Journal of Visualized Experiments

Analysis of the interactions between endobiotics and human gut microbiota using in vitro batch fermentation systems --Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video
Manuscript Number:	JoVE59725R2
Full Title:	Analysis of the interactions between endobiotics and human gut microbiota using in vitro batch fermentation systems
Keywords:	endobiotics, Bifidobacteria exopolysaccharides, human gut microbiota, in vitro, batch fermentation, short-chain fatty acid
Corresponding Author:	Yeshi Yin Hunan University of Science and Engineering Yongzhou, Hunan CHINA
Corresponding Author's Institution:	Hunan University of Science and Engineering
Corresponding Author E-Mail:	yinyeshi@126.com
Order of Authors:	Yeshi Yin
	Yunfei Hu
	Huahai Chen
	Baiyuan Li
	Linyan Cao
	Changhui Zhao
	Qing Gu
	Ping Li
Additional Information:	
Question	Response
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	YongZhou, Hunan province, China

Cover Letter

Dear Editor,

We would like to submit the enclosed manuscript entitled "Analyze the interactions

between xenobiotics to human gut microbiota using in vitro batch fermentation", which

we wish to be considered for publication in "JOVE".

The human body is host to a complex microbial ecosystem, consisting of

approximately 10¹³ microbial cells. Human second genomes of gut microbiota encoded

lots of metabolic related genes that expanded host metabolic capabilities. On the other

sides, xenobiotics have the potential to alter the gut microbiome community structure

and their functions. A study on the interactions between xenobiotics to human gut

microbiota become a popular research subject. In this manuscript, we described a

protocol to investigate the interactions between bifidobacterial (Bif) EPS and human

gut microbiota in vitro by using thin-layer chromatography, 16S rDNA high-throughput

sequencing, and gas chromatography. This protocol we described here can also be

modified to investigate the interactions between other xenobiotics and gut microbiota.

All authors have read and approved this version of the article, and due care has

been taken to ensure the integrity of the work.

Correspondence should be addressed to yinyeshi@126.com.

Thank you very much for your attention to our manuscript.

Sincerely yours,

Cover Letter 2

Dear Dr Steindel:

Thank you and the reviewers for helping us to improve our manuscript (JoVE59725, "Analyze the interactions between xenobiotics to human gut microbiota using in vitro batch fermentation"). All changes have been maded in the revised manuscript. Hopefully, the revised manuscript will meet with your approval.

Thank you so much for your attention to our manuscript.

Sincerely,

Yeshi Yin, PhD

1 TITLE:

- 2 Analysis of Interactions between Endobiotics and Human Gut Microbiota Using In Vitro Bath
- 3 Fermentation Systems

4 5

- **AUTHORS & AFFILIATIONS:**
- 6 Yunfei Hu¹, Huahai Chen¹, Ping Li², Baiyuan Li¹, Linyan Cao¹, Changhui Zhao¹, Qing Gu², Yeshi Yin¹

7

- ¹Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South,
- 9 College of Chemistry and Bioengineering, Hunan University of Science and Engineering,
- 10 Yongzhou, Hunan, China
- ²College of Food and Biological Engineering, Zhejiang Gongshang University, Hangzhou,
- 12 Zhejiang, China

13

- 14 Corresponding Authors:
- 15 Yeshi Yin (yinyeshi@126.com)
- 16 Qing Gu (guqing2002@hotmail.com)

17

- 18 Email Addresses of Co-authors:
- 19 Yunfei Hu (huyunfei415@163.com)
- 20 Huahai Chen (chenhuahai 2008@163.com)
- 21 Ping Li (ping-biology@outlook.com)
- 22 Baiyuan Li (lby245239@126.com)
- 23 Linyan Cao (cly917@mail.ustc.edu.cn)
- 24 Changhui Zhao (365056369@qq.com)

25 26

- **KEYWORDS:**
- 27 endobiotics, Bifidobacteria exopolysaccharides, human gut microbiota, in vitro, batch
- 28 fermentation, short-chain fatty acid

29 30

- SUMMARY:
- Described here is a protocol to investigate the interactions between endobiotics and human gut
- microbiota using in vitro batch fermentation systems.

- ABSTRACT:
- 35 Human intestinal microorganisms have recently become an important target of research in
- promoting human health and preventing diseases. Consequently, investigations of interactions
- 37 between endobiotics (e.g., drugs and prebiotics) and gut microbiota have become an important
- research topic. However, in vivo experiments with human volunteers are not ideal for such
- 39 studies due to bioethics and economic constraints. As a result, animal models have been used
- 40 to evaluate these interactions in vivo. Nevertheless, animal model studies are still limited by
- 41 bioethics considerations, in addition to differing compositions and diversities of microbiota in
- 42 animals vs. humans. An alternative research strategy is the use of batch fermentation
- 43 experiments that allow evaluation of the interactions between endobiotics and gut microbiota
- in vitro. To evaluate this strategy, bifidobacterial (Bif) exopolysaccharides (EPS) were used as a

representative xenobiotic. Then, the interactions between Bif EPS and human gut microbiota were investigated using several methods such as thin-layer chromatography (TLC), bacterial community compositional analysis with 16S rRNA gene high-throughput sequencing, and gas chromatography of short-chain fatty acids (SCFAs). Presented here is a protocol to investigate the interactions between endobiotics and human gut microbiota using in vitro batch fermentation systems. Importantly, this protocol can also be modified to investigate general interactions between other endobiotics and gut microbiota.

INTRODUCTION:

Gut microbiota play an important role in the functioning of human intestines and in host health.
Consequently, gut microbiota have recently become an important target for disease prevention and therapy¹. Moreover, gut bacteria interact with host intestinal cells and regulate fundamental host processes, including metabolic activities, nutrient availabilities, immune system modulation, and even brain function and decision-making^{2,3}. Endobiotics have considerable potential to influence the bacterial composition and diversity of gut microbiota.

Thus, interactions between endobiotics and human gut microbiota have attracted increasing

research attention⁴⁻⁹.

It is difficult to evaluate interactions between endobiotics and human gut microbiota in vivo due to bioethics and economic constraints. For example, experiments investigating the interactions between endobiotics and human gut microbiota cannot be performed without permission of the Food and Drug Administration, and recruitment of volunteers is expensive. Consequently, animal models are often used for such investigations. However, the use of animal models is limited due to different microbiota compositions and diversity in animal- vs. human-associated communities. An alternative in vitro method to explore the interactions between endobiotics and human gut microbiota is through the use of batch culture experiments.

 Exopolysaccharides (EPSs) are prebiotics that significantly contribute to the maintenance of human health¹⁰. Distinct EPSs that consist of different monosaccharide compositions and structures can exhibit distinct functions. Previous analyses have determined the composition of Bif EPSs, which are the representative xenobiotic targeted in the current study¹¹. However, host-associated metabolic effects have not been considered with regard to EPS composition and diversity.

 The protocol described here uses the fecal microbiota from 12 volunteers to ferment Bif EPSs. Thin-layer chromatography (TLC), 16S rRNA gene high-throughput sequencing, and gas chromatography (GC) are then used in combination to investigate the interactions between EPSs and human gut microbiota. Distinct advantages of this protocol compared to in vivo experiments are its low cost and avoidance of interfering effects from the host's metabolism. Furthermore, the described protocol can be used in other studies that investigate interactions between endobiotics and human gut microbiota.

