# **Journal of Visualized Experiments**

# Development and Validation of Chromium Getters for Solid Oxide Fuel Cell Power Systems --Manuscript Draft--

| Article Type:                                                                                                                            | Invited Methods Article - JoVE Produced Video                                                                                                            |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Manuscript Number:                                                                                                                       | JoVE59623R2                                                                                                                                              |  |  |  |
| Full Title:                                                                                                                              | Development and Validation of Chromium Getters for Solid Oxide Fuel Cell Power Systems                                                                   |  |  |  |
| Keywords:                                                                                                                                | Chromium evaporation, high temperature electrochemical systems, solid oxide fuel cell stability, cathode degradation, chromium capture, electrochemistry |  |  |  |
| Corresponding Author:                                                                                                                    | Boxun Hu<br>University of Connecticut<br>Storrs, CT UNITED STATES                                                                                        |  |  |  |
| Corresponding Author's Institution:                                                                                                      | University of Connecticut                                                                                                                                |  |  |  |
| Corresponding Author E-Mail:                                                                                                             | boxun.hu@uconn.edu                                                                                                                                       |  |  |  |
| Order of Authors:                                                                                                                        | Ashish Aphale                                                                                                                                            |  |  |  |
|                                                                                                                                          | Junsung Hong                                                                                                                                             |  |  |  |
|                                                                                                                                          | Boxun Hu                                                                                                                                                 |  |  |  |
|                                                                                                                                          | Prabhakar Singh                                                                                                                                          |  |  |  |
| Additional Information:                                                                                                                  |                                                                                                                                                          |  |  |  |
| Question                                                                                                                                 | Response                                                                                                                                                 |  |  |  |
| Please indicate whether this article will be Standard Access or Open Access.                                                             | Standard Access (US\$2,400)                                                                                                                              |  |  |  |
| Please indicate the <b>city, state/province, and country</b> where this article will be <b>filmed</b> . Please do not use abbreviations. | Storrs Connecticut,USA                                                                                                                                   |  |  |  |



Dr. Bing Wu Review Editor JoVE 1 Alewife Center Suite 200 Cambridge MA 02140 March 12, 2019

<u>Subject</u>: Submission of revised manuscript titled "Development and Validation of Chromium Getters for Solid Oxide Fuel Cell Power Systems" for publication in JoVE

Dear Dr. Wu,

Following your comments, we have revised our manuscript. It is our pleasure to re-submit the revised manuscript titled, "Development and Validation of Chromium Getters for Solid Oxide Fuel Cell Power Systems" for publication in the JoVE.

Two versions with and without marked changes are provided. The revised contents are marked in red in one attached manuscript.

The manuscript contains original research work and it has not been published earlier. Also, the manuscript is not under consideration for publication elsewhere. The manuscript is approved by all authors and the host authorities and there are no conflicts of interest. If I may be of any further assistance, please do not hesitate to call me at 860-381-0131 or email me at <a href="mailto:boxun.hu@uconn.edu">boxun.hu@uconn.edu</a>.

Thank you!

Sincerely,

Boxun

Dr. Boxun Hu

Center for Clean Energy Engineering

University of Connecticut

Boxun Hi

(P): 860-381-0131 Fax: 860-486-8379

Email: boxun.hu@uconn.edu

PHONE: (860) 486-8379 FAX: (860) 486-8378

#### TITLE:

Development and Validation of Chromium Getters for Solid Oxide Fuel Cell Power Systems

2 3 4

1

#### **AUTHORS AND AFFILIATIONS:**

- 5 Ashish Aphale<sup>1</sup>, Junsung Hong<sup>1</sup>, Boxun Hu<sup>1, 2</sup>, Prabhakar Singh<sup>1</sup>
- 6 Department of Materials Science and Engineering, University of Connecticut, Storrs, CT, USA
- 7 <sup>2</sup>Center for Clean Energy Engineering, University of Connecticut, Storrs, CT, USA

8 9

# **Email Addresses:**

- 10 Ashish Aphale: ashish.aphale@uconn.edu
- 11 Junsung Hong: junsung.hong@uconn.edu
- 12 Boxun Hu: boxun.hu@uconn.edu
- 13 Prabhakar Singh: singh@engr.uconn.edu

14

15

# **Corresponding Author:**

16 Boxun Hu

17 18

#### **KEYWORDS:**

chromium evaporation, high temperature electrochemical systems, solid oxide fuel cell stability, cathode degradation, chromium capture, electrochemistry.

202122

23

24

25

19

# **SUMMARY:**

Cathode poisoning from airborne contaminants in trace levels remains a major concern for long-term stability of high-temperature electrochemical systems. We provide a novel method to mitigate the cathode degradations using getters, which capture airborne contaminants at high temperature before entering electrochemically active stack area.

262728

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

#### **ABSTRACT:**

Degradation of cathode in solid oxide fuel cells (SOFC) remains a major concern for the longterm performance stability and operational reliability. The presence of gas phase chromium species in air has demonstrated significant cathode performance degradation during long-term exposure due to unwanted compound formation at the cathode and electrolyte interface which retards the oxygen reduction reaction (ORR). We have demonstrated a novel method to mitigate the cathode degradation using chromium getters which capture the gas phase chromium species before it is ingested in the cathode chamber. Low-cost getter materials, synthesized from alkaline earth and transition metal oxides, are coated on the cordierite honeycomb substrate for application in the SOFC power systems. As-fabricated getters have been screened by chromium transpiration tests conducted for 500 h in humidified air atmosphere in presence of chromium vapor. Selected getters have been further validated utilizing electrochemical tests. Typically, electrochemical performance of SOFCs (lanthanum strontium manganite (LSM) | yttria stabilized zirconia (YSZ) | Pt) was measured at 850 °C in the presence and absence of Cr getter. For the 100 h cell tests containing getters, stable electrochemical performance was maintained, whereas the cell performance in the absence of Cr getters rapidly decreased in 10 h. Analyses of Nyquist plots indicated significant increase in

the polarization resistance within the first 10 h of the cell operation. Characterization results from posttest SOFCs and getters have demonstrated the high efficiency of chromium capture for the mitigation of cell degradation.

