Concerns:
None	

Minor Concerns:

I have some minor points, mostly for clarification:

Step 1.6: is this really at 30 and not 37C?

- Low growth temp (30C) is required to reduce recombination of lentivirus LTRs, this note has been added to the step 1.6.
 - Step 1.7c: what if the colony number is lower? Repeat?
- Instructions have been added (step 1.7d). In the event colony number is low, electroporations should be increased to produce sufficient coverage of the library.

- Step 1.8c: might help to know what size bottle is required at this step
- Details regarding bottle size has been added to step 1.8c. We recommend using a sterile 1L Erlenmeyer flask or bottle.
 - Step 2.2 and throughout: instead of 8E6 use 8x106?
- We have revised the protocol to have numbers in this format, e.g. 8x10⁶ Step 2.2d: incubate for 30 min RT, what temp?
- Incubation temperature has been added to this step. Transfection mix should be incubated at room temp (2.2f)
 - Step 5.1.3: should this be 15E6 here and not 5E6? Otherwise, I am not sure how this is calculated. Also, later it says 15E6.
- This is $50x10^6$, indicating that approximately 3.33x more cells are required for infection in order to have $15x10^6$ cells representing the library coverage at 200-fold after infection efficiency at MOI of 0.3. Extra details are included in this step to clarify.
 - Step 5.4: it might be helpful to explain what i5 and i7 are, what their purpose is.
- A description has been added about the purpose of the Illumina TruSeq adaptor primers. Briefly, these primers are unique sequences used to tag sequencing libraries.
 This allows large numbers of samples to be pooled and sequenced simultaneously for multiplexed NGS run.
 - Line 479: explain what BF and FDR are and how they are calculated.
- A brief explanation for calculation of Bayes factor (BF) and False Discovery Rate (FDR) is now included in step 7.5, as well as in the figure representation. A reference to this algorithm is also included for more detail in Hart and Moffat BMC bioinformatics 2016. Figure 4B is probably not necessary, in my view. It is more distracting than helpful.
- We have removed this figure as recommend.
 Figure 5 and its description for a positive selection screen are very short. Might be easier to understand if expanded a bit.
- Figure 5 legend is now more descriptive as suggested. We've included a description on how the values are determined and the sequence depth for positive selections.
 Line 583: "representation should be maintained throughout the screen" how?
 Referring to the steps in the protocol might be helpful or some comment here.
- We have revised this line to include more details, as well as referencing steps in the protocol as suggested. See starting at line 717.

Reviewer #2:

The manuscript describes the application of pooled CRISPR-Cas9 screening approaches to research in functional genomics. These technologies have been nothing short of transformative for biology over the last several years, and as such, whilst the field is crowded, it is important that descriptive and instructional texts are available for scientists in a variety of formats.

Overall, it is concise and precise and provides a very nice work flow that would be both easy to follow for beginners and provides some tips and tricks that seasoned screening professionals can appreciate. Some particular elements I was impressed to see in the manuscript is the notes on scalability (or lack thereof) for infection vessels and description of several NGS strategies to

overcome in-variance in the screening amplicon cassette. Some minor comments and suggestions are highlighted below, but I endorse and recommend publication if these are satisfied.

Minor Concerns:

I realise copy-editing will be done, but don't forget to weed out the occasional "CRIPSR", a classic typo.

The TKOv3 plasmid is referenced wrongly - should be #90294

- The above items have been corrected

Although it is intimated and touched on more in the discussion, it would be worth spelling out at the beginning that all of the protocol assumes that the Cas9-sgRNA all-in-one is used here Throughout, the protocol is designed for the TKOv3 library and in some places this is not cited. For example, in the transformation (1.1) and the cell expansion (5.1.1), this should explicitly state that scale here is contingent on library complexity and guide number. Although it is covered well in the cell biology section.

Representation (line 114) should be defined early on

- The protocol now includes more detail on the library being used. In general, the protocol can be used directly for either TKOv3 cas9 or non-cas9 libraries. It can also be adapted to other ready-made libraries available.
 - Lenti protocol (2.1) is for a 3rd gen lenti would it not be more appropriate for this to be fourth gen for safety?
- Currently, our experience and expertise is with using 3rd generation lenti. However, any generation is applicable following the protocol for that system.
 - Comments on virus concentration would be welcome (line 189) particularly given the all-in-one focus
- Expected range of virus concentration is provided based on functional MOI determinations, step 2.1n.
 - Is there a citation to defend the coverage recommendation (200-fold)
- All our TKOv3 published screens are performed at 200-fold [Hart et al, G3 and cell]. We use 200-fold representation as it provides an optimal balance between the logistics of screening large number of cells and maintaining sufficient dynamic range to detect true biological sgRNA drop-outs with limited noise from random depletions. This note is now included in the discussion section, line 726.
 - Discussion on the use of multi-layer flasks would be welcome for large scale screens
- In our experience multi-layer flasks are difficult to work with. We had many issues of contamination and skewed representation due to difficulty trypsinizing cells out of these flasks. However, any kind of vessel can be used as long as cells grow efficiently and users are confident their cell samples and cell counts are accurately represented.
 - Very little discussion is made on protocol deviation for drug-gene interaction analysis, and since the protocol describes a very basic screen (most of which will soon be completed by the DepMap programme and others) this aspect would hold much more value for readers that that one described in detail.

- More detail is now included for drug screens throughout the protocol.
 Puromycin response time will vary per cell line (5.1.9) this should be stated
- We have updated the protocol to include situations where puromycin response times vary. However, it is ideal to do selections within <3 doublings to reduce losing cells due to drop out of essential genes in the TO sample. At TO, it is ideal to have a starting point for library representation before essential genes drop out due to editing and doubling of cells

Why do the authors recommend purification of gDNA followed by precipitation? Surely this is superfluous.

- A note is now added that this step is optional. However, we recommend ethanol precipitation of DNA sample if issues occur in PCR amplification steps due to presence of impurities. From our experience, precipitation removes some impurities in the DNA sample and increases efficiency of downstream PCR.
 - The cycle number on the PCR is quite high it is generally considered advisable to limit this to under 30 cycles in total across the two runs
- In a pooled CRISPR screen with majority of the infected cells with one integrant, and library representation of 200-fold, the total available number of templates for amplification is ~1.5 x 10⁷ molecules. We optimized the PCR conditions to ensure efficient and robust amplification of sgRNAs from genomic DNA preparations across different cell types and conditions. The number of cycles we use is not significantly different than the Zhang lab: PCR1 18 cycles; PCR2 24 cycles (Shalem et al, Science, 343, 84 (2014).

If the libraries are quantified by both nanodrop and quibit (5.4.12), which to trust (they will surely vary)

- The Qubit provides the most accurate quantification as the assay is based on fluorescent dye that binds specifically to double-stranded DNA. The Nanodrop is a spectrophotometer and the absorbance measurement of a DNA sample includes both DNA and RNA. The Qubit is recommended for accurate quantification of sequencing libraries and Nanodrop for indication of contaminants.
 - Treated sample in Fig 5 shows a poor read coverage maybe there is a better screen example you could use?
- Since this was a positive selection screen, read depth was reduced because only a small population of perturbations are expected to survive the selection. A more detailed description is included in the figure legend (Figure 5) and in the representative results section (line 633-644).

ELSEVIER LICENSE TERMS AND CONDITIONS

Mar 20, 2019

This Agreement between University of Toronto -- Jason Moffat ("You") and Elsevier ("Elsevier") consists of your license details and the terms and conditions provided by Elsevier and Copyright Clearance Center.

License Number 4522560975215

License date Feb 05, 2019

Licensed Content Publisher Elsevier
Licensed Content Publication Cell

Licensed Content Title High-Resolution CRISPR Screens Reveal Fitness Genes and

Genotype-Specific Cancer Liabilities

Licensed Content Author Traver Hart, Megha Chandrashekhar, Michael Aregger, Zachary

Steinhart, Kevin R. Brown, Graham MacLeod, Monika Mis, Michal Zimmermann, Amelie Fradet-Turcotte, Song Sun, Patricia Mero, Peter Dirks, Sachdev Sidhu, Frederick P. Roth, Olivia S. Rissland et al.

Licensed Content Date Dec 3, 2015

Licensed Content Volume 163
Licensed Content Issue 6
Licensed Content Pages 12
Start Page 1515

End Page 1526

Type of Use reuse in a journal/magazine

Requestor type academic/educational institute

Intended publisher of new

work

other

Portion figures/tables/illustrations

Number of

figures/tables/illustrations

Format both print and electronic

Are you the author of this

Elsevier article?

Yes

Will you be translating? No

Original figure numbers Figure 4a; Figure 4b; Figure S2g

Title of the article Pooled Genome Scale CRISPR-Cas9 Screens in Mammalian Cells

Publication new article is in JoVE

Publisher of the new article love.

Author of new article Katherine Chan, Amy Tong, Patricia Mero, Kevin Brown, Jason

Moffat

Expected publication date Jun 2019

Estimated size of new article 25

(number of pages)

Requestor Location University of Toronto

Donnelly Centre 160 College Street

Toronto, ON M5S3E1

Canada

Attn: University of Toronto

Publisher Tax ID GB 494 6272 12

Total 0.00 CAD

Terms and Conditions

INTRODUCTION

1. The publisher for this copyrighted material is Elsevier. By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the Billing and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"), at the time that you opened your Rightslink account and that are available at any time at http://myaccount.copyright.com).

GENERAL TERMS

- 2. Elsevier hereby grants you permission to reproduce the aforementioned material subject to the terms and conditions indicated.
- 3. Acknowledgement: If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source, permission must also be sought from that source. If such permission is not obtained then that material may not be included in your publication/copies. Suitable acknowledgement to the source must be made, either as a footnote or in a reference list at the end of your publication, as follows:
- "Reprinted from Publication title, Vol /edition number, Author(s), Title of article / title of chapter, Pages No., Copyright (Year), with permission from Elsevier [OR APPLICABLE SOCIETY COPYRIGHT OWNER]." Also Lancet special credit "Reprinted from The Lancet, Vol. number, Author(s), Title of article, Pages No., Copyright (Year), with permission from Elsevier."
- 4. Reproduction of this material is confined to the purpose and/or media for which permission is hereby given.
- 5. Altering/Modifying Material: Not Permitted. However figures and illustrations may be altered/adapted minimally to serve your work. Any other abbreviations, additions, deletions and/or any other alterations shall be made only with prior written authorization of Elsevier Ltd. (Please contact Elsevier at permissions@elsevier.com). No modifications can be made to any Lancet figures/tables and they must be reproduced in full.
- 6. If the permission fee for the requested use of our material is waived in this instance, please be advised that your future requests for Elsevier materials may attract a fee.
- 7. Reservation of Rights: Publisher reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- 8. License Contingent Upon Payment: While you may exercise the rights licensed immediately upon issuance of the license at the end of the licensing process for the transaction, provided that you have disclosed complete and accurate details of your proposed use, no license is finally effective unless and until full payment is received from you (either by publisher or by CCC) as provided in CCC's Billing and Payment terms and conditions. If full payment is not received on a timely basis, then any license preliminarily granted shall be deemed automatically revoked and shall be void as if never granted. Further, in the event that you breach any of these terms and conditions or any of CCC's Billing and Payment terms and conditions, the license is automatically revoked and shall be void as if never granted. Use of materials as described in a revoked license, as well as any use of the materials beyond the scope of an unrevoked license, may constitute copyright infringement

and publisher reserves the right to take any and all action to protect its copyright in the materials.