PROTOCOL:

89

This protocol follows the guidelines of the ethics committee of Hunan University of Science and Engineering (Hunan, China), and the Zhejiang Gongshang University (Zhejiang, China).

92

1. Preparation of bacteria

93 94

1.1. Preparation of bifidobacterium medium broth

95 96

- 97 1.1.1. Combine the following components in 950 mL of distilled water: meat extract, 5 g/L;
- yeast extract, 5 g/L; casein peptone, 10 g/L; soytone, 5 g/L; glucose, 10 g/L; K₂HPO₄, 2.04 g/L;
- 99 MgSO₄·7H₂O, 0.22 g/L; MnSO₄.H₂O, 0.05 g/L; NaCl, 5 g/L; Tween 80, 1 mL; salt solution, 40 mL
- 100 (CaCl₂.2H₂O, 0.25 g/L; KH₂PO₄, 1 g/L; NaHCO₃, 10 g/L; NaCl, 2 g/L); and resazurin, 0.4 mL (2.5
- mg/L). Adjust the pH to 6.8 with 2 M NaOH.

102

- 1.1.2. Autoclave at 121 °C for 15 min and allow the broth to cool to room temperature (RT)
- under anaerobic conditions (10% H₂, 10% CO₂, 80% N₂). Add filter-sterilized cysteine-HCl (0.5
- 105 g/L) and mupirocin (5 mg/L) to the medium.

106

- 1.2. Add an aliquot (50 μL) of frozen Bifidobacterium longum to a culture tube with 5 mL of
- bifidobacterium medium broth under anaerobic conditions, then culture in an anaerobic
- incubator for 24 h at 37 °C.

110111

2. Preparation of bifidobacterial EPSs

2.1. Preparation of PYG agar medium

112113114

- 2.1.1. Combine the following: peptone, 20 g/L; yeast extract, 10 g/L; glucose, 5 g/L; NaCl, 0.08
- g/L; CaCl₂, 0.008 g/L; MgSO₄·7H₂O, 0.008 g/L; K₂HPO₄, 0.04 g/L; KH₂PO₄, 0.04 g/L; NaHCO₃, 0.4
- g/L; agar, 12 g/L. Adjust the pH to 7.2 using 10 M NaOH.

118

- 2.1.2. Autoclave the media at 121 °C for 15 min and cool to ~50 °C. Then, per 1 L of medium,
- add 0.5 mL of filter-sterilized vitamin K₁ solution (1 g of vitamin K₁ dissolved in 99 mL of 99%
- ethanol), 5 mL of haemin solution (0.5 g of haemin dissolved in 1 mL of 1 mol/L NaOH, then
- brought up to 100 mL with distilled water), and 0.5 g of cysteine-HCl.

123

- 2.1.3. Before pouring the PYG plates, add filter-sterilized 5-bromo-4-chloro-3-indolyl β-D-
- galactopyranoside (X-Gal, 0.06 g/L), LiCl·3H₂O (5.7 g/L) and mupirocin (5 mg/L) to the medium.

126

- NOTE: X-Gal and LiCl.3H₂O allow the identification of *B. longum* colonies on plates via coloration
- 128 changes.

- 2.2. Inoculate 20 μL of *B. longum* strains (step 1.2) to PYG plates and place in an anaerobic
- incubator at 37 °C for 72 h.

132

- 2.3. Collect mucoid bacterial colonies from the PYG plates using a weighing scoop, then
- completely resuspend in 10 mL of phosphate-buffered saline (PBS) using a vortex oscillator.

135

NOTE: The bacterial and EPS mixtures should be resuspended completely by vortexing or pipetting up and down repeatedly until the fibers are completely dissolved in PBS.

138

2.4. Centrifuge the suspension at 6,000 x q for 5 min.

140

2.5. Carefully transfer the supernatants to a new centrifuge tube and mix completely with three
 volumes of cold 99% ethanol by repeated inversion and blending.

143

2.6. Centrifuge the mixture at 6,000 x *g* for 5 min and completely remove the supernatants.

145

2.7. Remove the precipitates from the centrifuge tubes by scraping and drying the EPS extractsovernight using a speed vacuum.

148149

3. Preparation of fermentation medium

150

151 3.1. Preparation of basic culture medium VI

152

- 3.1.1. Combine the following: peptone, 3 g/L; tryptone, 3 g/L; yeast extract, 4.5 g/L; mucin, 0.5
- g/L; bile salts No. 3, 0.4 g/L; NaCl, 4.5 g/L; KCl, 2.5 g/L; MgCl₂· $6H_2O$, 4.5 g/L; 1 mL Tween 80;
- 155 CaCl₂.6H₂O, 0.2 g/L; KH₂PO₄, 0.4 g/L; MgSO₄·7H₂O, 3.0 g/L; MnCl₂·4H₂O, 0.32 g/L; FeSO₄·7H₂O,
- $0.1 \text{ g/L}; \text{CoSO}_4 \cdot 7\text{H}_2\text{O}, 0.18 \text{ g/L}; \text{CaCl}_2 \cdot 2\text{H}_2\text{O}, 0.1 \text{ g/L}; \text{ZnSO}_4 \cdot 7\text{H}_2\text{O}, 0.18 \text{ g/L}; \text{CuSO}_4 \cdot 5\text{H}_2\text{O}, 0.01 \text{ g/L}; \text{CuSO}_4 \cdot 5\text{H}_2\text{O}, 0.01 \text{ g/L}; \text{CuSO}_4 \cdot 7\text{H}_2\text{O}, 0.18 \text{ g/L}; \text{Cu$
- and $NiCl_2 \cdot 6H_2O$, 0.092 g/L. Adjust the pH to 6.5 with 1 M HCl.

158

3.1.2. Prepare haemin and cysteine as done in section 2.1 and add after autoclaving and cooling.

161162

163

164

3.2. Prepare culture media that contains different carbon sources with a VI base media. Prior to autoclaving, add 8 g/L of Bif EPS fibers to medium VI, comprising group VI_Bif. In addition, add 8 g/L starch to medium VI to represent group VI_Starch. Finally, medium VI without addition of a carbon source is used as the control (group VI).

165166167

NOTE: Bif EPS and starch are first dissolved in hot water using a magnetic agitator, then mixed with prepared VI medium.

168169

3.3. Autoclave all media at 121 °C for 15 min and allow to cool to RT.

171

3.4. Transfer a subsample (5 mL) of each medium to culture tubes in an anaerobic incubator, and store the remaining media at 4 °C.