# INTRODUCTION:

Solid oxide fuel cell (SOFC) power system, a high temperature direct electrochemical energy conversion device, offers an environmentally friendly pathway to generate electricity from a wide variety of fossil and renewable fuels. SOFC technology finds its applications in centralized as well as distributed power generation areas<sup>1</sup>. This technology relies on electrochemical conversion of chemical energy stored in the fuels into electricity. Numerous advantages are offered by SOFCs in terms of high energy efficiency, high quality heat, ease of modularity, and no or negligible carbon footprints<sup>2</sup>. Several individual SOFC cells are connected in series or parallel fashion (namely SOFC stacks) to obtain desired output voltage. SOFC stacks consist of components such as dense electrolyte, porous electrodes, interconnection (IC) and seals<sup>3,4</sup>. Anode and cathode of adjacent cells are connected using IC, which not only serves as a separator to prevent any mixing of oxidant with fuel but also provides electrical connection between the adjacent anode and cathode<sup>5</sup>.

Improvements over decades of research and development in materials engineering have led to reduction in operating temperature for SOFCs, enabling replacements of ceramics materials with inexpensive stainless-steel alloys for the fabrication of electrochemically active cell and stack components and balance-of-plant (BOP) sub-systems. Commercially available ferritic and austenitic stainless steels are utilized for the fabrication of system components due to their low cost, matched coefficient of thermal expansion (CTE) and resistance to oxidation and corrosion at high operating temperatures<sup>6</sup>. Formation of  $\text{Cr}_2\text{O}_3$  type passivating oxide scale on the alloy surface acts as a barrier layer against inward diffusion of oxygen from air or outward diffusion of cations from bulk alloy<sup>7</sup>.

In the presence of humidified air,  $Cr_2O_3$  undergoes significant chemical transformation leading to hydrated chromium vapor species formation at SOFC operating temperatures. The gaseous chromium vapor is subsequently carried through the air stream into the cathode leading to surface and interface reactions with the cathode materials. Such cathode experiences both ohmic and non-ohmic increases in the polarization and electrical performance degradation. Details of the cathode degradation mechanisms have been illustrated elsewhere<sup>8–10</sup>.

The state-of-the-art methods to reduce or eliminate the above cathode degradation processes commonly consist of modifications of the alloy chemistry, application of surface coating and the use of chromium tolerant cathodes<sup>11,12</sup>. Although these techniques have demonstrated reduction of the cathode degradation due to Cr vapor interactions (namely Cr poisoning) for short-term, long-term efficacy for performance stability remains a concern, mainly due to cracking and spallation within the coating and interdiffusion of cations.

We have demonstrated a novel method to mitigate the problem of chromium poisoning by capturing the incoming chromium vapor before it reacts with the cathode materials<sup>13</sup>. The

getters have been synthesized from low-cost alkaline earth and transition metal oxides using conventional ceramic processing techniques. The cost advantage of this approach is use of non-noble and non-strategic materials as well as conventional processing methods to fabricate getters for the mitigation of cathode degradation arising from airborne contaminants. The placement of the getter can be tailored to capture chromium vapor arising from BOP components or it can also be tailored to be placed within the electrochemically active stack components<sup>14,15</sup>. Here, we present methods to validate the chromium getters using transpiration and electrochemical tests. Experimental setup and characterization results will also be demonstrated to show the getter effectiveness and the mechanisms of Cr capture on the getter under typical SOFC operating conditions.

# PROTOCOL:

# 1. Synthesis of chromium getter

1.1. Synthesize the precursor powder using alkaline earth and transition metal oxide salts via a conventional coprecipitation synthesis route as depicted in **Figure 1**<sup>16</sup>.

1.1.1. Prepare stock solutions using 50.33 g of strontium nitrate  $Sr(NO_3)_2$  and 43.97 g of nickel nitrate hexahydrate  $Ni(NO_3)_2.6H_2O$  in order to prepare 2.4 M solutions in 100 mL of de-ionized water.

1.1.2. Use 9 mL of 2.4 M Sr(NO<sub>3</sub>)<sub>2</sub> and add 7 mL of 2.4 M solution of Ni(NO<sub>3</sub>)<sub>2</sub>.6H<sub>2</sub>O, followed by the addition of 30 mL of 5 M NH<sub>4</sub>OH to increase the pH to 8.5.

1.1.3. Stir the mixed solution and heat it up to 80 °C for precipitation. Then, dry the solution in a dry oven and ensure that all the water evaporates until a blue waxy compound is observed.

Rinsed the powder in deionized (DI) water to ensure that residual ammonium nitrate is removed by filtration. Finally, dry the powder at 120 °C for 2 h.

NOTE: This will result into precursor powder for strontium nickel oxide (SNO) getter.

121 1.2. Dissolve the powder in water to prepare a slurry.

1.3. Immerse the cordierite substrate in the slurry for dip-coating, followed by drying in air at ~120 °C for at least 2 h with a ramp rate of 5 °C.

1.4. Calcine the substrate in air at the temperature of 650 °C for 12 h with a ramp rate of 5 °C to produce SNO getter.

2. Screening of chromium getter using Cr transpiration test

2.1. Set up the experiment following the illustration in **Figure 2a** for the validation of Cr getters.

133

2.1.1. Place 2 g of sintered chromium oxide pellet (1200 °C, 2 h) as a chromium source in a quartz tube.

136

NOTE: The quartz tube is specifically designed with a diffuser inside (shown in **Figure 2**) to prevent any back diffusion of chromium vapor during operation. The dimensions of the fabricated getter cartridge match the inside diameter of the quartz tube. Getter cartridge is placed between the chromium source and the outlet elbow (shown in **Figure 2**).