- 9. Warranties: Publisher makes no representations or warranties with respect to the licensed material.
- 10. Indemnity: You hereby indemnify and agree to hold harmless publisher and CCC, and their respective officers, directors, employees and agents, from and against any and all claims arising out of your use of the licensed material other than as specifically authorized pursuant to this license.
- 11. No Transfer of License: This license is personal to you and may not be sublicensed, assigned, or transferred by you to any other person without publisher's written permission.
- 12. No Amendment Except in Writing: This license may not be amended except in a writing signed by both parties (or, in the case of publisher, by CCC on publisher's behalf).
- 13. Objection to Contrary Terms: Publisher hereby objects to any terms contained in any purchase order, acknowledgment, check endorsement or other writing prepared by you, which terms are inconsistent with these terms and conditions or CCC's Billing and Payment terms and conditions. These terms and conditions, together with CCC's Billing and Payment terms and conditions (which are incorporated herein), comprise the entire agreement between you and publisher (and CCC) concerning this licensing transaction. In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall control.
- 14. Revocation: Elsevier or Copyright Clearance Center may deny the permissions described in this License at their sole discretion, for any reason or no reason, with a full refund payable to you. Notice of such denial will be made using the contact information provided by you. Failure to receive such notice will not alter or invalidate the denial. In no event will Elsevier or Copyright Clearance Center be responsible or liable for any costs, expenses or damage incurred by you as a result of a denial of your permission request, other than a refund of the amount(s) paid by you to Elsevier and/or Copyright Clearance Center for denied permissions.

LIMITED LICENSE

The following terms and conditions apply only to specific license types:

- 15. **Translation**: This permission is granted for non-exclusive world **English** rights only unless your license was granted for translation rights. If you licensed translation rights you may only translate this content into the languages you requested. A professional translator must perform all translations and reproduce the content word for word preserving the integrity of the article.
- 16. **Posting licensed content on any Website**: The following terms and conditions apply as follows: Licensing material from an Elsevier journal: All content posted to the web site must maintain the copyright information line on the bottom of each image; A hyper-text must be included to the Homepage of the journal from which you are licensing at http://www.sciencedirect.com/science/journal/xxxxx or the Elsevier homepage for books at http://www.elsevier.com; Central Storage: This license does not include permission for a scanned version of the material to be stored in a central repository such as that provided by Heron/XanEdu.

Licensing material from an Elsevier book: A hyper-text link must be included to the Elsevier homepage at http://www.elsevier.com. All content posted to the web site must maintain the copyright information line on the bottom of each image.

Posting licensed content on Electronic reserve: In addition to the above the following clauses are applicable: The web site must be password-protected and made available only to bona fide students registered on a relevant course. This permission is granted for 1 year only. You may obtain a new license for future website posting.

17. **For journal authors:** the following clauses are applicable in addition to the above: **Preprints:**

A preprint is an author's own write-up of research results and analysis, it has not been peer-reviewed, nor has it had any other value added to it by a publisher (such as formatting, copyright, technical enhancement etc.).

Authors can share their preprints anywhere at any time. Preprints should not be added to or enhanced in any way in order to appear more like, or to substitute for, the final versions of articles however authors can update their preprints on arXiv or RePEc with their Accepted Author Manuscript (see below).

If accepted for publication, we encourage authors to link from the preprint to their formal publication via its DOI. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help users to find, access, cite and use the best available version. Please note that Cell Press, The Lancet and some society-owned have different preprint policies. Information on these policies is available on the journal homepage.

Accepted Author Manuscripts: An accepted author manuscript is the manuscript of an article that has been accepted for publication and which typically includes authorincorporated changes suggested during submission, peer review and editor-author communications.

Authors can share their accepted author manuscript:

- immediately
 - via their non-commercial person homepage or blog
 - by updating a preprint in arXiv or RePEc with the accepted manuscript
 - via their research institute or institutional repository for internal institutional uses or as part of an invitation-only research collaboration work-group
 - directly by providing copies to their students or to research collaborators for their personal use
 - for private scholarly sharing as part of an invitation-only work group on commercial sites with which Elsevier has an agreement
- After the embargo period
 - via non-commercial hosting platforms such as their institutional repository
 - o via commercial sites with which Elsevier has an agreement

In all cases accepted manuscripts should:

- link to the formal publication via its DOI
- bear a CC-BY-NC-ND license this is easy to do
- if aggregated with other manuscripts, for example in a repository or other site, be shared in alignment with our hosting policy not be added to or enhanced in any way to appear more like, or to substitute for, the published journal article.

Published journal article (JPA): A published journal article (PJA) is the definitive final record of published research that appears or will appear in the journal and embodies all value-adding publishing activities including peer review co-ordination, copy-editing, formatting, (if relevant) pagination and online enrichment.

Policies for sharing publishing journal articles differ for subscription and gold open access articles:

<u>Subscription Articles</u>: If you are an author, please share a link to your article rather than the full-text. Millions of researchers have access to the formal publications on ScienceDirect, and so links will help your users to find, access, cite, and use the best available version. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

If you are affiliated with a library that subscribes to ScienceDirect you have additional private sharing rights for others' research accessed under that agreement. This includes use

for classroom teaching and internal training at the institution (including use in course packs and courseware programs), and inclusion of the article for grant funding purposes.

<u>Gold Open Access Articles:</u> May be shared according to the author-selected end-user license and should contain a <u>CrossMark logo</u>, the end user license, and a DOI link to the formal publication on ScienceDirect.

Please refer to Elsevier's posting policy for further information.

18. For book authors the following clauses are applicable in addition to the above: Authors are permitted to place a brief summary of their work online only. You are not allowed to download and post the published electronic version of your chapter, nor may you scan the printed edition to create an electronic version. Posting to a repository: Authors are permitted to post a summary of their chapter only in their institution's repository.

19. **Thesis/Dissertation**: If your license is for use in a thesis/dissertation your thesis may be submitted to your institution in either print or electronic form. Should your thesis be published commercially, please reapply for permission. These requirements include permission for the Library and Archives of Canada to supply single copies, on demand, of the complete thesis and include permission for Proquest/UMI to supply single copies, on demand, of the complete thesis. Should your thesis be published commercially, please reapply for permission. Theses and dissertations which contain embedded PJAs as part of the formal submission can be posted publicly by the awarding institution with DOI links back to the formal publications on ScienceDirect.

Elsevier Open Access Terms and Conditions

You can publish open access with Elsevier in hundreds of open access journals or in nearly 2000 established subscription journals that support open access publishing. Permitted third party re-use of these open access articles is defined by the author's choice of Creative Commons user license. See our open access license policy for more information.

Terms & Conditions applicable to all Open Access articles published with Elsevier: Any reuse of the article must not represent the author as endorsing the adaptation of the article nor should the article be modified in such a way as to damage the author's honour or reputation. If any changes have been made, such changes must be clearly indicated. The author(s) must be appropriately credited and we ask that you include the end user license and a DOI link to the formal publication on ScienceDirect.

If any part of the material to be used (for example, figures) has appeared in our publication with credit or acknowledgement to another source it is the responsibility of the user to ensure their reuse complies with the terms and conditions determined by the rights holder.

Additional Terms & Conditions applicable to each Creative Commons user license: CC BY: The CC-BY license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article and to make commercial use of the Article (including reuse and/or resale of the Article by commercial entities), provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by/4.0.

CC BY NC SA: The CC BY-NC-SA license allows users to copy, to create extracts, abstracts and new works from the Article, to alter and revise the Article, provided this is not done for commercial purposes, and that the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the license, indicates if changes were made and the licensor is not represented as endorsing the use made of the work. Further, any new works must be made available on the same conditions. The full details of the license are available at http://creativecommons.org/licenses/by-nc-sa/4.0.

CC BY NC ND: The CC BY-NC-ND license allows users to copy and distribute the Article, provided this is not done for commercial purposes and further does not permit distribution of the Article if it is changed or edited in any way, and provided the user gives appropriate credit (with a link to the formal publication through the relevant DOI), provides a link to the

license, and that the licensor is not represented as endorsing the use made of the work. The full details of the license are available at http://creativecommons.org/licenses/by-nc-nd/4.0. Any commercial reuse of Open Access articles published with a CC BY NC SA or CC BY NC ND license requires permission from Elsevier and will be subject to a fee. Commercial reuse includes:

- Associating advertising with the full text of the Article
- Charging fees for document delivery or access
- Article aggregation
- Systematic distribution via e-mail lists or share buttons

Posting or linking by commercial companies for use by customers of those companies.

20. Other Conditions:

v1.9

Questions? $\underline{\text{customercare@copyright.com}}$ or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

Gene.symbol E	ntrez Gene I	HGNC ID
AARS		HGNC:20
ABCE1	6059	HGNC:69
ABCF1	23	HGNC:70
ACTB	60	HGNC:132
ACTL6A	86	HGNC:24124
ACTR10	55860	HGNC:17372
ACTR2	10097	HGNC:169
ADSL	158	HGNC:291
ADSS	159	HGNC:292
AHCY	191	HGNC:343
ALG1	56052	HGNC:18294
ALG14	199857	HGNC:28287
ALG2	85365	HGNC:23159
ANAPC2	29882	HGNC:19989
ANAPC4	29945	HGNC:19990
ANAPC5	51433	HGNC:15713
AQR	9716	HGNC:29513
ARCN1	372	HGNC:649
ARIH1	25820	HGNC:689
ARL2	402	HGNC:693
ATP2A2	488	HGNC:812
ATP5F1A	498	HGNC:823
ATP5F1B	506	HGNC:830
ATP5F1C	509	HGNC:833
ATP5F1D		HGNC:837
ATP5MF-PTCI		•
ATP5MG		HGNC:14247
ATP5PO		HGNC:850
ATP6V0B		HGNC:861
ATP6V0C	_	HGNC:855
ATP6V1A		HGNC:851
ATP6V1D		HGNC:13527
ATP6V1E1		HGNC:857
ATR		HGNC:882
AURKB	_	HGNC:11390
BANF1		HGNC:17397
BIRC5		HGNC:593
BUB1B	_	HGNC:1149
BUB3		HGNC:1151
BUD31		HGNC:29629
BYSL		HGNC:1157
TWNK	56652	HGNC:1160

04 (400	E 40EE	
C1orf109		HGNC:26039
CFAP298		HGNC:1301
NEPRO		HGNC:24496
SPOUT1		HGNC:26933
CCDC84		HGNC:30460
YJU2		HGNC:25518
CCNA2		HGNC:1578
CCNH	902	HGNC:1594
CCNK	8812	HGNC:1596
CCT2	10576	HGNC:1615
CCT3	7203	HGNC:1616
CCT4	10575	HGNC:1617
CCT5	22948	HGNC:1618
CCT6A	908	HGNC:1620
CCT7	10574	HGNC:1622
ССТ8	10694	HGNC:1623
CDC123	8872	HGNC:16827
CDC16	8881	HGNC:1720
CDC20	991	HGNC:1723
CDC27	996	HGNC:1728
CDC37	11140	HGNC:1735
CDC5L	988	HGNC:1743
CDC73	79577	HGNC:16783
CDK1	983	HGNC:1722
CDK7	1022	HGNC:1778
CDK9	1025	HGNC:1780
CDT1	81620	HGNC:24576
CEBPZ	10153	HGNC:24218
CENPA	1058	HGNC:1851
CENPC	1060	N/A
CFL1	1072	HGNC:1874
CHAF1A	10036	HGNC:1910
CHAF1B	8208	HGNC:1911
CHEK1	1111	HGNC:1925
CHERP	10523	HGNC:16930
CHMP2A	27243	HGNC:30216
CHMP6	79643	HGNC:25675
CIAO1	9391	HGNC:14280
CINP	51550	HGNC:23789
UTP4		HGNC:1983
CKAP5		HGNC:28959
CLNS1A		HGNC:2080
CLP1		HGNC:16999
	10370	