174 175

4. Human fecal sample preparation

176 4.1. Collect fresh fecal samples immediately following fresh defecation from healthy adult 177 178 human volunteers using feces containers, and subsequently use for slurry preparation. 179 180 NOTE: Prior to sample collection, all the volunteers should be screened to ensure no receiving 181 of antibiotics, probiotics, or prebiotic treatments for at least 3 months prior to donating samples. In addition, all donors must provide informed, written consent. 182 183 4.2. Transfer a fresh fecal sample (1 g) to 10 mL of 0.1 M anaerobic PBS (pH 7.0) into glass 184 beakers, then use glass rods to prepare a 10% (w/v) slurry. 185 186 187 4.3. Use a 0.4 mM sieve to filter the fecal slurry. Then, use a subsample of the filtered slurry to inoculate batch culture fermentation experiments, and store the remainder at -80 °C for further 188 189 analyses. 190 NOTE: Steps 4.2–4.3 are conducted in an anaerobic chamber. 191 192 193 5. In vitro batch fermentation 194 195 5.1. Add filtered fecal slurry (500 µL) to the fermentation medium prepared in step 3.2 within 196 an anaerobic chamber, then incubate at 37 °C. 197 5.2. Collect 2 mL of fermented samples at 24 h and 48 h in the anaerobic chamber and then 198 centrifuge outside of the chamber at 6,000 x g for 3 min. 199 200 5.3. Carefully transfer the supernatants to a new centrifuge tube that will be used for 201 polysaccharide degradation analysis and short-chain fatty acids (SCFAs) measurements. 202 203 5.4. Store the centrifugation pellets at -80 °C and subsequently use for bacterial genomic DNA 204 extraction. 205 206 207 6. EPS degradation by human fecal microbiota 208 6.1. Load 0.2 µL of fermented supernatants onto pre-coated silica gel-60 TLC aluminum plates, 209 then dry using a hair drier. 210 211 6.2. Develop the plates in 20 mL of a formic acid/n-butanol/water (6:4:1, v:v:v) solution and dry 212 using a hair drier. 213

217 6.3.1 Prepare orcinol reagents by dissolving 900 mg of Lichenol in 25 mL of distilled water then adding 375 mL of ethanol. Subsequently, concentrated sulfuric acid should be slowly added and

6.3. Soak the plates in the orcinol reagent to dye, then dry using a hair drier.

214

the solution thoroughly mixed. 219 220 221 6.4. Heat plates at 120 °C for 3 min in a baking oven and evaluate degradation of EPS by measuring TLC bands. 222 223 224 7. Effects of EPS on human intestinal microbiota 225 226 7.1. Freeze-thaw the original fecal samples prepared in step 4.3 and fermented samples 227 prepared in step 5.4. 228 229 7.2. Extract bacterial genomic DNA (gDNA) from all the samples using a stool bacterial genomic 230 DNA extraction kit following the manufacturer's instructions. 231 232 7.3. Determine DNA concentrations, integrities, and size distributions using a micro-233 spectrophotometer and agar gel electrophoresis. 234 7.4. Conduct PCR of bacterial 16S rRNA genes from the extracted gDNA using the following 235 previously described forward and reverse primers¹²: 236 237 -forward primer (barcoded primer 338F): ACTCCTACGGGAGGCAGCA 238 239 -reverse primer (806R): GGACTACHVGGGTWTCTAAT 240 Use the following thermal cycler conditions: 241 242 1) 94 °C for 5 min. 243 2) 94 °C for 30 s. 244 3) 55 °C for 30 s. 245 4) 72 °C for 1 min. 5) Repeat 2-4 for 35 cycles 246 6) 72 °C for 5 min. 247 7) 4 °C hold until removal from thermal cycler. 248 249 250 7.5. Conduct high-throughput sequencing of PCR products at a DNA sequencing company using ultra-high throughput microbial community analysis. 251 252 7.6. Obtain clean, high quality sequences using the Quantitative Insights into Microbial Ecology 253 254 (QIIME) sequence analysis pipeline¹³. 255

257 258

261

256

7.8. Choose a representative sequence from each OTU and use the RDP classifier along with the SILVA taxonomic database to classify representative sequences¹⁵.

97% nucleotide similarity using bioinformatics tools such as the Mothur software suite¹⁴.

7.7. Define operational taxonomic units (OTUs) for 16S rRNA gene sequences with greater than

7.9. Calculate Good's coverage, alpha diversity metrics (including Simpson and Shannon index),

and richness (observed number of OTUs) using bioinformatics tools¹⁶.

8. Effects of EPS on SCFA production by human intestinal microbiota

8.1. Add fermented supernatants (1 mL) prepared in step 5.3 to 2 mL centrifuge tubes.

269 8.2. Add 0.2 mL of 25% (w/v) metaphosphoric acid to each of the samples and thoroughly mix the solutions by vortexing.

272 8.3. Centrifuge the mixtures at 13,000 x g for 20 min and transfer the supernatants to fresh tubes.

275 8.4. Concomitantly, prepare solutions of 120 mM acetic, propionic, butyric, isobutyric, valeric 276 and isovaleric acids. Then, add 1 mL of each prepared acid to 1.2 mL of 25% (w/v) 277 metaphosphoric acid and use as the standard cocktails.

8.5. Filter the samples using a 0.22 μM membrane.

281 8.6. Detect SCFA concentrations using high performance gas chromatography according to previously described protocols^{11,17}.

NOTE: An InertCap FFAP column (0.25 mM x 30 m x 0.25 μ M) is used for gas chromatography (GC). SCFA concentrations are then quantified based on peak areas using the single-point internal standard method in the GC Solution software package.

REPRESENTATIVE RESULTS:

The production of mucoid EPS could be observed in *B. longum* cultures on PYG plates after anaerobic incubation for 72 h (**Figure 1A**). Centrifugation of culture scrapes, followed by ethanol precipitation and drying, resulted in the collection of cellulose-like EPS (**Figure 1B**). Dried EPS and soluble starch were then used as carbon sources for fermentation cultures. TLC was used for oligosaccharide separation and purity analysis due to its low cost and rapid results turnaround¹⁸. Although the degradation rate of starch by human fecal microbiota was faster than that of Bif EPS (**Figure 2**), Bif EPS degradation was clearly observed for some EPS-inoculated samples.

Community compositional analysis via 16S rRNA gene high-throughput sequencing and principal coordinate analysis (PCoA) was then performed to investigate the effects of Bif EPS on human gut microbiota. Samples from the VI_Bif and VI_Starch groups clustered separately from each other in the PCoA analysis (**Figure 3A**), indicating that EPS and starch availability differentially shape human fecal bacterial communities. Linear discriminant analysis effect size (LEfSe) was further used to distinguish the specific bacterial taxa that differed between the VI_Bif and VI_Starch treatments. The genera *Collinsella*, *Coprococcus*, *Parabacteroides*, and

306 Rhodopseudomonas were significantly more abundant in the VI Bif samples than in the

VI_Starch samples (**Figure 3B**). Furthermore, GC measurements were made for several SCFAs to evaluate their production following the addition of different carbon sources. SCFAs that were measured from fermentation cultures included acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids. Following fermentation for 24 h and 48 h, five of the six aforementioned SCFA concentrations were similar among treatments and not statistically different between the VI_Bif, VI_Starch, and VI groups. However, propionic acid concentrations were significantly higher in the VI_Bif group than in the VI_Starch group (**Figure 4**).

FIGURE LEGENDS:

Figure 1: EPS produced by *B. longum***.** Frozen *B. longum* was restored in Bifidobacterium medium broth and then streaked onto PYG plates, followed by anaerobic incubation at 37 °C for 72 h (**A**). The EPS produced by bacterial cultures were scraped from plate cultures, precipitated using ethanol, and dried overnight using a speed vacuum (**B**).