141 142

143

144

2.1.2. Flow the compressed air at a flow rate of 300 sccm through a mass flow controller (MFC). Bubble the air at room temperature water to ensure that the humidity is 3% H<sub>2</sub>O. This humidified air passes through the chromia pellets, evaporates chromium vapor and flows through the getter.

145146147

NOTE: The chiller and condenser are placed at the outlet of the transpiration setup to enable condensation of chromium-containing vapor which deposits at the outlet elbow (at the low temperature zone).

149150

148

2.1.3. Place additional wash bottles before venting the gas at the outlet to ensure that the evaporated chromium is captured.

153

2.1.4. With the setup, purge the tube with air for at least 1 h to ensure that there is no leaks or contaminants.

156

2.1.5. Start the furnace to heat up to the desired temperature (for example, 850 °C in this case) and hold it there for 500 h.

159

2.1.6. Monitor the color change of the outlet elbow and record for any discoloration due to deposited chromium compounds.

162

2.1.7. Lower the furnace temperature back to room temperature (RT) after the completion of the test. Turn off the air flow until the furnace temperature reaches RT.

165

2.1.8. Remove the getter sample for post-test analyses and characterization.

167

2.2. Quantitative analysis of chromium species by inductively coupled plasma mass spectroscopy (ICP-MS)

170

171 NOTE: ICP-MS sample preparation of post Cr transpiration test<sup>17</sup>.

172

2.2.1. Wash the deposited chromium from glass elbow, condenser, wash bottles and quartz tubes using 20% nitric acid (HNO₃) to extract the chromium after conducting transpiration test for 500 h.

176

2.2.2. Extract the deposited chromium by dissolving it in 20% HNO₃ for 12 h.

178

2.2.3. Further remove any undissolved chromium species from the glass wall by dissolution in alkaline potassium permanganate solution upon heating at 80 °C.

181

NOTE: Convert any partial unreacted Cr<sup>3+</sup> species to Cr<sup>6+</sup> species in this step.

183

184 2.2.4. Analyze the DI water and nitric acid blank sample by ICP-MS.

185

2.2.5. Divide each sample into three parts for ICP-MS analysis and report the average value.

187

188 3. Electrochemical validation of chromium getter using SOFC cells with and without 189 getter

190

191 3.1. Cell fabrication and in-operando electrochemical testing of Cr getters<sup>18,19</sup>

192

193 3.1.1. Fabricate SOFCs by screen printing LSM paste on the surface of YSZ electrolyte (**Figure** 194 **3a**).

195

196 3.1.2. Sinter the applied LSM ink at 1200 °C for 2 h, heated with a ramp rate of 3 °C/min.

197

3.1.3. Use a Pt electrode as the anode. Attach a Pt on the YSZ disc (anode side) as a reference electrode, and attach Pt gauze and Pt wires to YSZ electrolyte disc using Pt ink and then cure the SOFC at 850 °C for 2 h at a ramp rate of 3 °C/min.

201 202

3.1.4. Conduct three distinct experiments using three identical SOFCs (namely Cell a, b, and c) to validate the efficacy of getters and demonstrate chromium poisoning without a getter.

203204205

NOTE: Make sure to use the identical test conditions to simulate nominal SOFC operating conditions of 850 °C and maintain the anode air (dry) for all the tests at 150 sccm.

206207

3.1.5. Assembly the Cell-a in the tube reactor in the absence of chromium source using paste for sealing. Heat the furnace with a ramp rate of 5 °C/min up to a designed temperature (for example: 850 °C in this study). Then, flow the 3% H<sub>2</sub>O/air (for example 300-500 sccm) to the LSM cathode.

212

213 3.1.6. Measure the electrochemical performance of the SOFC using a multi-channel potentiostat<sup>9</sup>.

215

216 3.1.7. Record the cell current every minute with a bias of 0.5 V applied between the cathode and the reference electrode.

218

219 3.1.8. Conduct electrochemical impedance spectroscopy (EIS) analyses between cathode and reference electrode using three electrode mode in the frequency range of 0.5 Hz to 200 KHz

with 10 mV sinus amplitude at an interval of 1 h. After a 100 h test, cool down the furnace to room temperature and take the Cell-a for characterization.

3.1.9. Place 2 g of chromium oxide (Cr<sub>2</sub>O<sub>3</sub>) pellets (source of chromium vapor) in a porous container at the constant heating zone of the alumina tube. Assembly the Cell-b in the tube reactor using paste for sealing. Heat the furnace with a ramp rate of 5 °C/min up to 850 °C. Then, flow the humidified air (for example 300-500 sccm) through the chromia pellets and ensure a constant generation of the chromium vapor species<sup>9</sup>.

3.1.10. Repeat Steps 3.1.6 – 3.1.8. After a 100 h test, cool down the furnace to room temperature and take the Cell-b for characterization.

3.1.11. Place 2 g of chromium oxide (Cr<sub>2</sub>O<sub>3</sub>) pellets (source of chromium vapor) in a porous container at the constant heating zone of the alumina tube. Place a chromium getter above the chromium source. Assembly the Cell-c on the top of the tube reactor using paste for sealing. Heat the furnace with a ramp rate of 5 °C/min up to a designed temperature (for example: 850 °C in this study). Then, flow the 3% H<sub>2</sub>O/air (for example 300-500 sccm) to the LSM cathode.

3.1.12. Repeat Steps 3.1.6 – 3.1.8. After a 100 h test, cool down the furnace to room temperature and take the Cell-c for characterization.

3.2. Posttest getter morphological and chemical characterization

NOTE: Posttest characterization is conducted using scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy and scanning transmission electron microscopy (STEM) coupled with EDS analyses. Focused electron and ion-beam technologies (FIB) have been utilized for the preparation of nanoscale samples.

3.2.1. Analyze the microstructures of the cell component by fracturing after the electrochemical test. Use SEM instrument for morphological analysis. Ensure that both the morphologies and chemical compositions of LSM cathode surface and LSM/YSZ interface are analyzed<sup>13,14</sup>

3.2.1.1. Prior to conducting SEM analysis, prepare the samples by sputter coating of gold (Au) films to make sure the sample surface is conductive (avoiding charge on the sample surface). The coating chamber is under a vacuum (< 50 mm Torr). The applied current is at 40 mA and the coating time is 1 min.