CLTC	1212 ⊔0	SNC:2092
CMPK1		SNC:18170
CMTR1	23070 N/	
CNOT3	•	A SNC:7879
COA5	493753 HO	
COPA		SNC:2230
COPA COPB1		SNC:2230
COPB1		SNC:2231
COPS3		SNC:2232
COPS6		SNC:2239
COP30	22818 H	
COP21		SNC:19693
COX10		SNC:19093
COX10		SNC:2260
COX11		SNC:2261 SNC:2263
COX15 COX4I1		
		SNC:2265
COX5B		SNC:2269
COX6B1		SNC:2280
CPSF1	29894 HC	
CPSF2	53981 HC	
CPSF3	51692 HC	
CPSF4	10898 HC	
CRNKL1		SNC:15762
CSE1L		SNC:2431
CTDP1		SNC:2498
CTPS1		SNC:2519
CTR9		SNC:16850
CYCS		SNC:19986
DAD1		SNC:2664
DBR1		SNC:15594
DCTN5		SNC:24594
DDB1		SNC:2717
DDOST		SNC:2728
DDX10		SNC:2735
DDX18	8886 HG	SNC:2741
DDX20	11218 H	SNC:2743
DDX21	9188 H	SNC:2744
DDX27	55661 HG	SNC:15837
DDX41	51428 HC	SNC:18674
DDX47	51202 HC	SNC:18682
DDX49	54555 HC	SNC:18684
DDX55	57696 HC	SNC:20085
DDX56	54606 HC	SNC:18193

DGCR8	54487 HGNC:2847
DHODH	1723 HGNC:2867
DHPS	1725 HGNC:2869
DHX15	1665 HGNC:2738
DHX33	56919 HGNC:16718
DHX37	57647 HGNC:17210
DHX8	1659 HGNC:2749
DHX9	1660 HGNC:2750
UTP25	27042 HGNC:28440
DIMT1	27292 HGNC:30217
DIS3	22894 HGNC:20604
DKC1	1736 HGNC:2890
DLST	1743 HGNC:2911
DMAP1	55929 HGNC:18291
DNAJA3	9093 HGNC:11808
DNAJC9	23234 HGNC:19123
DNM2	1785 HGNC:2974
DNMT1	1786 HGNC:2976
DOLK	22845 HGNC:23406
DONSON	29980 HGNC:2993
DPAGT1	1798 HGNC:2995
DTL	51514 HGNC:30288
DTYMK	1841 HGNC:3061
DYNC1I2	1781 HGNC:2964
ECD	11319 HGNC:17029
EEF2	1938 HGNC:3214
EFTUD2	9343 HGNC:30858
EIF2B1	1967 HGNC:3257
EIF2B3	8891 HGNC:3259
EIF2B5	8893 HGNC:3261
EIF2S1	1965 HGNC:3265
EIF2S2	8894 HGNC:3266
EIF2S3	1968 HGNC:3267
EIF3A	8661 HGNC:3271
EIF3B	8662 HGNC:3280
EIF3C	8663 HGNC:3279
EIF3D	8664 HGNC:3278
EIF3G	8666 HGNC:3274
EIF3I	8668 HGNC:3272
EIF4A3	9775 HGNC:18683
EIF5A	1984 HGNC:3300
EIF5B	9669 HGNC:30793
EIF6	3692 HGNC:6159

ELAC2	60528	HGNC:14198
ELL	8178	HGNC:23114
EPRS	2058	HGNC:3418
ERCC2	2068	HGNC:3434
ERCC3	2071	HGNC:3435
ERH	2079	HGNC:3447
EXOSC2	23404	HGNC:17097
EXOSC3	51010	HGNC:17944
EXOSC4	54512	HGNC:18189
EXOSC6	118460	HGNC:19055
EXOSC7	23016	HGNC:28112
EXOSC8	11340	HGNC:17035
CIAO2B	51647	HGNC:24261
FARS2	10667	HGNC:21062
FARSA	2193	HGNC:3592
FARSB	10056	HGNC:17800
FAU	2197	HGNC:3597
FNTA	2339	HGNC:3782
FNTB	2342	HGNC:3785
FTSJ3	117246	HGNC:17136
GABPA	2551	HGNC:4071
GAPDH	2597	HGNC:4141
GART	2618	HGNC:4163
GEMIN5	25929	HGNC:20043
GEMIN8	54960	HGNC:26044
GFM1	85476	HGNC:13780
GGPS1	9453	HGNC:4249
GINS2	51659	HGNC:24575
GINS3	64785	HGNC:25851
GINS4	84296	HGNC:28226
GMPPB	29925	HGNC:22932
GMPS	8833	HGNC:4378
RACK1	10399	HGNC:4399
GNL3	26354	HGNC:29931
GPN3	51184	HGNC:30186
GPS1	2873	HGNC:4549
GRPEL1	80273	HGNC:19696
GRWD1	83743	HGNC:21270
GSPT1	2935	HGNC:4621
GTF2B	2959	HGNC:4648
GTF2H1	2965	HGNC:4655
GTF2H2C	728340	HGNC:31394
GTF2H4	2968	HGNC:4658

GTF3A	2971	HGNC:4662
GTF3C1	2975	HGNC:4664
GTF3C2	2976	HGNC:4665
GTF3C5	9328	HGNC:4668
GTPBP4	23560	HGNC:21535
GUK1	2987	HGNC:4693
HARS	3035	HGNC:4816
HAUS1	115106	HGNC:25174
HAUS5	23354	HGNC:29130
HCFC1	3054	HGNC:4839
HDAC3	8841	HGNC:4854
HEATR1	55127	HGNC:25517
HINFP	25988	HGNC:17850
HIST1H2AJ	8331	HGNC:4727
HIST2H2AA3	8337	HGNC:4736
HJURP	55355	HGNC:25444
HNRNPC	3183	HGNC:5035
HNRNPK	3190	HGNC:5044
HNRNPL	3191	HGNC:5045
HNRNPU	3192	HGNC:5048
HSD17B10	3028	HGNC:4800
HSPA9	3313	HGNC:5244
HSPD1	3329	HGNC:5261
HUWE1	10075	HGNC:30892
HYPK	25764	HGNC:18418
IARS	3376	HGNC:5330
IGBP1	3476	HGNC:5461
ILF3	3609	HGNC:6038
IMP3	55272	HGNC:14497
IMP4	92856	HGNC:30856
INTS1	26173	HGNC:24555
INTS3	65123	HGNC:26153
INTS8	55656	HGNC:26048
INTS9	55756	HGNC:25592
IPO13	9670	HGNC:16853
ISCU	23479	HGNC:29882
ISG20L2	81875	HGNC:25745
KANSL3	55683	HGNC:25473
KARS	3735	HGNC:6215
KAT8	84148	HGNC:17933
KIF11	3832	HGNC:6388
KIF23	9493	HGNC:6392
KPNB1	3837	HGNC:6400

KRI1	65005	HGNC:25769
KRR1	00000	HGNC:5176
LARS		HGNC:6512
LAS1L		HGNC:25726
LONP1		HGNC:9479
LRR1		HGNC:19742
LSG1		HGNC:25652
LSM11		HGNC:30860
LSM12		HGNC:26407
LSM2		HGNC:13940
LSM7		HGNC:20470
LUC7L3		HGNC:24309
MAD2L1	4085	HGNC:6763
MAGOH	4116	HGNC:6815
MAK16	84549	HGNC:13703
MARS	4141	HGNC:6898
MARS2	92935	HGNC:25133
MASTL	84930	HGNC:19042
MCM3	4172	HGNC:6945
MCM3AP	8888	HGNC:6946
MCM4	4173	HGNC:6947
MCM5	4174	HGNC:6948
MCM7	4176	HGNC:6950
MDN1	23195	HGNC:18302
MED11	400569	HGNC:32687
MED12	9968	HGNC:11957
MED18	54797	HGNC:25944
MED27	9442	HGNC:2377
MED30	90390	HGNC:23032
MEPCE	56257	HGNC:20247
METTL16	79066	HGNC:28484
MMS22L	253714	HGNC:21475
MPHOSPH10	10199	HGNC:7213
MRPL57	78988	HGNC:14514
MRPL18	29074	HGNC:14477
MRPL28	10573	HGNC:14484
MRPL38	64978	HGNC:14033
MRPL4		HGNC:14276
MRPL43		HGNC:14517
MRPL45		HGNC:16651
MRPL46		HGNC:1192
MRPL53		HGNC:16684
MRPS14	63931	HGNC:14049

MRPS24	64951 HGNC:14510
MRPS34	65993 HGNC:16618
MSTO1	55154 HGNC:29678
MTG2	26164 HGNC:16239
MVK	4598 HGNC:7530
MYBBP1A	10514 HGNC:7546
MYC	4609 HGNC:7553
NAA10	8260 HGNC:18704
NAA38	84316 HGNC:20471
NAA50	80218 HGNC:29533
NAMPT	10135 HGNC:30092
NAPA	8775 HGNC:7641
CIAO3	64428 HGNC:14179
NARS	4677 HGNC:7643
NAT10	55226 HGNC:29830
NCBP1	4686 HGNC:7658
NCBP2	22916 HGNC:7659
NDC80	10403 HGNC:16909
NDUFA13	51079 HGNC:17194
NEDD8	4738 HGNC:7732
NELFB	25920 HGNC:24324
NHP2	55651 HGNC:14377
SNU13	4809 HGNC:7819
NIP7	51388 HGNC:24328
NKAP	79576 HGNC:29873
NLE1	54475 HGNC:19889
NMD3	51068 HGNC:24250
NMT1	4836 HGNC:7857
	79050 HGNC:28461
NOC4L NOL10	79050 HGNC:25401 79954 HGNC:25862
NOL10 NOL11	25926 HGNC:24557
NOL11	65083 HGNC:19910
NOL9	79707 HGNC:26265
NOP16	51491 HGNC:26934
NOP2	4839 HGNC:7867
NOP56	10528 HGNC:15911
NOP9	161424 HGNC:19826
NPLOC4	55666 HGNC:18261
NSA2	10412 HGNC:30728
NSF	4905 HGNC:8016
NUDC	10726 HGNC:8045
NUDCD3	23386 HGNC:22208
NUDT21	11051 HGNC:13870