Figure 2: TLC analysis of *in vitro* EPS and starch degradation by human gut microbiota. TLC analysis was conducted on $0.2~\mu L$ samples collected at 24 h and 48 h from each fermentation culture grown under anaerobic conditions. VI, VI_Starch, and VI_Bif indicate VI media, VI media + starch supplement, and VI media + EPS supplement, respectively. The numbers 1–12 indicate fecal bacterial samples from the 12 volunteers that were used to inoculate the fermentation experiments. The control group represents treatment without additional carbon supplements. This figure is modified from Yin et al. 11 .

Figure 3: Effects of Bif EPS availability on human gut microbiota communities. (A) PCoA plot of gut microbiota community compositional dissimilarities based on the unweighted UniFrac metric. **(B)** LEfSE analysis of bacterial taxa that were differentially abundant among treatment groups. A cutoff of p < 0.05 was used to assess the statistical significance of bacterial taxonomic differences among groups. Ori indicates the gut microbiota of the volunteer fecal samples. VI_Bif and VI_Starch indicate the gut microbiota from fermentation samples using VI media with EPS and starch as carbon substrates, respectively. VI represents the control group with gut microbiota inoculated fermentations in VI media without supplementation of other carbohydrates. This figure is modified from Yin et al.¹¹

Figure 4: Effects of EPS availability on SCFA production after 24 h and 48 h of fermentation.

Acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids were detected using gas chromatography. VI_Bif, VI_Starch, and VI indicate the samples that were collected after cultivation using VI media + EPS, VI media + starch, and VI media, respectively. All samples were measured in triplicate. The figures were generated using GraphPad Prism Version 5.01. Panels represent organic acid concentrations within each fermented sample for A, acetic acid; B, propionic acid; C, isobutyric acid; D, butyric acid; E, isovaleric acid; and F, valeric acid. This figure is modified from Yin et al.¹¹

DISCUSSION:

Significant progress has been made towards understanding human gut microbiota composition and activities over the last decade. As a consequence of these studies, the holobiont concept has emerged, which represents the interactions between hosts and associated microbial communities, such as in between humans and their gut microbiota^{19,20}. Furthermore, humans are even now regarded as superorganisms²¹, wherein the gut microbiota have been recognized as one of the functional organs in humans^{22,23}. The human body hosts a complex microbial ecosystem, consisting of approximately 10¹³ microbial cells²⁴. Moreover, the genomes of gut microbiota are considered auxiliary genomes from humans that encode numerous metabolic-related genes that expand the host's metabolic capabilities⁴. However, xenobiotics, including therapeutic drugs and diet-derived bioactive compounds, can potentially alter the gut microbiome community structure and associated functions⁵. Increasing numbers of studies have indicated that interactions between gut microbiota and xenobiotics play important roles in mediating chemical toxicity and causing, or otherwise exacerbating, human diseases^{6,7}. Thus, investigations of the interactions between xenobiotics and the human gut microbiota have recently garnered significant research attention.

Mouse models have been the most widely used methods to investigate interactions between microbiota and hosts. However, differences in composition and activities between the gut microbiota of humans and mice²⁵ may result in inadequate modeling of human interactions through studies of mice. Nevertheless, bioethics considerations require minimal use of mice. An alternative to the above in vivo models is batch fermentation, which can be used to simulate human gut microbiota in vitro²⁶. Consequently, fermentation experiments have been used to investigate the interactions between xenobiotics and human gut microbiota. For example, Yin et al. 17 have used batch fermentation experiments to investigate the interactions between polysaccharides and human gut microbiota. The results from this study indicate that some polysaccharides can be metabolized by the human gut microbiota, and that polysaccharides modulate the human bacterial community and metabolites that they produce in vitro, including SCFAs. However, some methodological considerations are critical for use of this protocol. For example, fecal samples should be collected as soon as possible, and an anaerobic chamber should be used to ensure the growth of obligate anaerobes. The latter consideration is particularly critical, because oxygen exposure can lead to the death of some gut bacterial populations and thus, alteration of the bacterial community. In addition, xenobiotics are metabolized in the upper digestive system. Consequently, modeling the interactions between xenobiotics and the lower digestive system microbiota is an important consideration for in vivo modeling.

Batch fermentation experiments have clear advantages over in vivo human and animal studies because they are more economically feasible and convenient. Moreover, they can be used to investigate interindividual variation of human gut microbiota responses to xenobiotic exposure. Moreover, batch fermentation can be easily applied to manipulate microbiota communities and evaluate their associated metabolic functions. However, batch fermentation systems suffer from the limitation of static state dynamics. Future investigations could implement bioreactor chemostats that allow the dynamic modulation of pH, temperature, and peristalsis, while maintaining a steady supply of nutrients and the continuous removal of waste. Such activities

would allow experiments to better mimic in vivo intestinal tracts and provide new insights to supplement those from batch fermentation experiments. An additional limitation of batch fermentation experiments is that they remove all microbiome-host tissue interactions. This could be a particularly important consideration, as some xenobiotics (e.g., methamphetamine) can be co-metabolized by human cells and gut microbiota²⁷. Moreover, recent studies have indicated that gut metagenome (GM) can indirectly regulate xenobiotic metabolism via regulating host gene expression regulation⁸.

402 403

404 405

406

407 408

409

410

Although developments of batch fermentation systems are still needed, these systems can be widely used for high-throughput and rapid screening of interactions between xenobiotics and human gut microbiota. Elucidating the mechanisms underlying xenobiotic resistance and metabolism in active human gut microbiomes will provide important insights into unexplained patient-to-patient variation in drug efficacy and toxicity^{8,9}. Furthermore, a more detailed understanding of how diets and specific food components alter microbial metabolisms and consequently effect host health is the first step towards realizing the goal of personalized medicine via microbiota modulation.

411 412

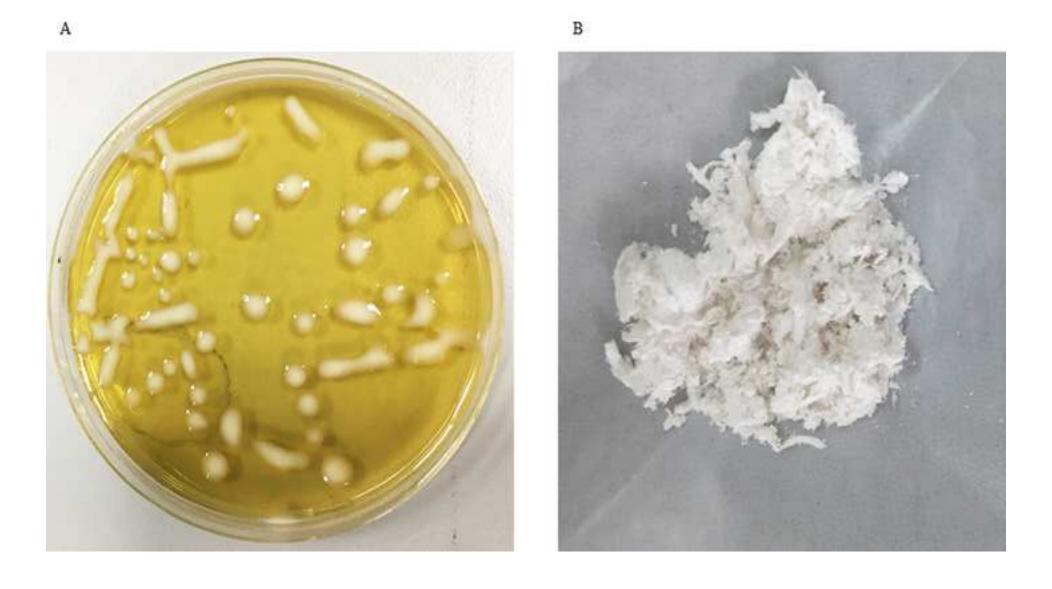
ACKNOWLEDGMENTS:

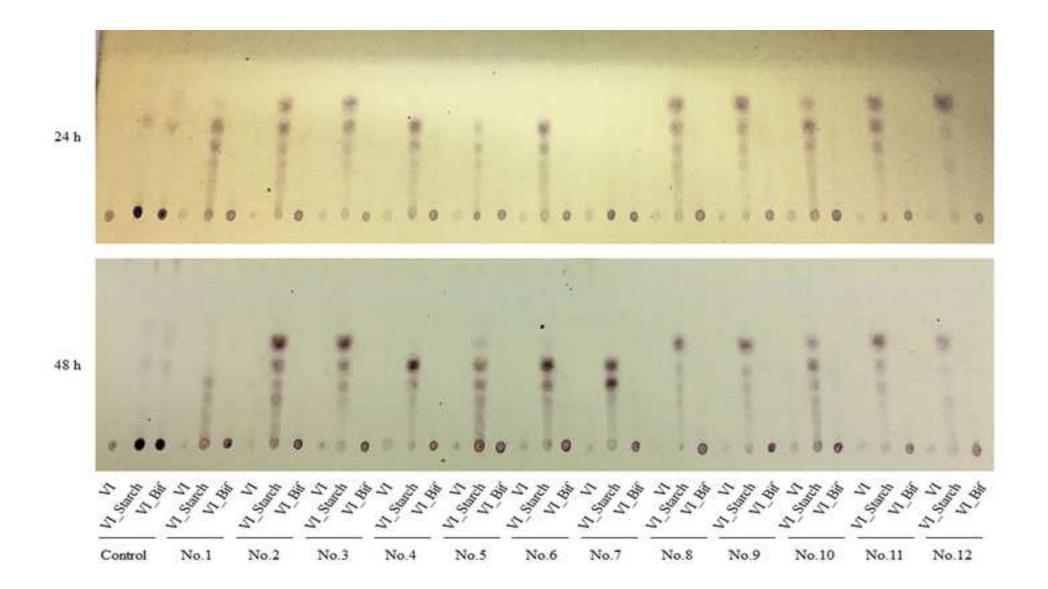
- This study was funded by the National Nature Science Foundation of China (No. 31741109), the
- Hunan Natural Science Foundation (No. 2018JJ3200), and the construct program of applied
- characteristic discipline in Hunan University of Science and Engineering. We thank LetPub
- 416 (www.letpub.com) for its linguistic assistance during the preparation of this manuscript.

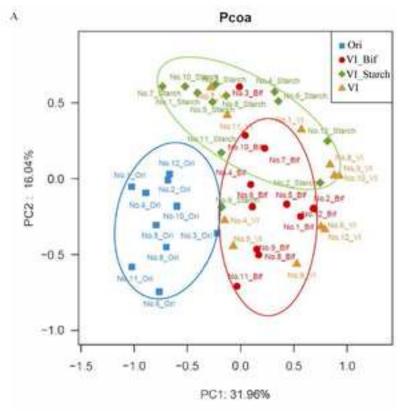
417 418

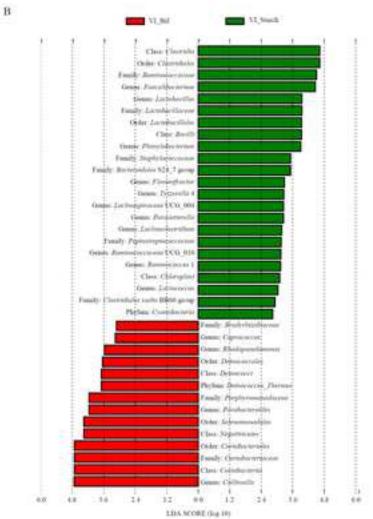
DISCLOSURES:

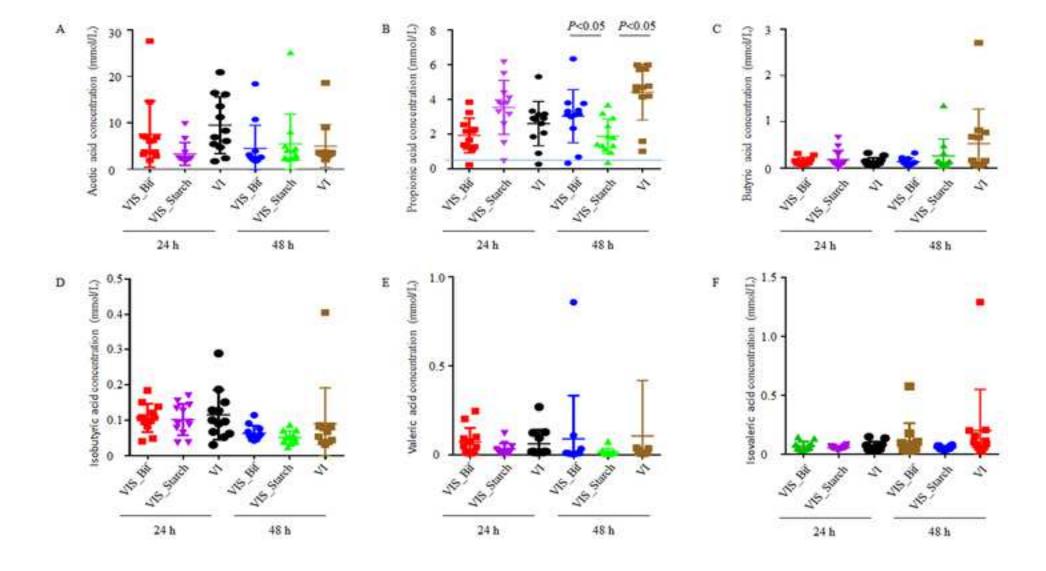
The authors declare that they have no conflicts of interest. The figures were cited in Yin et al. 11.