3.2.1.2. Conduct quantitative elemental distribution using energy dispersive X-ray spectroscopy (EDS) technique. Set the distance between the specimen and the lower pole piece in SEM system at 10 mm. Apply a voltage of 20 KV for the SEM and EDS analysis.

3.2.2. Conduct the chemical, structural and morphological analyses of the chromium getter using the SEM-EDS technique to obtain the chromium capture profile across the getter channels.

266267

3.2.2.1. Prepare the posttest getter sample by dissecting the getter sample into half using a knife.

268269

3.2.2.2. Repeat Step 3.2.1.1 to coat conductive gold films on the getter surface.

270271

3.2.2.3. Repeat Step 3.2.1.2. Ensure that detailed EDS analyses are conducted from the inlet of the getter towards the outlet along the central channel as shown in **Figure 2b**. Use weight (wt.) % of total chromium measured against the channel length to plot the chromium profile.

275

3.2.3. Conduct in-depth chemical, structural and morphological analyses of the chromium getter using the FIB-STEM-EDS technique<sup>17,20</sup>.

278

3.2.3.1. Repeat Step 3.2.1.1 to coat conductive gold films on the getter surface.

280

3.2.3.2. Load the sample in the FIB-STEM instrument, select the region of interest (ROI) for sample extraction, deposit four layers of Pt to mark and protect the sample (a typical area of 30  $\mu$ m length  $\times$  15  $\mu$ m width).

284

3.2.3.3. Mill the channels around the above ROI using the FIB beam until a "bridge-like" strip is left. Then, make wedges at both sides of the strip to make sure the depth is enough for the analysis (a typical depth is  $10-20 \mu m$ ).

288289

290

291

292

3.2.3.4. Mount the micromanipulator needle and cut the FIB sample by milling using an ion beam with 15 nA current. Then lift the FIB sample from the bulk getter sample to the FIB-STEM grid holder, which is perpendicular to the electron beam. After the specimen touch the grid at right position, deposit Pt using an ion beam current of 0.5 nA to connect the specimen to the grid.

293294295

3.2.3.5. Make the specimen thinner using a FIB current of about 20 pA at 2 kV to obtain a 50-60 nm sample thickness. Perform a final clean-up of the specimen using argon-milling at an extra low current (0.5 pA at 1 kV).

297298299

300

301

296

3.2.3.6. Conduct STEM-EDS mapping of the above getter specimen. Operate the scanning transmission electron microscope at 200 kV. A High Angle Annular Dark Field (HAADF) image of the selected area on the getter specimen was obtained and elemental maps of relevant elements (such as Cr and Sr) were taken.

302303304

# **REPRESENTATIVE RESULTS:**

A Cr transpiration experiment is a screening test for the selection of Cr getters. Cr transpiration setup was utilized to validate the performance of chromium getter under the SOFC operating

conditions. Experiments were conducted in the presence of a chromium getter operated at 850 °C in humidified (3%  $H_2O$ ) air for 500 h. Visual observations during Cr transpiration tests indicated significant discoloration of the outlet elbow during 500 h in the absence of getter. However, placing a getter next to the chromium source demonstrated no discoloration of the outlet elbow. This indicated that the getter can effectively capture all the incoming chromium vapor species under nominal SOFC operating conditions. To validate the chromium capture and understand the gettering mechanism, the posttest getter was dissected and observed under the SEM. Detailed EDS analyses were also conducted to measure the elemental distribution of chromium (wt.%) along the central channel of the getter (shown in **Figure 2b**). EDS elemental distribution of chromium shows that majority of Cr (wt.%) is captured within first 4000  $\mu$ m of distance from the getter inlet. SEM-EDS data further shows that the middle and the outlet of the getter contains no or negligible chromium during transpiration test.

Proven Cr getters have been utilized for electrochemical validation tests. The electrochemical performance comparisons of the three LSM $\|YSZ\|$ Pt SOFCs under different experimental test conditions are shown in **Figure 3b.** The LSM cathodes of the three SOFCs were exposed to humidified air (air-3% H<sub>2</sub>O) to control the Cr vapor exposure to the cathodes. The cathode from **cell a** was exposed to 3% H<sub>2</sub>O air with no getter and no Cr vapor for 100 h. The results show stable I-t curve with a presence of cathodic activation period (0-20 h). The **cell b**, exposed to 3% H<sub>2</sub>O air with Cr vapor and no getter, shows a rapid drop in the current within the first few hours of the test. This indicated chromium poisoning of the cell. For the **cell c** in presence of a chromium getter and 3% H<sub>2</sub>O/air at the cathode side with chromium vapor, the electrochemical performance of the **cell c** demonstrated a significant improvement, which was very close to that of the **cell a** (not shown in figures).

Effect of chromium vapor on cathode degradation, also known as chromium poisoning, has been studied as shown in Figure 4. A representative Nyquist plot is provided for cell b (Figure 4b), which was exposed to chromium vapor but without the getter. The electrochemical impedance of the cathode was measured independent of changes that may occur at the anode electrode using a three-electrode mode. When the cathode of the cell b was exposed in chromium vapor, the semi-circles of the Nyquist spectra of the cathode stretched with time, indicating an increase of polarization resistance with increase in exposure time. During the 100h tests, the polarization resistance of the cathode in cell b exhibited a rapid increase during first 20 h, followed by slower change during the next 40 h, and significantly no change after 60 h. The non-polarization resistance (Rnp) of cathode showed only negligible changes. Above experiments indicate that chromium vapor mainly resulted in a rapid change of Rp which led to the cathode degradation. The increase in the polarization resistance of the cathode occurs mainly due to retardation of oxygen reduction reaction (ORR) at the electrode/electrolyte interface. To demonstrate this, morphological characterization of the fractured SOFC was conducted and compared with the morphology at the cathode surface. Figure 4 (c1 and c2) shows the SEM micrographs of the LSM surfaces and LSM/YSZ interfaces from cell b, respectively. The SEM-EDS analysis shows ~2.5 wt.% chromium on the cathode surface while 11.2 wt.% of chromium was observed at the electrode/electrolyte interface layer (Table 1). Significant deposition of chromium vapor takes place at the cathode-electrolyte interface,

which inhibits the ORR and degrades the cathode performance with time.