NUDT4		HGNC:8051
NUF2		HGNC:14621
NUP133		HGNC:18016
NUP155	9631	HGNC:8063
NUP160	23279	HGNC:18017
NUP214	8021	HGNC:8064
NUP85	79902	HGNC:8734
NUP88	4927	HGNC:8067
NUP93	9688	HGNC:28958
NUS1	116150	HGNC:21042
NUTF2	10204	HGNC:13722
NVL	4931	HGNC:8070
NXF1	10482	HGNC:8071
OGDH	4967	HGNC:8124
OGT	8473	HGNC:8127
LTO1	220064	HGNC:17589
ORC6	23594	HGNC:17151
OSGEP	55644	HGNC:18028
PABPC1	26986	HGNC:8554
PAFAH1B1	5048	HGNC:8574
PAICS	10606	HGNC:8587
PAK1IP1	55003	HGNC:20882
PCID2	55795	HGNC:25653
PCNA	5111	HGNC:8729
PFDN2	5202	HGNC:8867
PFN1	5216	HGNC:8881
PGAM1	5223	HGNC:8888
PGGT1B	5229	HGNC:8895
PGK1	5230	HGNC:8896
PHB	5245	HGNC:8912
PHB2	11331	HGNC:30306
PHF5A	84844	HGNC:18000
PKMYT1	9088	HGNC:29650
PLK1	5347	HGNC:9077
PLRG1	5356	HGNC:9089
PMPCA	23203	HGNC:18667
PMPCB	9512	HGNC:9119
PNKP	11284	HGNC:9154
POLA2	23649	HGNC:30073
POLR1A	25885	HGNC:17264
POLR1B	84172	HGNC:20454
POLR1C	9533	HGNC:20194
POLR2A	5430	HGNC:9187

POLR2B	5431 HGNC:9188
POLR2C	5432 HGNC:9189
POLR2D	5433 HGNC:9191
POLR2E	5434 HGNC:9192
POLR2G	5436 HGNC:9194
POLR2H	5437 HGNC:9195
POLR2I	5438 HGNC:9196
POLR2L	5441 HGNC:9199
POLR3A	11128 HGNC:30074
POLR3C	10623 HGNC:30076
POLR3H	171568 HGNC:30349
POLR3K	51728 HGNC:14121
POLRMT	5442 HGNC:9200
POP1	10940 HGNC:30129
POP5	51367 HGNC:17689
PPA1	5464 HGNC:9226
PPAN	56342 HGNC:9227
PPAT	5471 HGNC:9238
PPIL2	23759 HGNC:9261
PPP2CA	5515 HGNC:9299
PTPA	5524 HGNC:9308
PPP4C	5531 HGNC:9319
PPWD1	23398 HGNC:28954
PREB	10113 HGNC:9356
PRELID1	27166 HGNC:30255
PRIM1	5557 HGNC:9369
PRMT1	3276 HGNC:5187
PRMT5	10419 HGNC:10894
PRPF19	27339 HGNC:17896
PRPF31	26121 HGNC:15446
PRPF38A	84950 HGNC:25930
PRPF38B	55119 HGNC:25512
PRPF4	9128 HGNC:17349
PRPF8	10594 HGNC:17340
PSMA1	5682 HGNC:9530
PSMA2	5683 HGNC:9531
PSMA3	5684 HGNC:9532
PSMA4	5685 HGNC:9533
PSMA5	5686 HGNC:9534
PSMA6	5687 HGNC:9535
PSMA7	5688 HGNC:9536
PSMB1	5689 HGNC:9537
PSMB2	5690 HGNC:9539

PSMB3	5691 HGNC:9540
PSMB4	5692 HGNC:9541
PSMB7	5695 HGNC:9544
PSMC2	5701 HGNC:9548
PSMC3	5702 HGNC:9549
PSMC5	5705 HGNC:9552
PSMC6	5706 HGNC:9553
PSMD1	5707 HGNC:9554
PSMD11	5717 HGNC:9556
PSMD12	5718 HGNC:9557
PSMD13	5719 HGNC:9558
PSMD14	10213 HGNC:16889
PSMD3	5709 HGNC:9560
PSMD4	5710 HGNC:9561
PSMG3	84262 HGNC:22420
PTPN23	25930 HGNC:14406
PUF60	22827 HGNC:17042
PWP2	5822 HGNC:9711
QARS	5859 HGNC:9751
RABGGTB	5876 HGNC:9796
RACGAP1	29127 HGNC:9804
RAD21	5885 HGNC:9811
RAD51C	5889 HGNC:9820
RAD51D	5892 HGNC:9823
RAE1	8480 HGNC:9828
RAN	5901 HGNC:9846
RANGAP1	5905 HGNC:9854
RARS2	57038 HGNC:21406
RBBP6	5930 HGNC:9889
RBM14	10432 HGNC:14219
RBM17	84991 HGNC:16944
RBM8A	9939 HGNC:9905
RBMX	27316 HGNC:9910
RBX1	9978 HGNC:9928
RCC1	1104 HGNC:1913
RCL1	10171 HGNC:17687
RFC2	5982 HGNC:9970
RFC4	5984 HGNC:9972
RFC5	5985 HGNC:9973
RFK	55312 HGNC:30324
RHEB	6009 HGNC:10011
RIOK2	55781 HGNC:18999
RNF20	56254 HGNC:10062

	0=00	
RNGTT		HGNC:10073
ROMO1		HGNC:16185
RPA1		HGNC:10289
RPA2		HGNC:10290
RPF2		HGNC:20870
RPL10A		HGNC:10299
RPL11		HGNC:10301
RPL12		HGNC:10302
RPL13		HGNC:10303
RPL14		HGNC:10305
RPL18		HGNC:10310
RPL18A	6142	HGNC:10311
RPL19	6143	HGNC:10312
RPL23	9349	HGNC:10316
RPL24	6152	HGNC:10325
RPL27	6155	HGNC:10328
RPL27A	6157	HGNC:10329
RPL3	6122	HGNC:10332
RPL30	6156	HGNC:10333
RPL35	11224	HGNC:10344
RPL35A	6165	HGNC:10345
RPL36	25873	HGNC:13631
RPL37A	6168	HGNC:10348
RPL4	6124	HGNC:10353
RPL6	6128	HGNC:10362
RPL8	6132	HGNC:10368
RPLP0	6175	HGNC:10371
RPLP1	6176	HGNC:10372
RPLP2	6181	HGNC:10377
RPP21	79897	HGNC:21300
RPP38	10557	HGNC:30329
RPS11	6205	HGNC:10384
RPS12	6206	HGNC:10385
RPS13	6207	HGNC:10386
RPS15A	6210	HGNC:10389
RPS16	6217	HGNC:10396
RPS18	6222	HGNC:10401
RPS19	6223	HGNC:10402
RPS2	6187	HGNC:10404
RPS20	6224	HGNC:10405
RPS21	6227	HGNC:10409
RPS23	6228	HGNC:10410
RPS3	6188	HGNC:10420

RPS4X	6191 HGNC:10424
RPS5	6193 HGNC:10426
RPS6	6194 HGNC:10429
RPS7	6201 HGNC:10440
RPS8	6202 HGNC:10441
RRM1	6240 HGNC:10451
RRP1	8568 HGNC:18785
RRP12	23223 HGNC:29100
RRS1	23212 HGNC:17083
RTCB	51493 HGNC:26935
RUVBL2	10856 HGNC:10475
SACM1L	22908 HGNC:17059
SAE1	10055 HGNC:30660
SAMM50	25813 HGNC:24276
SAP18	10284 HGNC:10530
SARS	6301 HGNC:10537
SARS2	54938 HGNC:17697
SART3	9733 HGNC:16860
SBNO1	55206 HGNC:22973
SDAD1	55153 HGNC:25537
SDHC	6391 HGNC:10682
SEC13	6396 HGNC:10697
SEH1L	81929 HGNC:30379
SF1	7536 HGNC:12950
SF3A2	8175 HGNC:10766
SF3A3	10946 HGNC:10767
SF3B1	23451 HGNC:10768
SF3B2	10992 HGNC:10769
SF3B3	23450 HGNC:10770
SF3B5	83443 HGNC:21083
SKP1	6500 HGNC:10899
SLC35B1	10237 HGNC:20798
PRELID3B	51012 HGNC:15892
SLU7	10569 HGNC:16939
SMC1A	8243 HGNC:11111
SMC2	10592 HGNC:14011
SMC4	10051 HGNC:14013
SMU1	55234 HGNC:18247
SNAPC1	6617 HGNC:11134
SNAPC2	6618 HGNC:11135
SNAPC4	6621 HGNC:11137
SNRNP200	23020 HGNC:30859
SNRNP25	79622 HGNC:14161

SNRNP27	11017 HGNC:30240
SNRNP35	11066 HGNC:30852
SNRNP70	6625 HGNC:11150
SNRPA1	6627 HGNC:11152
SNRPD1	6632 HGNC:11158
SNRPD2	6633 HGNC:11159
SNRPD3	6634 HGNC:11160
SNRPF	6636 HGNC:11162
SNW1	22938 HGNC:16696
SPATA5L1	79029 HGNC:28762
SPC24	147841 HGNC:26913
SPC25	57405 HGNC:24031
SRBD1	55133 HGNC:25521
SRP19	6728 HGNC:11300
SRRM1	10250 HGNC:16638
SRRT	51593 HGNC:24101
SRSF1	6426 HGNC:10780
SRSF2	6427 HGNC:10783
SRSF3	6428 HGNC:10785
SRSF7	6432 HGNC:10789
SS18L2	51188 HGNC:15593
SSU72	29101 HGNC:25016
SUPT5H	6829 HGNC:11469
SUPT6H	6830 HGNC:11470
SUPV3L1	6832 HGNC:11471
SYMPK	8189 HGNC:22935
SYS1	90196 HGNC:16162
TAF1B	9014 HGNC:11533
TAF6	6878 HGNC:11540
TANGO6	79613 HGNC:25749
TARS	6897 HGNC:11572
TBCD	6904 HGNC:11581
TBL3	10607 HGNC:11587
TCP1	6950 HGNC:11655
TELO2	9894 HGNC:29099
TFAM	7019 HGNC:11741
TFRC	7037 HGNC:11763
THOC2	57187 HGNC:19073
THOC3	84321 HGNC:19072
THOC5	8563 HGNC:19074
TICRR	90381 HGNC:28704
TIMM10	26519 HGNC:11814
TIMM13	26517 HGNC:11816

TIMM23	100287932	HGNC:17312	
TIMM44	10469	HGNC:17316	
TMEM258	746	HGNC:1164	
TNPO3	23534	HGNC:17103	
TOMM22	56993	HGNC:18002	
TOMM40	10452	HGNC:18001	
TONSL	4796	HGNC:7801	
TOP1	7150	HGNC:11986	
TOP2A	7153	HGNC:11989	
TPT1	7178	HGNC:12022	
TPX2	22974	HGNC:1249	
TRAPPC1	58485	HGNC:19894	
TRAPPC3	27095	HGNC:19942	
TRIAP1	51499	HGNC:26937	
TRMT112	51504	HGNC:26940	
TRMT5	57570	HGNC:23141	
TRNAU1AP	54952	HGNC:30813	
TRRAP	8295	HGNC:12347	
TSR1	55720	HGNC:25542	
TTC1	7265	HGNC:12391	
TTC27	55622	HGNC:25986	
TTI1	9675	HGNC:29029	
TTI2	80185	HGNC:26262	
TUBB	203068	HGNC:20778	
TUBG1	7283	HGNC:12417	
TUBGCP2	10844	HGNC:18599	
TUBGCP3	10426	HGNC:18598	
TUBGCP6	85378	HGNC:18127	
TUFM	7284	HGNC:12420	
TUT1	64852	HGNC:26184	
TXN	7295	HGNC:12435	
TXNL4A		HGNC:30551	
U2AF1	7307	HGNC:12453	
U2AF2	11338	HGNC:23156	
UBA1	7317	HGNC:12469	
UBA52	7311	HGNC:12458	
UBE2L3		HGNC:12488	
UBE2M	9040	HGNC:12491	
UBE2N	7334	HGNC:12492	
UBL5		HGNC:13736	
UBTF		HGNC:12511	
UPF1		HGNC:9962	
UPF2	26019	HGNC:17854	