420 421


REFERENCES:


- 1. Maarten, V. D. G., Blottière, Hervé M., Doré, J. Humans as holobionts: implications for prevention and therapy. *Microbiome.* **6** (1), 81 (2018).
- 424 2. Allen, A. P., Dinan, T. G., Clarke, G., Cryan, J. F. A psychology of the human brain-gut-
- microbiome axis. Social and Personality Psychology Compass. **11** (4), e12309 (2017).
- 3. Arora, T., Bäckhed, F. The gut microbiota and metabolic disease: current understanding and future perspectives. *Journal of Internal Medicine*. **280**, 39-349 (2016).
- 428 4. Maurice, C., Haiser, H., Turnbaugh, P. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. *Cell.* **152** (1-2), 39-50 (2013).
- 430 5. Carmody, R. N., Turnbaugh, P. J. Host-microbial interactions in the metabolism of
- therapeutic and diet-derived xenobiotics. *Journal of Clinical Investigation*. **124** (10), 4173-4181 (2014).
- 433 6. Lu, K., Mahbub, R., Fox, J. G. Xenobiotics: interaction with the intestinal microflora. *ILAR* 434 *Journal.* **56** (2), 218-227 (2015).
- 435 7. Taguer, M., Maurice, C. The complex interplay of diet, xenobiotics, and microbial
- 436 metabolism in the gut: implications for clinical outcomes. Clinical Pharmacology &
- 437 *Therapeutics.* **99** (6), 588-599 (2016).
- 438 8. Anubhav, D., Meenakshi, S., Shankar, G. T., Mande, S. S., Wilson, B. A. Xenobiotic


- 439 metabolism and gut microbiomes. *PLoS One.* **11** (10), e0163099 (2016).
- 9. Koppel, N., Rekdal, V. M., Balskus, E. P. Chemical transformation of xenobiotics by the
- 441 human gut microbiota. *Science.* **356** (6344), 1246-1257 (2017).
- 10. Hidalgo-Cantabrana C. et al. Genomic overview and biological functions of
- exopolysaccharide biosynthesis in *Bifidobacterium* spp. *Applied and Environmental*
- 444 *Microbiology*. **80** (1), 9-18 (2014).
- 11. Liu, G. et al. Effects of bifidobacteria-produced exopolysaccharides on human gut
- 446 microbiota in vitro. Applied Microbiology and Biotechnology. 1-10 (2018).
- 12. Tang, R. et al. Gut microbial profile is altered in primary biliary cholangitis and partially
- restored after UDCA therapy. *Gut.* **67** (3), 534-541 (2018).
- 13. Kuczynski, J. et al. Using QIIME to analyze 16S rRNA gene sequences from microbial
- 450 communities. *Current Protocols in Microbiology.* **27** (1), 1-28 (2012).
- 451 14. Hiltemann, S. D., Boers, S. A., van der Spek, P. J., Jansen, R., Hays, J. P., Stubbs, A. P. Galaxy
- 452 mothur Toolset (GmT): a user-friendly application for 16S rRNA gene sequencing analysis using
- 453 mothur. *GigaScience*. giy166 (2018).
- 454 15. Wang, Q., Garrity, G. M., Tiedje, J. M., Cole, J. R. Naïve Bayesian classifier for rapid
- assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental
- 456 *Microbiology*. **73** (16), 5261-5267 (2007).
- 457 16. Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-
- 458 supported software for describing and comparing microbial communities. Applied and
- 459 *Environmental Microbiology*. **75** (23), 7537-7541 (2009).
- 460 17. Bai, S. et al. Comparative study on the in vitro effects of pseudomonas aeruginosa and
- seaweed alginates on human gut microbiota. *Plos One.* **12** (2), e0171576 (2017).
- 18. Zhang Z., Xie J., Zhang F., Linhardt R. J. Thin-layer chromatography for the analysis of
- 463 glycosaminoglycan oligosaccharides. *Analytical Biochemistry.* **371**, 118-120 (2007).
- 19. Simon, J. C., Marchesi, J. R., Mougel, C., Selosse, M. A. Host-microbiota interactions: from
- 465 holobiont theory to analysis. *Microbiome.* **7** (5), (2019).
- 20. Postler, T. S., Ghosh, S. Understanding the Holobiont: how microbial metabolites affect
- human health and shape the immune system. *Cell Metabolism*. **26** (1), 110-130 (2017).
- 468 21. Kramer, P., Bressan, P. Humans as superorganisms: how microbes, viruses, imprinted genes,
- and other selfish entities shape our behavior. Perspectives on Psychological Science. 10 (4), 464-
- 470 481 (2015).
- 471 22. Malfertheiner, P., Nardone, G. Gut microbiota: the forgotten organ. Digestive Diseases. 29
- 472 (6), (2011).
- 473 23. Andoh, A. The gut microbiota is a new organ in our body. The Japanese journal of Gastro-
- 474 Enterology. **112** (11), 1939-1946 (2015).
- 475 24. Mika, A., Van, W. T., González, A., Herrera, J. J., Knight, R., Fleshner, M. Exercise is more
- 476 effective at altering gut microbial composition and producing stable changes in lean mass in
- 477 juvenile versus adult male f344 rats. *PLoS One.* **10** (5), e0125889 (2015).
- 478 25. Hugenholtz, F., de Vos, W. M. Mouse models for human intestinal microbiota research: a
- critical evaluation. *Cellular and Molecular Life Sciences*. **75** (1), 149-160 (2018).
- 480 26. Takagi, R. et al. A single-batch fermentation system to simulate human colonic microbiota
- for high-throughput evaluation of prebiotics. *PLoS One*. **11** (8), e0160533 (2016).
- 482 27. Ning, T., Gong, X., Xie, L., Ma, B. Gut microbiota analysis in rats with methamphetamine-


induced conditioned place preference. Frontiers in Microbiology. 8 (1), 1620 (2017).

Name of Material/Equipment	Company	Catalog Number
0.22 μm membrane filters	Millipore	SLGP033RB
0.4-mm Sieve	Thermo Fischer	308080-99-1
5-bromo-4-chloro-3-indolyl β-D-galactopyranoside	(> Solarbio	X1010
Acetic	Sigma-Aldrich	71251
Agar	Solarbio	YZ-1012214
Anaerobic chamber	Electrotek	AW 400SG
Autoclave	SANYO	MLS-3750
Bacto soytone	Sigma-Aldrich	70178
	Shanghai Yiheng Scientific	
Baking oven	Instruments Co., Ltd	DHG-9240A
Beef Extract	Solarbio	G8270
Bifidobacterium longum Reuter	ATCC	ATCC® 51870™
Bile Salts	Solarbio	YZ-1071304
Butyric	Sigma-Aldrich	19215
CaCl ₂	Solarbio	C7250
Capillary column	SHIMADZU-GL	InertCap FFAP (0.25 mm × 30 n
Casein Peptone	Sigma-Aldrich	39396
Centrifuge	Thermo Scientific	Sorvall ST 8
CoSO ₄ .7H ₂ O	Solarbio	C7490
CuSO ₄ .5H ₂ O	Solarbio	203165
Cysteine-HCl	Solarbio	L1550
Ethanol	Sigma-Aldrich	E7023
FeSO ₄ .7H2O	Solarbio	YZ-111614
Formic Acid	Sigma-Aldrich	399388
Gas chromatography	Shimadzu Corporation	GC-2010 Plus
Glass beaker	Fisher Scientific	FB10050
Glucose	Solarbio	G8760
Haemin	Solarbio	H8130
HCI	Sigma-Aldrich	30721
Isobutyric	Sigma-Aldrich	46935-U
Isovaleric Acids	Sigma-Aldrich	129542