After electrochemical tests, the chromium getter was prepared for microstructural analysis. The morphology of the deposited chromium on fiber supported getters was examined by SEM-EDS (**Figure 5a**). At localized areas near the air inlet, large particles rich in Cr (44.8 atom%) and Sr (54.3 atom%) were formed on the getter fibers. The getter fiber support from the mid-section and outlet remains free of chromium (not shown here).

To further investigate the reaction processes for the capture of chromium, a posttest getter fiber was milled using FIB technique (**Figure 5b**). **Figure 5c** shows the HAADF image of the cross-section of the posttest getter fiber by STEM. From the elemental mapping, a surface layer containing Sr and Cr has been observed as shown in **Figure 5d,e**, indicating a stable reaction product (SrCrO<sub>4</sub>) formation on the surface of the alumina fiber. Near the surface of the SrNiO<sub>x</sub> coated alumina fiber, the outward diffusion of Sr from the SrNiO<sub>x</sub> coated getter material.

#### FIGURE AND TABLE LEGENDS:

**Figure 1. Procedures for getter synthesis and fabrication.** Schematic illustration of getter power synthesis and coating method using conventional ceramic processing route.

**Figure 2. Illustration of Cr transpiration test setup and testing results.** (a) Experimental setup to conduct transpiration test under nominal SOFC conditions. (b) Distribution of chromium (wt.%) profile along the getter length from inlet to outlet. This figure has been modified from reference [14] with a permission.

**Figure 3. Electrochemical validation of getter and testing results.** (a) Schematic of LSM||YSZ||Pt SOFC, (b) I-t plots in presence and absence of getter, and (c) I-t plots in various cathode air flow rates.

Figure 4. Effect of chromium poisoning on LSM cathode surface and LSM/YSZ interface. (a) Illustration of chromium evaporation processing in presence of  $O_2$  and  $H_2O$ . (b) Nyquist plot of the SOFC exposed to Cr vapor in 3%  $H_2O$  air. (c) 1. Surface morphology of the LSM cathode exposed to Cr vapor, and 2. deposition of  $Cr_2O_3$  along the interface of LSM and YSZ indicating electrode poisoning.

Figure 5. Characterization results of posttest getter by EDS and FIB-TEM. (a) Morphology of deposited Cr vapor on the surface of getter fiber long with respective elemental distribution. (b) Cross-section of a getter sample with deposited Cr using focused ion beam (FIB) technique. (c) High-angle annular dark-field imaging (HAADF) of the getter sample prepared by the FIB technique (d, e) Elemental maps of the FIB sample showing presence of Cr and Sr on the getter surface.

#### DISCUSSION:

394 The experimental results clearly demonstrate the effectiveness of chromium getters during

long-term chromium transpiration tests and electrochemical tests. Presence of getters successfully mitigates the contamination of the electrode which otherwise would lead to rapid increase in polarization resistance and electrochemical performance degradation.

The formation of gas phase chromium species from chromia is favored and enhanced with an increase of water vapor concentration (humidity level)<sup>16</sup>. The water content in the cathodic air is maintained at 3% representing room temperature humidification and saturation. A high temperature cell exposure condition of 850 °C has been selected to demonstrate the effectiveness of the prepared chromium getters in this study.

 For the rational design of Cr getters, the first step is to identify various chromium species present in the humid air environment. Thermodynamic calculations indicated significantly different equilibrium partial pressures of chromium vapor species in dry and humidified air.  $CrO_3$  was found as predominant gaseous species at elevated temperatures in dry air whereas hydrated oxides such as  $CrO_2(OH)$  and  $CrO_2(OH)_2$  were identified as prevalent species in humid air at elevated temperatures<sup>15</sup>. Amongst all the chromium vapor species, the partial pressure of  $CrO_2(OH)_2$  remained relatively high throughout the entire temperature range (**Figure 4a**). It is noted that lowering of the temperature did not significantly lower the chromium vapor pressure. Presence of alkaline oxide (SrO for example) containing getter, however, has indicated significant reduction in the equilibrium chromium vapor pressure due to the formation of thermodynamically stable compound (SrCrO<sub>4</sub>)<sup>14</sup>. In this study, our observations indicate that the cordierite supported SNO getter reacts with chromium vapors to form crystalline SrCrO<sub>4</sub> and that also lowers the partial pressure of Cr vapors considering the reaction (Eq. 1):

$$SrO_{(s)} + CrO_2(OH)_{2(g)} \rightarrow SrCrO_{4(s)} + H_2O_{(g)}$$
(1)

During the long-term capture test using the transpiration method, discoloration of the outlet elbow was not observed, indicating absence of gaseous chromium vapor in the exiting air stream and hence the formation of yellowish deposit at lower temperatures on the exposed outlet elbow area. Most Cr vapor was captured within 5 mm of inlet getter (**Figure 2b**). In contrast, the outlet elbow shows significant discoloration after 500 h chromium transpiration test due to deposition of chromium species in the absence of getter. The discoloration on the outlet quartz tube is a visual indication of the presence of Cr vapor species in the gas phase. More precisely, the Cr capture efficiency has been evaluated by the ICP-MS analysis method. After conducting transpiration test for 100-500 h, the deposited chromium from glass elbow, condenser, wash bottles and quartz tubes were washed to extract the chromium by a fixed volume of 20% HNO3 acid (for example, 1 L). The total moles of Cr species released per hour, measured by ICP-MS in different transpiration experiments, are compared for getter optimization. In our experiments, sintered  $Cr_2O_3$  pellets were utilized as a stable chromium source of chromium vapor to minimize the carryover of fine  $Cr_2O_3$  particles.