UQCRFS1 7386 HGNC:12587 UROD 7389 HGNC:12591 USP39 10713 HGNC:20071 USP5 8078 HGNC:12628 USPL1 10208 HGNC:20294 UTP15 84135 HGNC:25758 UTP20 27340 HGNC:17897 UTP23 84294 HGNC:28224 UXT 8409 HGNC:12641 VARS 7407 HGNC:12651 VARS2 57176 HGNC:21642 VCP 7415 HGNC:12666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:25551 WDR43 23160 HGNC:28945 WDR70 55100 HGNC:25495 WDR70 55100 HGNC:25495 WDR71 79084 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24249 YRDC 79693 HGNC:28046	UQCRC1	7384 HGNC:12585
USP39 10713 HGNC:20071 USP5 8078 HGNC:12628 USPL1 10208 HGNC:20294 UTP15 84135 HGNC:25758 UTP20 27340 HGNC:17897 UTP23 84294 HGNC:28224 UXT 8409 HGNC:12641 VARS 7407 HGNC:12651 VARS2 57176 HGNC:21642 VCP 7415 HGNC:12666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:2755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:28046	UQCRFS1	7386 HGNC:12587
USP5 USPL1 10208 HGNC:20294 UTP15 84135 HGNC:25758 UTP20 27340 HGNC:28224 UXT 8409 HGNC:12641 VARS 7407 HGNC:12651 VARS2 VCP 7415 HGNC:21642 VCP 7415 HGNC:12666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:12729 BUD23 114049 HGNC:12405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:25495 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 79693 HGNC:24094 ZMAT5 55954 HGNC:24094 ZMAT5	UROD	7389 HGNC:12591
USPL1 UTP15 84135 HGNC:20294 UTP20 27340 HGNC:17897 UTP23 84294 HGNC:28224 UXT 8409 HGNC:12641 VARS 7407 HGNC:12651 VARS2 57176 HGNC:21642 VCP 7415 HGNC:12666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:2755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28096	USP39	10713 HGNC:20071
UTP15 84135 HGNC:25758 UTP20 27340 HGNC:17897 UTP23 84294 HGNC:28224 UXT 8409 HGNC:12641 VARS 7407 HGNC:12651 VARS2 57176 HGNC:21642 VCP 7415 HGNC:21666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:2755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:25725 WDR92 116143 HGNC:25725 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:12840 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:24094 ZMATS 55954 HGNC:24094	USP5	8078 HGNC:12628
UTP20 27340 HGNC:17897 UTP23 84294 HGNC:28224 UXT 8409 HGNC:12641 VARS 7407 HGNC:12651 VARS2 57176 HGNC:21642 VCP 7415 HGNC:21666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24094 ZMAT5 55954 HGNC:24094	USPL1	10208 HGNC:20294
UTP23 UXT 8409 HGNC:12641 VARS 7407 HGNC:12651 VARS2 57176 HGNC:21642 VCP 7415 HGNC:12666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:25651 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24094 ZMAT5 55954 HGNC:28046	UTP15	84135 HGNC:25758
UXT 8409 HGNC:12641 VARS 7407 HGNC:12651 VARS2 57176 HGNC:21642 VCP 7415 HGNC:12666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:25551 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:230300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:12825 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	UTP20	27340 HGNC:17897
VARS 7407 HGNC:12651 VARS2 57176 HGNC:21642 VCP 7415 HGNC:12666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:25651 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:12761 XAB2 56949 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:24094	UTP23	84294 HGNC:28224
VARS2 VCP 7415 HGNC:21642 VCP 7415 HGNC:12666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR70 55100 HGNC:25495 WDR70 55100 HGNC:25495 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:29652 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:24094	UXT	8409 HGNC:12641
VCP 7415 HGNC:12666 VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:29652 WDR92 116143 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	VARS	7407 HGNC:12651
VPS25 84313 HGNC:28122 VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:28945 WDR70 55100 HGNC:25495 WDR77 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	VARS2	57176 HGNC:21642
VPS28 51160 HGNC:18178 WARS 7453 HGNC:12729 BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR70 55100 HGNC:25495 WDR70 55100 HGNC:25495 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	VCP	7415 HGNC:12666
WARS BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:25725 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	VPS25	84313 HGNC:28122
BUD23 114049 HGNC:16405 WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	VPS28	51160 HGNC:18178
WDR12 55759 HGNC:14098 WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	WARS	7453 HGNC:12729
WDR25 79446 HGNC:21064 WDR3 10885 HGNC:12755 WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	BUD23	114049 HGNC:16405
WDR3 WDR33 S5339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 S5100 HGNC:25495 WDR74 S4663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 S6949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 S1067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 S5954 HGNC:28046	WDR12	55759 HGNC:14098
WDR33 55339 HGNC:25651 WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	WDR25	79446 HGNC:21064
WDR43 23160 HGNC:28945 WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	WDR3	10885 HGNC:12755
WDR61 80349 HGNC:30300 WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	WDR33	55339 HGNC:25651
WDR70 55100 HGNC:25495 WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24994 ZMAT5 55954 HGNC:28046	WDR43	23160 HGNC:28945
WDR74 54663 HGNC:25529 WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:24094 ZMAT5 55954 HGNC:28046	WDR61	80349 HGNC:30300
WDR75 84128 HGNC:25725 WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	WDR70	55100 HGNC:25495
WDR77 79084 HGNC:29652 WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	WDR74	54663 HGNC:25529
WDR92 116143 HGNC:25176 WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	WDR75	84128 HGNC:25725
WEE1 7465 HGNC:12761 XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	WDR77	79084 HGNC:29652
XAB2 56949 HGNC:14089 XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	WDR92	116143 HGNC:25176
XPO1 7514 HGNC:12825 XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	WEE1	7465 HGNC:12761
XRCC6 2547 HGNC:4055 YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	XAB2	56949 HGNC:14089
YARS 8565 HGNC:12840 YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	XPO1	7514 HGNC:12825
YARS2 51067 HGNC:24249 YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	XRCC6	2547 HGNC:4055
YRDC 79693 HGNC:28905 ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	YARS	8565 HGNC:12840
ZBTB8OS 339487 HGNC:24094 ZMAT5 55954 HGNC:28046	YARS2	51067 HGNC:24249
ZMAT5 55954 HGNC:28046	YRDC	79693 HGNC:28905
	ZBTB8OS	339487 HGNC:24094
7NF131 7690 HGNC·12915	ZMAT5	55954 HGNC:28046
2141 131 /030 HONC.12313	ZNF131	7690 HGNC:12915
ZPR1 8882 HGNC:13051	ZPR1	8882 HGNC:13051
ZNF574 64763 HGNC:26166	ZNF574	64763 HGNC:26166

Gene symbol	_	ENTREZ_ID
ABCG8	HGNC:13887	64241
ACCSL	HGNC:34391	390110
ACTL7A	HGNC:161	10881
ACTL7B	HGNC:162	10880
ACTL9	HGNC:28494	284382
ACTRT1	HGNC:24027	139741
ADAD1	HGNC:30713	132612
ADAM18	HGNC:196	8749
ADAM2	HGNC:198	2515
ADAM20	HGNC:199	8748
ADAM30	HGNC:208	11085
ADH7	HGNC:256	131
AFM	HGNC:316	173
AICDA	HGNC:13203	57379
AIPL1	HGNC:359	23746
ALPI	HGNC:437	248
ALPG	HGNC:441	251
ALX3	HGNC:449	257
AMELX	HGNC:461	265
ANKRD30A	HGNC:17234	91074
ANKRD60	HGNC:16217	140731
ANTXRL	HGNC:27277	195977
APOA4	HGNC:602	337
APOBEC1	HGNC:604	339
APOF	HGNC:615	319
AQP12A	HGNC:19941	375318
AQP8	HGNC:642	343
ARGFX	HGNC:30146	503582
ART1	HGNC:723	417
ASB17	HGNC:19769	127247
ASIC5	HGNC:17537	51802
ASZ1	HGNC:1350	136991
ATOH1	HGNC:797	474
ATP4B	HGNC:820	496
ATP6V1G3	HGNC:18265	127124
AWAT1	HGNC:23252	158833
AWAT2	HGNC:23251	158835
B3GNT6	HGNC:24141	192134
BANF2	HGNC:16172	140836
BARHL1	HGNC:953	56751
BEND2	HGNC:28509	139105
BHLHE23	HGNC:16093	128408
	= =====	

BIRC8	HGNC:14878	112401
BMP10	HGNC:20869	27302
BMP15	HGNC:1068	9210
BPIFA1	HGNC:15749	51297
BPIFA3	HGNC:16204	128861
BPIFB3	HGNC:16178	359710
BPIFB6	HGNC:16504	128859
BPIFC	HGNC:16503	254240
BPY2	HGNC:13508	9083
BRDT	HGNC:1105	676
BSND	HGNC:16512	7809
C10orf113	HGNC:31447	387638
C10orf120	HGNC:25707	399814
C10orf53	HGNC:27421	282966
C11orf40	HGNC:23986	143501
C12orf40	HGNC:26846	283461
LINC01599	HGNC:27285	196913
NUTM1	HGNC:29919	256646
C16orf78	HGNC:28479	123970
C17orf102	HGNC:34412	400591
C17orf78	HGNC:26831	284099
DYNAP	HGNC:26808	284254
TEX45	HGNC:24745	374877
C1orf146	HGNC:24032	388649
C20orf173	HGNC:16166	140873
C20orf203	HGNC:26592	284805
SCP2D1	HGNC:16211	140856
TEX44	HGNC:28563	165100
STPG4	HGNC:26850	285051
PCARE	HGNC:34383	388939
C2orf83	HGNC:25344	56918
C3orf30	HGNC:26553	152405
PRR27	HGNC:33193	401137
DCANP1	HGNC:24459	140947
C6orf10	HGNC:13922	10665
C7orf66	HGNC:33712	154907
C7orf71	HGNC:22364	285941
C8A	HGNC:1352	731
C8B	HGNC:1353	732
C8orf17	HGNC:17737	100507249
C8orf86	HGNC:33774	389649
CDKN2A-DT	HGNC:23831	51198
CABP2	HGNC:1385	51475

CABP5	HGNC:13714	56344
CABS1	HGNC:30710	85438
CACNG2	HGNC:1406	10369
CACNG3	HGNC:1407	10368
CACNG5	HGNC:1409	27091
CATSPER4	HGNC:23220	378807
CCDC155	HGNC:26520	147872
CCDC172	HGNC:30524	374355
CCDC83	HGNC:28535	220047
CCKAR	HGNC:1570	886
CCL1	HGNC:10609	6346
CCT8L2	HGNC:15553	150160
CD200R1L	HGNC:24665	344807
CDCP2	HGNC:27297	200008
CDX2	HGNC:1806	1045
CDX4	HGNC:1808	1046
CDY1	HGNC:1809	9085
CDY1B	HGNC:23920	253175
CDY2A	HGNC:1810	9426
CDY2B	HGNC:23921	203611
CEACAM7	HGNC:1819	1087
CELA2A	HGNC:24609	63036
CELA3A	HGNC:15944	10136
CELA3B	HGNC:15945	23436
CER1	HGNC:1862	9350
CETN1	HGNC:1866	1068
CFHR2	HGNC:4890	3080
CFHR5	HGNC:24668	81494
CHAT	HGNC:1912	1103
CHRNA6	HGNC:15963	8973
CHRNB3	HGNC:1963	1142
CLCA1	HGNC:2015	1179
CLDN17	HGNC:2038	26285
CLEC2A	HGNC:24191	387836
CLEC3A	HGNC:2052	10143
CLEC6A	HGNC:14556	93978
CLRN1	HGNC:12605	7401
CNBD1	HGNC:26663	168975
CNGA2	HGNC:2149	1260
CNGB3	HGNC:2153	54714
CNPY1	HGNC:27786	285888
CNTNAP5	HGNC:18748	129684
COL20A1	HGNC:14670	57642