K ₂ HPO ₄	Solarbio	D9880
KCI	Solarbio	P9921
KH ₂ PO ₄	Solarbio	P7392
LiCl.3H ₂ O	Solarbio	C8380
Meat Extract	Sigma-Aldrich-Aldrich	70164
Metaphosphoric Acid	Sigma-Aldrich	B7350
MgCl ₂ .6H ₂ O	Solarbio	M8160
MgSO ₄ .7H ₂ O	Solarbio	M8300
MISEQ	Illumina	MiSeq 300PE system
MnSO ₄ .H ₂ 0	Sigma-Aldrich	M8179
Mupirocin	Solarbio	YZ-1448901
NaCl	Solarbio	YZ-100376
NaHCO ₃	Sigma-Aldrich	792519
NanoDrop ND-2000	NanoDrop Technologies	ND-2000
NaOH	Sigma-Aldrich	30620
n-butanol	ChemSpider	71-36-3
batano.		
NiCl ₂	Solarbio	746460
	•	
NiCl ₂	Solarbio	746460
NiCl ₂ Orcinol	Solarbio Sigma-Aldrich	746460 447420
NiCl ₂ Orcinol Propionic	Solarbio Sigma-Aldrich Sigma-Aldrich	746460 447420 94425
NiCl ₂ Orcinol Propionic	Solarbio Sigma-Aldrich Sigma-Aldrich QIAGEN Sangon Biotech (Shanghai) Co., Ltd.	746460 447420 94425
NiCl ₂ Orcinol Propionic QIAamp DNA Stool Mini Kit	Solarbio Sigma-Aldrich Sigma-Aldrich QIAGEN Sangon Biotech (Shanghai) Co.,	746460 447420 94425 51504
NiCl ₂ Orcinol Propionic QIAamp DNA Stool Mini Kit Ready-to-use PBS powder	Solarbio Sigma-Aldrich Sigma-Aldrich QIAGEN Sangon Biotech (Shanghai) Co., Ltd.	746460 447420 94425 51504 A610100-0001
NiCl ₂ Orcinol Propionic QIAamp DNA Stool Mini Kit Ready-to-use PBS powder Resazurin	Solarbio Sigma-Aldrich Sigma-Aldrich QIAGEN Sangon Biotech (Shanghai) Co., Ltd. Solarbio	746460 447420 94425 51504 A610100-0001 R8150
NiCl ₂ Orcinol Propionic QIAamp DNA Stool Mini Kit Ready-to-use PBS powder Resazurin Speed Vacuum Concentrator Starch Sulfuric Acid	Solarbio Sigma-Aldrich Sigma-Aldrich QIAGEN Sangon Biotech (Shanghai) Co., Ltd. Solarbio LABCONCO	746460 447420 94425 51504 A610100-0001 R8150 CentriVap
NiCl ₂ Orcinol Propionic QIAamp DNA Stool Mini Kit Ready-to-use PBS powder Resazurin Speed Vacuum Concentrator Starch Sulfuric Acid T100 PCR	Solarbio Sigma-Aldrich Sigma-Aldrich QIAGEN Sangon Biotech (Shanghai) Co., Ltd. Solarbio LABCONCO Solarbio	746460 447420 94425 51504 A610100-0001 R8150 CentriVap YZ-140602 150692 1861096
NiCl ₂ Orcinol Propionic QIAamp DNA Stool Mini Kit Ready-to-use PBS powder Resazurin Speed Vacuum Concentrator Starch Sulfuric Acid	Solarbio Sigma-Aldrich Sigma-Aldrich QIAGEN Sangon Biotech (Shanghai) Co., Ltd. Solarbio LABCONCO Solarbio Sigma-Aldrich BIO-RAD MerckMillipore	746460 447420 94425 51504 A610100-0001 R8150 CentriVap YZ-140602 150692 1861096 116835
NiCl ₂ Orcinol Propionic QIAamp DNA Stool Mini Kit Ready-to-use PBS powder Resazurin Speed Vacuum Concentrator Starch Sulfuric Acid T100 PCR TLC aluminium sheets Trypticase Peptone	Solarbio Sigma-Aldrich Sigma-Aldrich QIAGEN Sangon Biotech (Shanghai) Co., Ltd. Solarbio LABCONCO Solarbio Sigma-Aldrich BIO-RAD MerckMillipore Sigma-Aldrich	746460 447420 94425 51504 A610100-0001 R8150 CentriVap YZ-140602 150692 1861096 116835 Z699209
NiCl ₂ Orcinol Propionic QIAamp DNA Stool Mini Kit Ready-to-use PBS powder Resazurin Speed Vacuum Concentrator Starch Sulfuric Acid T100 PCR TLC aluminium sheets	Solarbio Sigma-Aldrich Sigma-Aldrich QIAGEN Sangon Biotech (Shanghai) Co., Ltd. Solarbio LABCONCO Solarbio Sigma-Aldrich BIO-RAD MerckMillipore	746460 447420 94425 51504 A610100-0001 R8150 CentriVap YZ-140602 150692 1861096 116835

 $\begin{array}{ccc} \text{Valeric} & \text{Sigma-Aldrich} & 75054 \\ \text{Vitamin K}_1 & \text{Sigma-Aldrich} & \text{V3501} \\ \end{array}$

Vortex oscillator Scientific Industries Vortex.Genie2

Yeast ExtractSigma-AldrichY1625ZnSO4.7H2OSigma-AldrichZ0251

Comments/Description

Use to filter samples

Use to prepare human fecal samples

Use to prepare color plate

Standard sample for SCFA

The component of medium

Bacteria culture and fermentation

Use to autoclave

The component of medium

Use to heat and bake

The component of medium

Bacteria

The component of medium

Standard sample for SCFA

Salt solution of medium

Used to SCFA detection

The component of medium

Use for centrifugation

The component of medium

The component of medium

The component of medium

Use to prepare vitamin ${\rm K}_1$

The component of medium

Used to TLC

Used to SCFA detection

Used for slurry preparation

The component of medium

The component of medium

Basic solution used to adjust the pH of the buffers

Standard sample for SCFA

Standard sample for SCFA

Salt solution of medium

The component of medium

Salt solution of medium

Use to prepare color plate

The component of medium

Standard sample for SCFA

The component of medium

Salt solution of medium

DNA sequencing

Salt solution of medium

Antibiotic

Salt solution of medium

Salt solution of medium

Determine DNA concentrations

Basic solution used to adjust the pH of the buffers

Used to TLC

The component of medium

Used to prepare orcinol reagents

Standard sample for SCFA

Extract bacterial genomic DNA

Used to prepare the lipid suspension

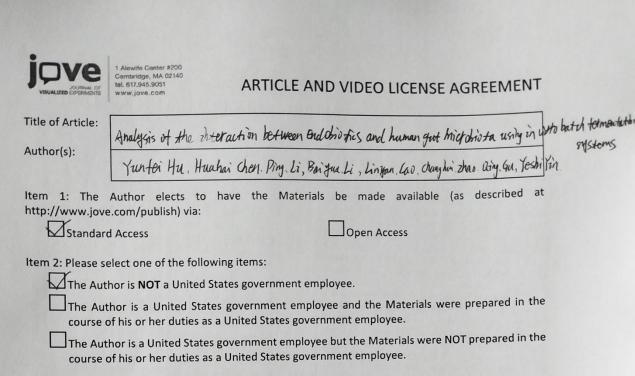
Anaerobic Equipment

Use to prepare EPSs

Use to the carbon source

Used to prepare orcinol reagents

PCR amplification


Used to TLC

The component of medium

The component of medium

Salt solution of medium

Standard sample for SCFA
The component of medium
Use to vortexing
The component of medium
The component of medium

ARTICLE AND VIDEO LICENSE AGREEMENT

Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at:

http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.