During baseline electrochemical experiment performed in the presence of chromium without a getter, gaseous chromium species flow through the porous LSM cathode are further reduced to form a  $Cr_2O_3$  layer (**Figure 4a**) at the gas/LSM cathode/YSZ triple phase boundaries and

cathode/electrolyte interface under a bias as shown in Eq.2.

 $2CrO_2(OH)_2(g) + 6e^- = Cr_2O_3(s) + 3O^{2-}(ion) + 2H_2O(g)$  (2)

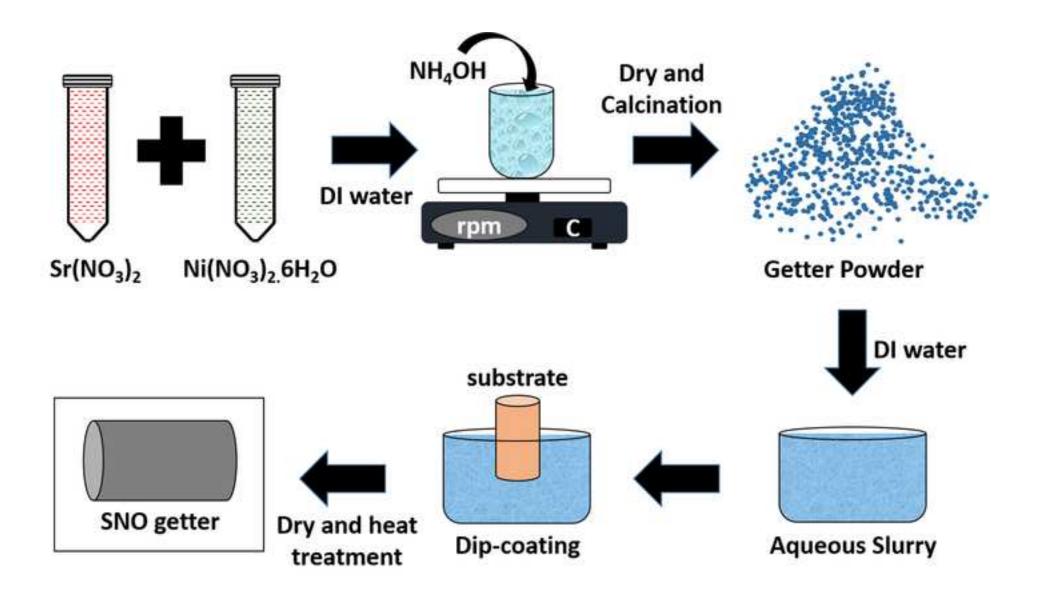
Stoichiometric LSM remains largely unreacted under the entire SOFC operation range of chromium vapor species<sup>9</sup>. Our observations indicate that smaller amounts of Cr<sub>2</sub>O<sub>3</sub> deposits at the LSM cathode surface (**Figure 4C1**) whereas majority of the Cr<sub>2</sub>O<sub>3</sub> deposits at the triple phase boundaries (TPB) blocking the active sites for further oxygen reduction, increase in the polarization resistance (**Figure 4b**) and poor electrochemical performance of the cell<sup>16</sup>.

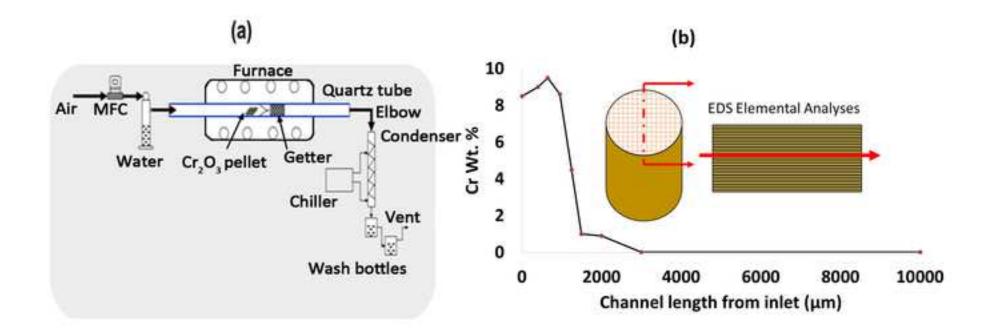
The three-electrode electrochemical cell design and test setup, utilized in our previous studies of LSM cathode stability in  $CO_2$  and humidified air<sup>18,19</sup>, has proven to be a powerful test vehicle and configuration for electrochemical impedance measurements. A reference electrode is added at the anode side near the periphery of the YSZ electrolyte using platinum paste and wire. This Pt electrode acts as a reference for measuring and controlling the working electrode potential, without current flow (ideal case). The stable Pt electrode remains free of Cr deposition on the anode site.