COX7B2	HGNC:24381	170712
CPXCR1	HGNC:2332	53336
CRNN	HGNC:1230	49860
CRX	HGNC:2383	1406
CRYGB	HGNC:2409	1419
CSH1	HGNC:2440	1442
CSHL1	HGNC:2442	1444
CSN2	HGNC:2447	1447
CSN3	HGNC:2446	1448
CST11	HGNC:15959	140880
CST4	HGNC:2476	1472
CST5	HGNC:2477	1473
CST8	HGNC:2480	10047
CST9	HGNC:13261	128822
CST9L	HGNC:16233	128821
CSTL1	HGNC:15958	128817
CT45A2	HGNC:28400	728911
CT45A3	HGNC:33269	441519
CT45A5	HGNC:33270	441521
CT47A11	HGNC:27397	255313
CTCFL	HGNC:16234	140690
CTRB1	HGNC:2521	1504
SLITRK2	HGNC:2562	84631
CXorf66	HGNC:33743	347487
CYLC2	HGNC:2583	1539
CYLC2	HGNC:2591	1539
CYP11B2	HGNC:2592	1585
CYP26C1	HGNC:20577	340665
CYP2A13	HGNC:2608	1553
CYP2C19	HGNC:2621	1557
CYP4A22	HGNC:20575	284541
CYP4F8	HGNC:2648	11283
CYP7A1	HGNC:2651	1581
DAZ1	HGNC:2682	1617
DAZ2	HGNC:15964	57055
DAZ3	HGNC:15965	57054
DAZ4	HGNC:15966	57135
DAZL	HGNC:2685	1618
DCAF4L2	HGNC:26657	138009
DCAF8L1	HGNC:31810	139425
DDI1	HGNC:18961	414301
DDX4	HGNC:18700	54514
DEFA5	HGNC:2764	1670

DEFA6	HGNC:2765	1671
DEFB103B	HGNC:31702	55894
DEFB104A	HGNC:18115	140596
DEFB106A	HGNC:18088	245909
DEFB107A	HGNC:18086	245910
DEFB118	HGNC:16196	117285
DEFB123	HGNC:18103	245936
DEFB126	HGNC:15900	81623
DEFB127	HGNC:16206	140850
DEFB129	HGNC:16218	140881
DGAT2L6	HGNC:23250	347516
DGKK	HGNC:32395	139189
DIRC1	HGNC:15760	116093
DMP1	HGNC:2932	1758
DMRT1	HGNC:2934	1761
DMRTB1	HGNC:13913	63948
DMRTC2	HGNC:13911	63946
MUCL3	HGNC:21666	135656
DPRX	HGNC:32166	503834
DRD3	HGNC:3024	1814
DRGX	HGNC:21536	644168
DSCR4	HGNC:3045	10281
DSG4	HGNC:21307	147409
DSPP	HGNC:3054	1834
DTX2	HGNC:15973	113878
DUSP21	HGNC:20476	63904
DUX4	HGNC:50800	100288687
DUX4L7	HGNC:37266	653543
DUXA	HGNC:32179	503835
EFCAB3	HGNC:26379	146779
EGR4	HGNC:3241	1961
ENTHD1	HGNC:26352	150350
ESX1	HGNC:14865	80712
EVX1	HGNC:3506	2128
F13B	HGNC:3534	2165
F9	HGNC:3551	2158
FABP2	HGNC:3556	2169
FAM106A	HGNC:25682	80039
FAM47A	HGNC:29962	158724
FAM47B	HGNC:26659	170062
FAM47C	HGNC:25301	442444
FAM71A	HGNC:26541	149647
FAM71B	HGNC:28397	153745

FAM71C	HGNC:28594	196472
SPATA31A7	HGNC:32007	26165
SPATA31D1	HGNC:37283	389763
FCRL4	HGNC:18507	83417
FEZF1	HGNC:22788	389549
FEZF2	HGNC:13506	55079
FFAR1	HGNC:4498	2864
FGF3	HGNC:3681	2248
FGF4	HGNC:3682	2249
FGF6	HGNC:3684	2251
FIGLA	HGNC:24669	344018
FLG2	HGNC:33276	388698
FMR1NB	HGNC:26372	158521
FNDC7	HGNC:26668	163479
FNDC9	HGNC:33547	408263
FOXB1	HGNC:3799	27023
FOXB2	HGNC:23315	442425
FOXD4L3	HGNC:18523	286380
FOXD4L4	HGNC:23762	349334
FOXE3	HGNC:3808	2301
FOXN1	HGNC:12765	8456
FOXR1	HGNC:29980	283150
FRG2	HGNC:19136	448831
FRMD7	HGNC:8079	90167
FSCB	HGNC:20494	84075
FUT5	HGNC:4016	2527
FUT9	HGNC:4020	10690
G6PC	HGNC:4056	2538
GABRA1	HGNC:4075	2554
GABRA6	HGNC:4080	2559
GAGE1	HGNC:4098	2543
GAGE2C	HGNC:31958	2574
GALNTL5	HGNC:21725	168391
GALR1	HGNC:4132	2587
GALR3	HGNC:4134	8484
GBP7	HGNC:29606	388646
GCG	HGNC:4191	2641
GCM2	HGNC:4191	9247
GDF2	HGNC:4217	2658
GFRA4	HGNC:13821	64096
GFRAL	HGNC:32789	389400
GH2	HGNC:4262	2689
GHRH	HGNC:4265	2691
ЭПИП	110NC.4203	2091

GHSR	HGNC:4267	2693
GIF	HGNC:4268	2694
GJA9	HGNC:19155	81025
GJA8	HGNC:4281	2703
GK2	HGNC:4291	2712
GKN2	HGNC:24588	200504
GLRA1	HGNC:4326	2741
GLRA2	HGNC:4327	2742
GLT6D1	HGNC:23671	360203
GML	HGNC:4375	2765
GOLGA6L2	HGNC:26695	283685
GOT1L1	HGNC:28487	137362
GPR101	HGNC:14963	83550
ADGRF2	HGNC:18991	222611
GPR119	HGNC:19060	139760
ADGRG7	HGNC:19241	84873
GPR139	HGNC:19995	124274
ADGRD2	HGNC:18651	347088
GPR148	HGNC:23623	344561
GPR151	HGNC:23624	134391
GPR152	HGNC:23622	390212
GPR26	HGNC:4481	2849
GPR31	HGNC:4486	2853
GPR32	HGNC:4487	2854
GPR45	HGNC:4503	11250
GPR50	HGNC:4506	9248
GPR52	HGNC:4508	9293
GPR78	HGNC:4528	27201
GPR78	HGNC:18510	27201
GPX5	HGNC:4557	2880
GPX6	HGNC:4558	257202
GRK1	HGNC:10013	6011
GRM4	HGNC:4596	2914
GRM5	HGNC:4597	2915
GRM6	HGNC:4598	2916
GSC2	HGNC:4613	2928
GSTA5	HGNC:19662	221357
GSX1	HGNC:20374	219409
GSX2	HGNC:24959	170825
GUCA2A	HGNC:4682	2980
GUCY2F	HGNC:4691	2986
H1F00	HGNC:18463	132243
H2BFM	HGNC:27867	286436

H2BFWT	HGNC:27252	158983
HAO1	HGNC:4809	54363
HCRTR2	HGNC:4849	3062
HDGFL1	HGNC:21095	154150
HHLA1	HGNC:4904	10086
HIST1H2AA	HGNC:18729	221613
HIST1H2BA	HGNC:18730	255626
HIST1H4G	HGNC:4792	8369
HMX1	HGNC:5017	3166
HOXB1	HGNC:5111	3211
HOXD12	HGNC:5135	3238
HRG	HGNC:5181	3273
HRH3	HGNC:5184	11255
HSFY1	HGNC:18568	86614
HSFY2	HGNC:23950	159119
HTN3	HGNC:5284	3347
HTR1A	HGNC:5286	3350
HTR2C	HGNC:5295	3358
HTR3C	HGNC:24003	170572
HTR3D	HGNC:24004	200909
HTR3E	HGNC:24005	285242
HTR5A	HGNC:5300	3361
HTR6	HGNC:5301	3362
IAPP	HGNC:5329	3375
IFIT1B	HGNC:23442	439996
IFNA10	HGNC:5418	3446
IFNA14	HGNC:5420	3448
IFNA16	HGNC:5421	3449
IFNA17	HGNC:5422	3451
IFNA2	HGNC:5423	3440
IFNA21	HGNC:5424	3452
IFNA4	HGNC:5425	3441
IFNA5	HGNC:5426	3442
IFNA6	HGNC:5427	3443
IFNA7	HGNC:5428	3444
IFNA8	HGNC:5429	3445
IFNB1	HGNC:5434	3456
IFNK	HGNC:21714	56832
IFNW1	HGNC:5448	3467
IL12B	HGNC:5970	3593
IL13	HGNC:5973	3596
IL17A	HGNC:5981	3605
IL17F	HGNC:16404	112744

IL1F10	HGNC:15552	84639
IL21	HGNC:6005	59067
IL22	HGNC:14900	50616
IL22	HGNC:13765	50616
IL26	HGNC:17119	55801
IFNL2	HGNC:18364	282616
IFNL3	HGNC:18365	282617
IFNL1	HGNC:18363	282618
IL3	HGNC:6011	3562
IL31	HGNC:19372	386653
IL36A	HGNC:15562	27179
IL36B	HGNC:15564	27177
IL36RN	HGNC:15561	26525
IL9	HGNC:6029	3578
INS	HGNC:6081	3630
INSL5	HGNC:6088	10022
INSL6	HGNC:6089	11172
INSL6	HGNC:17539	11172
INSRR	HGNC:6093	3645
IQCF1	HGNC:28607	132141
IRGC	HGNC:28835	56269
ISX	HGNC:28084	91464
ITIH6	HGNC:28907	347365
IZUMO2	HGNC:28518	126123
KCNA10	HGNC:6219	3744
KCNB2	HGNC:6232	9312
KCNG4	HGNC:19697	93107
KCNK10	HGNC:6273	54207
KCNK16	HGNC:14464	83795
KCNK18	HGNC:19439	338567
KCNV1	HGNC:18861	27012
KHDC3L	HGNC:33699	154288
KIF2B	HGNC:29443	84643
KIR2DL1	HGNC:6329	3802
KIR3DL3	HGNC:16312	115653
KLK12	HGNC:6360	43849
KLK9	HGNC:6370	284366
KRT2	HGNC:6439	3849
KRT25	HGNC:30839	147183
KRT26	HGNC:30840	353288
KRT28	HGNC:30842	162605
KRT33A	HGNC:6450	3883
KRT35	HGNC:6453	3886