- 2. **Background.** The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and(c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. Protection of the Work. The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. Likeness, Privacy, Personality. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 10 Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

ARTICLE AND VIDEO LICENSE AGREEMENT

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to

the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

Fees. To cover the cost incurred for publication, 13. JoVE must receive payment before production and publication of the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.

Transfer, Governing Law. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDI	NG AUTHOR
Name:	Yeshi Yin
Department:	key laboratory of comprehensive Utilization of Advansage Plants Resources in Haan South
Institution:	College of chemisty and Brengingering, Human University of Science and Engineering You shoug
Title:	Anglysis of the interaction between endobiosis and human gut microbiota wary it willo batch formula in systems
Signature:	Jesh Yih Date: 2019.3.10

Please submit a signed and dated copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

Editorial comments:

- 1. Title: It's unclear what 'ingredient xenobiotics' means; please clarify.
- "Xenobiotics" has been changed to "endobiotics" in the revised manuscript based on the reviewer's comments.
- 2. Summary: There still is no explicit 10-50 word 'Summary' section in the manuscript outlining the protocol.

The 'summary' section has been corrected in the revised manuscript.

3. Our format requires the imperative tense for the protocol (which it was before; I'm not sure why it was changed); please rewrite.

The revised manuscript has been updated to use the imperative tense in the protocol.

4. 1.1, 2.1, 3.1: You mention adjusting pH after preparation of these media; is this done after autoclaving?

Media pH was adjusted before autoclaving, and this discrepancy has been corrected in the revised manuscript.

5. 6: This is unclear-are TLC plates developed twice (once in formic acid/n-butanol/water, once in orcinol)?

The TLC plates were developed twice, first for developing, and a second time for staining.

6. 7.1-7.4: The filmed steps are somewhat lacking in detail. I'm not sure they necessarily require them (they are fairly standard), but on the other hand I'm not sure if we can film them as is.

The steps for DNA extraction and PCR are standard for the commercial kit used in the protocol and are not necessary to film.

7. Figure 3: Please combine panel A and B into a single panel.

Figure 3 has been modified to combine panels A and B.

8. Why are there 2 ALAs attached? There should only be one.

This discrepancy has been corrected in the submission.

SPRINGER NATURE LICENSE TERMS AND CONDITIONS

Feb 18, 2019

This Agreement between Hunan University of Science and Engineering --Yesh Yin ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number 4531910105095 License date Feb 18, 2019 Licensed Content Publisher Springer Nature

Licensed Content Publication Applied Microbiology and Biotechnology

Licensed Content Title Effects of bifidobacteria-produced exopolysaccharides on human gut

microbiota in vitro

Licensed Content Author Guiyang Liu, Huahai Chen, Junkui Chen et al

Jan 1, 2018 Licensed Content Date

Type of Use Journal/Magazine

Requestor type publisher

Publisher Not listed below

Format electronic

Portion figures/tables/illustrations

Number of figures/tables

/illustrations

Will you be translating? no Circulation/distribution < 501 Author of this Springer yes

Nature content

Title of new article Analyze the interactions between ingredient xenobiotics to human

gut microbiota using in vitro batch fermentation

Lead author Yeshi Yin

Title of targeted journal Journal of visualized experiments

Publisher Not listed below

Publisher imprint Boston, Mass.: MYJoVE Corporation

Expected publication date Apr 2019

Portions Figure 3, Figure 4, Figure 5, Figure S1 and Figure S3.

Hunan University of Science and Engineering Requestor Location

No. 130 Yang Zitang Road

Yongzhou, 425199

China

Attn: Hunan University of Science and Engineering

Invoice Billing Type

第1页 共4页 2019/2/18 21:20 Billing Address Hunan University of Science and Engineering

No. 130 Yang Zitang Road

Yongzhou, China 425199

Attn: Hunan University of Science and Engineering

Total 0.00 USD

Terms and Conditions

Springer Nature Terms and Conditions for RightsLink Permissions Springer Nature Customer Service Centre GmbH (the Licensor) hereby grants you a non-exclusive, world-wide licence to reproduce the material and for the purpose and requirements specified in the attached copy of your order form, and for no other use, subject to the conditions below:

1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse of this material. However, you should ensure that the material you are requesting is original to the Licensor and does not carry the copyright of another entity (as credited in the published version).

If the credit line on any part of the material you have requested indicates that it was reprinted or adapted with permission from another source, then you should also seek permission from that source to reuse the material.

- 2. Where **print only** permission has been granted for a fee, separate permission must be obtained for any additional electronic re-use.
- 3. Permission granted **free of charge** for material in print is also usually granted for any electronic version of that work, provided that the material is incidental to your work as a whole and that the electronic version is essentially equivalent to, or substitutes for, the print version.
- 4. A licence for 'post on a website' is valid for 12 months from the licence date. This licence does not cover use of full text articles on websites.
- 5. Where **'reuse in a dissertation/thesis'** has been selected the following terms apply: Print rights of the final author's accepted manuscript (for clarity, NOT the published version) for up to 100 copies, electronic rights for use only on a personal website or institutional repository as defined by the Sherpa guideline (www.sherpa.ac.uk/romeo/).
- 6. Permission granted for books and journals is granted for the lifetime of the first edition and does not apply to second and subsequent editions (except where the first edition permission was granted free of charge or for signatories to the STM Permissions Guidelines http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/), and does not apply for editions in other languages unless additional translation rights have been granted separately in the licence.
- 7. Rights for additional components such as custom editions and derivatives require additional permission and may be subject to an additional fee. Please apply to Journalpermissions@springernature.com/bookpermissions@springernature.com for these rights.
- 8. The Licensor's permission must be acknowledged next to the licensed material in print. In electronic form, this acknowledgement must be visible at the same time as the figures/tables/illustrations or abstract, and must be hyperlinked to the journal/book's homepage. Our required acknowledgement format is in the Appendix below.
- 9. Use of the material for incidental promotional use, minor editing privileges (this does not include cropping, adapting, omitting material or any other changes that affect the meaning, intention or moral rights of the author) and copies for the disabled are permitted under this licence.

10. Minor adaptations of single figures (changes of format, colour and style) do not require the Licensor's approval. However, the adaptation should be credited as shown in Appendix below.

<u>Appendix — Acknowledgements:</u>

For Journal Content:

Reprinted by permission from [the Licensor]: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication)

For Advance Online Publication papers:

Reprinted by permission from [the Licensor]: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication), advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].)

For Adaptations/Translations:

Adapted/Translated by permission from [the Licensor]: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication)

Note: For any republication from the British Journal of Cancer, the following credit line style applies:

Reprinted/adapted/translated by permission from [the Licensor]: on behalf of Cancer Research UK: : [Journal Publisher (e.g. Nature/Springer /Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication)

For Advance Online Publication papers:

Reprinted by permission from The [the Licensor]: on behalf of Cancer Research UK: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication), advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM])

For Book content:

Reprinted/adapted by permission from [the Licensor]: [Book Publisher (e.g. Palgrave Macmillan, Springer etc) [Book Title] by [Book author(s)] [COPYRIGHT] (year of publication)

Other Conditions:

Version 1.1

第3页 共4页 2019/2/18 21:20

Questions? $\underline{\text{customercare@copyright.com}}$ or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

第4页 共4页 2019/2/18 21:20