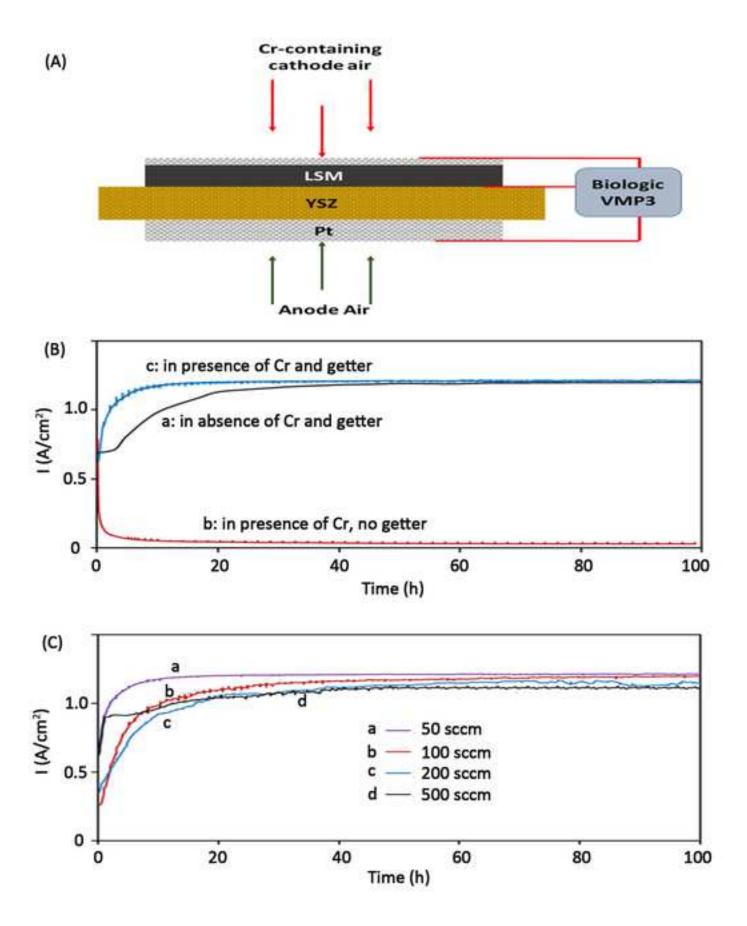
During the electrochemical experiments in the presence of chromium with a getter, sintered and pure  $Cr_2O_3$  pellets are utilized as the stable Cr source. Due to the utilization of pure  $Cr_2O_3$  pellets in our getter validation tests, the resulting concentration of Cr vapor species is expected to be much higher than those found in conventional fuel cell stacks and systems, in which protected coatings are added to reduce Cr evaporation. Our electrochemical experiments, hence, can be considered as accelerated tests. Pure LSM cathode are utilized as the cathode, which is very sensitive to chromium poisoning to validate the cathode poisoning and getter mechanisms. With an increase of air flow rates from 50 sccm to 500 sccm, which is similar to the real application conditions, the LSM||YSZ||Pt SOFCs maintain stable electrochemical performance as shown in **Figure 3C**, indicating the Cr getter still effectively capture Cr vapors at relatively high flow rates. In our ongoing and future work, high surface area getters and computational fluid dynamics (CFD) method are being developed for more active and longer lasting getters.

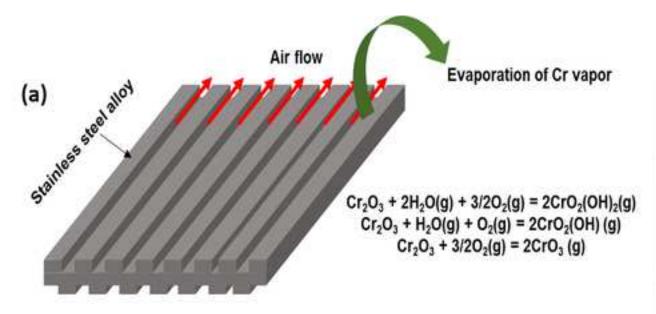
### **ACKNOWLEDGMENTS:**

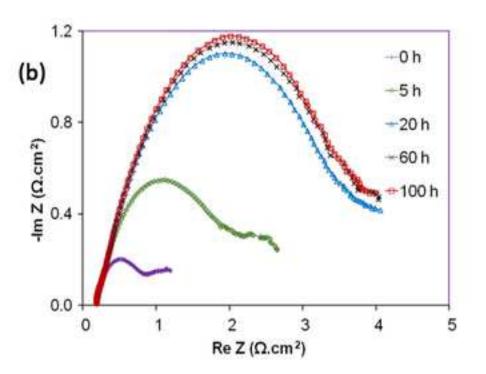
Authors acknowledge financial support from U.S. Department of Energy (US DOE) under the federal grant DE-FE-0023385. Technical discussion with Drs. Rin Burke and Shailesh Vora (National Energy Technology Laboratory) is gratefully acknowledged. Drs. Amit Pandey (LG Fuel Cells, Canton OH), Jeff Stevenson and Matt Chou (Pacific Northwest National Laboratory, Richland WA) are acknowledged for their help with long term test validation of the performance of the getters. Authors acknowledge the University of Connecticut for providing laboratory support. Dr. Lichun Zhang and Ms. Chiying Liang is acknowledged for technical discussion and help with the experiments.