KRT36	HGNC:6454	8689
KRT37	HGNC:6455	8688
KRT38	HGNC:6456	8687
KRT40	HGNC:26707	125115
KRT71	HGNC:28927	112802
KRT73	HGNC:28928	319101
KRT74	HGNC:28929	121391
KRT75	HGNC:24431	9119
KRT76	HGNC:24430	51350
KRT77	HGNC:20411	374454
KRT78	HGNC:28926	196374
KRT82	HGNC:6459	3888
KRT84	HGNC:6461	3890
KRT85	HGNC:6462	3891
KRT86	HGNC:6463	3892
KRT9	HGNC:6447	3857
KRTAP1-1	HGNC:16772	81851
KRTAP10-1	HGNC:22966	386677
KRTAP10-10	HGNC:22972	353333
KRTAP10-11	HGNC:20528	386678
KRTAP10-12	HGNC:20533	386685
KRTAP10-2	HGNC:22967	386679
KRTAP10-4	HGNC:20521	386672
KRTAP10-5	HGNC:22969	386680
KRTAP10-6	HGNC:20523	386674
KRTAP10-7	HGNC:22970	386675
KRTAP10-8	HGNC:20525	386681
KRTAP10-9	HGNC:22971	386676
KRTAP10-9	HGNC:18922	386676
KRTAP13-1	HGNC:18924	140258
KRTAP13-2	HGNC:18923	337959
KRTAP13-3	HGNC:18925	337960
KRTAP13-4	HGNC:18926	284827
KRTAP15-1	HGNC:18927	254950
KRTAP17-1	HGNC:18917	83902
KRTAP19-3	HGNC:18938	337970
KRTAP23-1	HGNC:18928	337963
KRTAP26-1	HGNC:33760	388818
KRTAP3-2	HGNC:16779	83897
KRTAP4-11	HGNC:18911	653240
KRTAP4-12	HGNC:16776	83755
KRTAP4-2	HGNC:18900	85291
KRTAP4-4	HGNC:16928	84616

KRTAP4-7	HGNC:18898	100132476
KRTAP5-2	HGNC:23597	440021
KRTAP9-2	HGNC:16926	83899
KRTAP9-3	HGNC:16927	83900
KRTAP9-4	HGNC:18902	85280
LALBA	HGNC:6480	3906
LBX1	HGNC:16960	10660
LCN9	HGNC:17442	392399
LCT	HGNC:6530	3938
LGALS13	HGNC:15449	29124
LGALS14	HGNC:30054	56891
LHFPL5	HGNC:21253	222662
LHX3	HGNC:6595	8022
LHX5	HGNC:14216	64211
LIM2	HGNC:6610	3982
LIN28A	HGNC:15986	79727
LIPM	HGNC:23455	340654
LOR	HGNC:6663	4014
LRIT1	HGNC:23404	26103
LRIT2	HGNC:23443	340745
LRRC10	HGNC:20264	376132
LUZP4	HGNC:24971	51213
LYZL1	HGNC:30502	84569
LYZL2	HGNC:29613	119180
LYZL6	HGNC:29614	57151
MAGEA10	HGNC:6797	4109
MAGEA11	HGNC:6798	4110
MAGEB1	HGNC:6808	4112
MAGEB10	HGNC:25377	139422
MAGEB18	HGNC:28515	286514
MAGEB3	HGNC:6810	4114
MAGEB4	HGNC:6811	4115
MAGEC3	HGNC:23798	139081
MAS1	HGNC:6899	4142
MAS1L	HGNC:13961	116511
MBD3L1	HGNC:15774	85509
MBD3L2	HGNC:18532	125997
MBL2	HGNC:6922	4153
MBL2	HGNC:6930	4153
MC3R	HGNC:6931	4159
MC5R	HGNC:6933	4161
MEP1A	HGNC:7015	4224
MEP1B	HGNC:7020	4225

MEPE	HGNC:13361	56955
MFRP	HGNC:18121	83552
MMD2	HGNC:30133	221938
MMP20	HGNC:7167	9313
MMP23A	HGNC:7170	8511
MMP26	HGNC:14249	56547
MMP27	HGNC:14250	64066
MOGAT3	HGNC:23249	346606
MORC1	HGNC:7198	27136
MRGPRD	HGNC:29626	116512
MRGPRX1	HGNC:17962	259249
MRGPRX2	HGNC:17983	117194
MRGPRX4	HGNC:17617	117196
MS4A10	HGNC:13368	341116
MS4A13	HGNC:16674	503497
MS4A5	HGNC:13374	64232
MSGN1	HGNC:14907	343930
MT1B	HGNC:7394	4490
MTNR1B	HGNC:7464	4544
MUC17	HGNC:16800	140453
MUC7	HGNC:7518	4589
MYBPC3	HGNC:7551	4607
MYF5	HGNC:7565	4617
NANOGNB	HGNC:24958	360030
NANOS2	HGNC:23292	339345
NCR2	HGNC:6732	9436
NDST4	HGNC:20779	64579
NEUROD2	HGNC:7763	4761
NEUROD4	HGNC:13802	58158
NEUROD6	HGNC:13804	63974
NEUROG1	HGNC:7764	4762
NKX2-1	HGNC:11825	7080
NKX2-2	HGNC:7835	4821
NLRP4	HGNC:22943	147945
NLRP5	HGNC:21269	126206
NLRP8	HGNC:22940	126205
NLRP9	HGNC:22941	338321
NMS	HGNC:32203	129521
NOBOX	HGNC:22448	135935
NOTO	HGNC:31839	344022
NOX3	HGNC:7890	50508
NPFFR1	HGNC:17425	64106
NPHS2	HGNC:13394	7827

NPSR1	HGNC:23631	387129
NPVF	HGNC:13782	64111
NR2E1	HGNC:7973	7101
NYX	HGNC:8082	60506
OC90	HGNC:8100	729330
OLIG2	HGNC:9398	10215
OLIG3	HGNC:18003	167826
OPALIN	HGNC:20707	93377
OPN1LW	HGNC:9936	5956
OPN5	HGNC:19992	221391
OR10A2	HGNC:8161	341276
OR10A4	HGNC:15130	283297
OR10A5	HGNC:15131	144124
OR10H1	HGNC:8172	26539
OR10H2	HGNC:8173	26538
OR10H3	HGNC:8174	26532
OR10J1	HGNC:8175	26476
OR10R2	HGNC:14820	343406
OR10S1	HGNC:14807	219873
OR10X1	HGNC:14995	128367
OR10Z1	HGNC:14996	128368
OR10Z1	HGNC:8176	128368
OR12D2	HGNC:8178	26529
OR12D3	HGNC:13963	81797
OR13C3	HGNC:14704	138803
OR13D1	HGNC:14695	286365
OR14A16	HGNC:15022	284532
OR1A1	HGNC:8179	8383
OR1A2	HGNC:8180	26189
OR1B1	HGNC:8181	347169
OR1D2	HGNC:8183	4991
OR1E1	HGNC:8189	8387
OR1E2	HGNC:8190	8388
OR1G1	HGNC:8204	8390
OR1L6	HGNC:8218	392390
OR1N2	HGNC:15111	138882
OR1S1	HGNC:8227	219959
OR1S2	HGNC:15141	219958
OR2AK2	HGNC:19569	391191
OR2AT4	HGNC:19620	341152
OR2C1	HGNC:8242	4993
OR2C3	HGNC:15005	81472

OR2D3	HGNC:15146	120775	
OR2F1	HGNC:8246	26211	
OR2G2	HGNC:15007	81470	
OR2G3	HGNC:15008	81469	
OR2H1	HGNC:8252	26716	
OR2J2	HGNC:8260	26707	
OR2L3	HGNC:15009	391192	
OR2T1	HGNC:8277	26696	
OR2T10	HGNC:19573	127069	
OR2T12	HGNC:19592	127064	
OR2T2	HGNC:14725	401992	
OR2T27	HGNC:31252	403239	
OR2T33	HGNC:31255	391195	
OR2T4	HGNC:15016	127074	
OR2T5	HGNC:15017	401993	
OR2W1	HGNC:8281	26692	
OR3A1	HGNC:8282	4994	
OR3A2	HGNC:8283	4995	
OR3A3	HGNC:8284	8392	
OR4C11	HGNC:15167	219429	
OR4C3	HGNC:14697	256144	
OR4D1	HGNC:8293	26689	
OR4D10	HGNC:15173	390197	
OR4D11	HGNC:15174	219986	
OR4D9	HGNC:15178	390199	
OR4K17	HGNC:15355	390436	
OR51B6	HGNC:19600	390058	
OR51D1	HGNC:15193	390038	
OR51F2	HGNC:15197	119694	
OR51T1	HGNC:15205	401665	
OR51V1	HGNC:19597	283111	
OR52A1	HGNC:8318	23538	
OR52A5	HGNC:19580	390054	
OR52B2	HGNC:15207	255725	
OR52B6	HGNC:15211	340980	
OR52E8	HGNC:15217	390079	
OR5212	HGNC:15221	143502	
OR52K2	HGNC:15223	119774	
OR52L1	HGNC:14785	338751	
OR52M1	HGNC:15225	119772	
OR52R1	HGNC:15235	119695	
OR52W1	HGNC:15239	120787	
OR56A1	HGNC:14781	120796	

OR56A4	HGNC:14791	120793
OR56B1	HGNC:15245	387748
OR5AU1	HGNC:15362	390445
OR5C1	HGNC:8331	392391
OR5I1	HGNC:8347	10798
OR5M1	HGNC:8352	390168
OR5M10	HGNC:15290	390167
OR5P2	HGNC:14783	120065
OR5P3	HGNC:14784	120066
OR5R1	HGNC:14841	219479
OR5T1	HGNC:14821	390155
OR5T2	HGNC:15296	219464
OR5T3	HGNC:15297	390154
OR5V1	HGNC:13972	81696
OR5W2	HGNC:15299	390148
OR6A2	HGNC:15301	8590
OR6K6	HGNC:15033	128371
OR6S1	HGNC:15363	341799
OR6V1	HGNC:15090	346517
OR7A17	HGNC:8363	26333
OR7C2	HGNC:8374	26658
OR7D4	HGNC:8380	125958
OR7G2	HGNC:8466	390882
OR8A1	HGNC:8469	390275
OR8B8	HGNC:8477	26493
OR8G5	HGNC:19622	219865
OR8U1	HGNC:19611	219417
OR9Q2	HGNC:15328	219957
OTOP1	HGNC:19656	133060
ОТОР3	HGNC:19658	347741
OTOR	HGNC:8517	56914
OTP	HGNC:8518	23440
OTUD6A	HGNC:32312	139562
OTX2	HGNC:8522	5015
PAGE3	HGNC:4110	139793
PANX3	HGNC:20573	116337
PASD1	HGNC:20686	139135
PAX1	HGNC:8615	5075
PAX4	HGNC:8618	5078
PBOV1	HGNC:21079	59351
PDCL2	HGNC:29524	132954
PDE6H	HGNC:8790	5149
PDILT	HGNC:27338	204474

PDX1	HGNC:6107	3651
PDYN	HGNC:8820	5173
PGK2	HGNC:8898	5232
PGLYRP2	HGNC:30013	114770
PGLYRP3	HGNC:30014	114771
PIWIL1	HGNC:9007	9271
PIWIL3	HGNC:18443	440822
PKD1L3	HGNC:21716	342372
PLA2G2E	HGNC:13414	30814
PLA2G2F	HGNC:30040	64600
PLA2G4E	HGNC:24791	123745
OOSP2	HGNC:26699	219990
PNLIP	HGNC:9155	5406
PNLIPRP1	HGNC:9156	5407
PNLIPRP2	HGNC:9157	5408
PNPLA5	HGNC:24888	150379
POM121L12	HGNC:25369	285877
POTEA	HGNC:33893	340441
POTED	HGNC:23822	317754
POTEG	HGNC:33896	404785
POTEH	HGNC:133	23784
POU3F4	HGNC:9217	5456
POU4F2	HGNC:9219	5458
POU4F3	HGNC:9220	5459
POU5F2	HGNC:26367	134187
PPP3R2	HGNC:9318	5535
PRAMEF1	HGNC:28840	65121
PRAMEF19	HGNC:24908	645414
PRAMEF2	HGNC:28841	65122
PRAMEF4	HGNC:31971	400735
PRAMEF7	HGNC:28415	441871
PRB1	HGNC:9337	5542
PRB4	HGNC:9340	5545
PRDM13	HGNC:13998	59336
PRDM14	HGNC:14001	63978
PRDM7	HGNC:9351	11105
PRDM9	HGNC:13994	56979
PRG3	HGNC:9363	10394
PRLH	HGNC:17945	51052
PRLHR	HGNC:4464	2834
PROP1	HGNC:9455	5626
PRSS33	HGNC:30405	260429
PRSS37	HGNC:29211	136242
		1002 12

PRSS38	HGNC:29625	339501
PRSS41	HGNC:30715	360226
PRSS55	HGNC:30824	203074
PRSS58	HGNC:39125	136541
PRY2	HGNC:21504	442862
PSKH2	HGNC:18997	85481
PTF1A	HGNC:23734	256297
RAX	HGNC:18662	30062
RAX2	HGNC:18286	84839
RBM46	HGNC:28401	166863
RBMXL2	HGNC:17886	27288
RBMY1A1	HGNC:9912	5940
RBMY1B	HGNC:23914	378948
RBMY1D	HGNC:23915	378949
RBMY1E	HGNC:23916	378950
RBMY1F	HGNC:23974	159163
RBMY1J	HGNC:23917	378951
RBP3	HGNC:9921	5949
RBPJL	HGNC:13761	11317
RD3	HGNC:19689	343035
RDH8	HGNC:14423	50700
REG3A	HGNC:8601	5068
RESP18	HGNC:33762	389075
RETNLB	HGNC:20388	84666
REXO1L1P	HGNC:24660	254958
RFPL3	HGNC:9980	10738
RFPL4B	HGNC:33264	442247
RFX6	HGNC:21478	222546
RHO	HGNC:10012	6010
RHOXF2	HGNC:30011	84528
RNASE10	HGNC:19275	338879
RNASE11	HGNC:19269	122651
RNASE12	HGNC:24211	493901
RNASE13	HGNC:25285	440163
RNASE8	HGNC:19277	122665
RNASE9	HGNC:20673	390443
RND2	HGNC:18315	8153
RNF113B	HGNC:17267	140432
RNF17	HGNC:10060	56163
RP1	HGNC:10263	6101
RP1L1	HGNC:15946	94137
RPE65	HGNC:10294	6121
RPTN	HGNC:26809	126638
		12000

RS1	HGNC:10457	6247
RTP1	HGNC:28580	132112
RTP2	HGNC:32486	344892
RXFP2	HGNC:17318	122042
RXFP3	HGNC:24883	51289
S100A7A	HGNC:21657	338324
S100G	HGNC:1436	795
SAGE1	HGNC:30369	55511
SAMD7	HGNC:25394	344658
SCGB1D1	HGNC:18395	10648
SCN10A	HGNC:10582	6336
SCRT2	HGNC:15952	85508
SDR9C7	HGNC:29958	121214
SEC14L3	HGNC:18655	266629
SEMG2	HGNC:10743	6407
SEPT14	HGNC:33280	346288
SERPINA12	HGNC:18359	145264
SERPINA7	HGNC:11583	6906
SERPINA9	HGNC:15995	327657
SERPINB12	HGNC:14220	89777
SHCBP1L	HGNC:16788	81626
SHOX	HGNC:10853	6473
SI	HGNC:10856	6476
SIGLECL1	HGNC:26856	284369
SIX6	HGNC:10892	4990
SLC10A2	HGNC:10906	6555
SLC13A1	HGNC:10916	6561
SLC34A1	HGNC:11019	6569
SLC17A6	HGNC:16703	57084
SLC18A3	HGNC:10936	6572
SLC22A12	HGNC:17989	116085
SLC22A13	HGNC:8494	9390
SLC22A24	HGNC:28542	283238
SLC22A25	HGNC:32935	387601
SLC22A6	HGNC:10970	9356
SLC22A8	HGNC:10972	9376
SLC22A9	HGNC:16261	114571
SLC25A2	HGNC:22921	83884
SLC25A31	HGNC:25319	83447
SLC2A2	HGNC:11006	6514
SLC2A7	HGNC:13445	155184
SLC32A1	HGNC:11018	140679
SLC34A1	HGNC:11019	6569

SLC36A3	HGNC:19659	285641
SLC39A12	HGNC:20860	221074
SLC6A18	HGNC:26441	348932
SLC6A5	HGNC:11051	9152
SLC6A7	HGNC:11054	6534
SLC7A13	HGNC:23092	157724
SLCO1B1	HGNC:10959	10599
SLCO6A1	HGNC:23613	133482
SLITRK1	HGNC:20297	114798
SOHLH1	HGNC:27845	402381
SOX1	HGNC:11189	6656
SOX14	HGNC:11193	8403
SP8	HGNC:19196	221833
SPACA1	HGNC:14967	81833
SPACA5	HGNC:31353	389852
SPACA7	HGNC:29575	122258
SPATA16	HGNC:29935	83893
SPATA21	HGNC:28026	374955
SPEM1	HGNC:32429	374768
SPHAR	HGNC:16957	10638
SPINK14	HGNC:33825	408187
SPO11	HGNC:11250	23626
SPPL2C	HGNC:28902	162540
SPRR4	HGNC:23173	163778
SSTR4	HGNC:11333	6754
SSX3	HGNC:11337	10214
SSX5	HGNC:11339	6758
SSX7	HGNC:19653	280658
SSX8P	HGNC:19654	280659
SSX9P	HGNC:19655	280660
STATH	HGNC:11369	6779
SULT6B1	HGNC:33433	391365
SUN5	HGNC:16252	140732
TBXT	HGNC:11515	6862
TAAR1	HGNC:17734	134864
TAAR2	HGNC:4514	9287
TAAR5	HGNC:30236	9038
TAAR6	HGNC:20978	319100
TAAR8	HGNC:14964	83551
TAAR9	HGNC:20977	134860
TAS1R2	HGNC:14905	80834
TAS2R1	HGNC:14909	50834
TAS2R13	HGNC:14919	50838

TAS2R16	HGNC:14921	50833
TAS2R39	HGNC:18886	259285
TAS2R40	HGNC:18885	259286
TAS2R41	HGNC:18883	259287
TAS2R42	HGNC:18888	353164
TAS2R43	HGNC:18875	259289
TAS2R46	HGNC:18877	259292
TAS2R50	HGNC:18882	259296
TAS2R60	HGNC:20639	338398
TAS2R7	HGNC:14913	50837
TAS2R8	HGNC:14915	50836
TAS2R9	HGNC:14917	50835
TBC1D21	HGNC:28536	161514
TBC1D29	HGNC:24509	26083
TBL1Y	HGNC:18502	90665
TBPL2	HGNC:19841	387332
TBR1	HGNC:11590	10716
TBX10	HGNC:11593	347853
ELOA2	HGNC:30771	51224
ELOA3	HGNC:24617	162699
TCHHL1	HGNC:31796	126637
TCP10L2	HGNC:21254	401285
TEDDM1	HGNC:30233	127670
TEX101	HGNC:30722	83639
TEX13A	HGNC:11735	56157
TEX28	HGNC:2563	1527
SPATA32	HGNC:26349	124783
TFAP2D	HGNC:15581	83741
TFDP3	HGNC:24603	51270
TGIF2LX	HGNC:18570	90316
TGIF2LY	HGNC:18569	90655
TGM6	HGNC:16255	343641
TKTL2	HGNC:25313	84076
TLX1	HGNC:5056	3195
TMEM132D	HGNC:29411	121256
TMEM174	HGNC:28187	134288
TMEM207	HGNC:33705	131920
TMEM225	HGNC:32390	338661
TMIGD1	HGNC:32431	388364
TMPRSS11A	HGNC:27954	339967
TMPRSS11B	HGNC:25398	132724
TMPRSS11F	HGNC:29994	389208
TMPRSS12	HGNC:28779	283471

TMPRSS15	HGNC:9490	5651
TNR	HGNC:11953	7143
TPD52L3	HGNC:23382	89882
TPH2	HGNC:20692	121278
TPRX1	HGNC:32174	284355
TPTE	HGNC:12023	7179
TREML4	HGNC:30807	285852
TRHR	HGNC:12299	7201
TRIM40	HGNC:18736	135644
TRIM42	HGNC:19014	287015
TRIM43	HGNC:19015	129868
TRIM48	HGNC:19021	79097
TRIM49	HGNC:13431	57093
TRIM51	HGNC:19023	84767
TRIM60	HGNC:21162	166655
TRIM67	HGNC:31859	440730
TRIML1	HGNC:26698	339976
TRPC5	HGNC:12337	7224
TRPC7	HGNC:20754	57113
TRPM1	HGNC:7146	4308
TRPV5	HGNC:3145	56302
TSGA13	HGNC:12369	114960
TSHB	HGNC:12372	7252
TSPAN16	HGNC:30725	26526
TSPO2	HGNC:21256	222642
TSPY1	HGNC:12381	7258
TSPYL6	HGNC:14521	388951
TSSK1B	HGNC:14968	83942
TSSK2	HGNC:11401	23617
TXNDC8	HGNC:31454	255220
TYR	HGNC:12442	7299
UBQLN3	HGNC:12510	50613
UMOD	HGNC:12559	7369
UROC1	HGNC:26444	131669
USP17L2	HGNC:34434	377630
USP26	HGNC:13485	83844
USP26	HGNC:18563	83844
UTS2R	HGNC:4468	2837
VAX1	HGNC:12660	11023
VCX3A	HGNC:18159	51481
VHLL	HGNC:30666	391104
VN1R2	HGNC:19872	317701
VN1R4	HGNC:19871	317703

VN1R5	HGNC:19870	317705
VPREB1	HGNC:12709	7441
VRTN	HGNC:20223	55237
VSX2	HGNC:1975	338917
WFDC10A	HGNC:16139	140832
WFDC11	HGNC:20478	259239
WFDC9	HGNC:20380	259240
XAGE2	HGNC:4112	9502
XAGE5	HGNC:30930	170627
XKR7	HGNC:23062	343702
ZAN	HGNC:12857	7455
ZCCHC13	HGNC:31749	389874
RTL4	HGNC:25214	340595
ZG16	HGNC:30961	653808
ZIC3	HGNC:12874	7547
ZIC3	HGNC:16366	7547
CBLL2	HGNC:26371	158506
ZNF648	HGNC:18190	127665
ZNF679	HGNC:28650	168417
ZNF804B	HGNC:21958	219578
ZNRF4	HGNC:17726	148066
ZP2	HGNC:13188	7783
ZP4	HGNC:15770	57829
ZSWIM2	HGNC:30990	151112