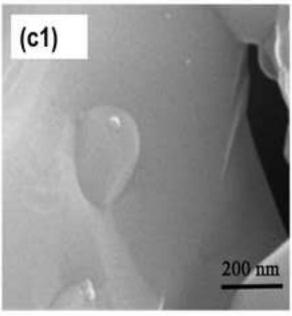

#### **DISCLOSURES:**


480 Authors do not have anything to disclose.

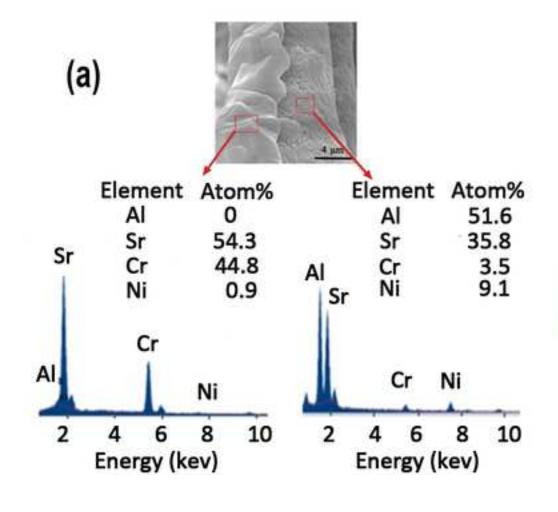

# **REFERENCES**:


- Singh, P. & Minh, N. Q. Solid oxide fuel cells: Technology status. *International Journal of Applied Ceramic Technology*. **1,** 5–15 (2005).
- 485 2. Stambouli, A. B. & Traversa, E. Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. *Renewable & Sustainable Energy* 487 *Reviews.* **6,** 433–455 (2002).
- 488 3. Mahato, N., Banerjee, A., Gupta, A., Omar, S. & Balani, K. Progress in material selection 489 for solid oxide fuel cell technology: A review. *Progress in Materials Science*. **72**, 141–337 490 (2015).
- 491 4. Brandon, N. P., Skinner, S. & Steele, B. C. H. Recent advances in materials for fuel cells. 492 Annual Review of Materials Research. **33**, 183–213 (2003).
- 5. Piccardo, P. & Amendola, R. SOFC 's Interconnects Materials Development. *Aisofc* 189–194 (2009).
- 495 6. Yang, Z., Xia, G.-G., Maupin, G. D. & Stevenson, J. W. Conductive protection layers on oxidation resistant alloys for SOFC interconnect applications. *Surface and Coatings Technology.* **201**, 4476–4483 (2006).
- 498 7. Aphale, A. N., Hu, B., Reisert, M., Pandey, A. & Singh, P. Oxidation Behavior and Chromium Evaporation From Fe and Ni Base Alloys Under SOFC Systems Operation Conditions. *JOM* (2018). doi:10.1007/s11837-018-3188-2
- Matsuzaki, Y. & Yasuda, I. Electrochemical properties of a SOFC cathode in contact with a chromium-containing alloy separator. *Solid State Ionics* **132**, 271–278 (2000).
- 503 9. Hu, B. *et al.* Experimental and thermodynamic evaluation of La1–xSrx MnO3±δ and La1–xSrxCo1–yFeyO3–δ cathodes in Cr-containing humidified air. *International Journal of Hydrogen Energy* **42**, 10208–10216 (2017).
- 506 10. Aphale, A. N., Liang, C., Hu, B. & Singh, P. in *Solid Oxide Fuel Cells Lifetime and Reliability:*507 *Critical Challenges in Fuel Cells* (ed. Brandon, N.) 102–114 (Academic Press, 2017).
- 508 11. Chen, K. *et al.* Highly chromium contaminant tolerant BaO infiltrated La 0.6 Sr 0.4Co 0.2 509 Fe 0.8 O 3– $\delta$  cathodes for solid oxide fuel cells. *Physical Chemistry Chemical Physics.* **17**, 4870–4874 (2015).
- 511 12. Zhen, Y. D., Tok, A. I. Y., Jiang, S. P. & Boey, F. Y. C. La(Ni,Fe)O3 as a cathode material with high tolerance to chromium poisoning for solid oxide fuel cells. *Journal of Power Sources* 170, 61–66 (2007).
- 514 13. Aphale, A. *et al.* Synthesis and stability of SrxNiyOz chromium getter for solid oxide fuel cells. *Journal of the Electrochemical Society.* **165**, (2018).
- 516 14. Aphale, A., Hu, B. & Singh, P. Low-Cost Getters for Gaseous Chromium Removal in High-517 Temperature Electrochemical Systems. *Jom* 2–8 (2018). doi:10.1007/s11837-018-3196-2
- 518 15. Heo, S. H., Hu, B., Aphale, A., Uddin, M. A. & Singh, P. Low-temperature chromium poisoning of SOFC cathode. *ECS Transactions* **78**, (2017).
- 520 16. Liang, C. *et al.* Mitigation of Chromium Assisted Degradation of LSM Cathode in SOFC. *ECS Transactions.* **75,** 57–64 (2017).
- 522 17. Ge, L. *et al.* Oxide Scale Morphology and Chromium Evaporation Characteristics of Alloys 523 for Balance of Plant Applications in Solid Oxide Fuel Cells. *Metallurgical and Materials* 524 *Transactions A* **44**, 193–206 (2013).
- 525 18. Hu, B., Mahapatra, M. K., Keane, M., Zhang, H. & Singh, P. Effect of CO2 on the stability of strontium doped lanthanum manganite cathode. *Journal of Power Sources* **268**, 404–


- 527 413 (2014).
- Hu, B., Keane, M., Mahapatra, M. K. & Singh, P. Stability of strontium-doped lanthanum manganite cathode in humidified air. *Journal of Power Sources* **248**, 196–204 (2014).
- 530 20. Li, C., Habler, G., Baldwin, L. C. & Abart, R. An improved FIB sample preparation 531 technique for site-specific plan-view specimens: A new cutting geometry. 532 *Ultramicroscopy* **184,** 310–317 (2018).















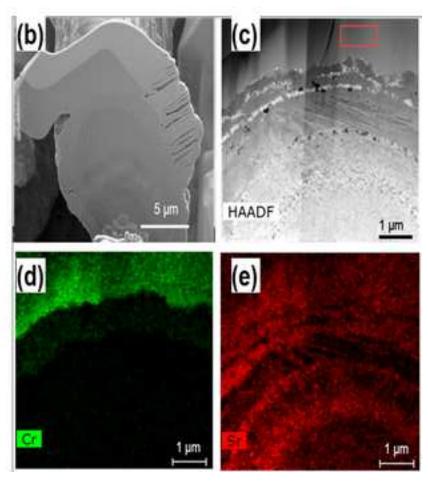




Table 1. SEM-EDS results of the posttest cell b cathode surface and interface

|                     | Cathode cell b |  |
|---------------------|----------------|--|
| Cr atom% at surface | 2.5 ± 0.5      |  |
| Cr atom% at LSM/YSZ |                |  |
| interface           | 11.2 ± 2       |  |

|             | Name of Material/                                    | Company            | Catalog Number | Comments/Description        |  |
|-------------|------------------------------------------------------|--------------------|----------------|-----------------------------|--|
| Item Number | Equipment                                            | Company            | Catalog Number |                             |  |
| 1           | Sr(NO <sub>3</sub> ) <sub>2</sub>                    | Sigma-Aldrich      | 243426         | Getter precursor material   |  |
| 2           | Ni(NO <sub>3</sub> ) <sub>2</sub> -6H <sub>2</sub> O | Alfa Aesar         | A15540         | Getter precursor material   |  |
| 3           | NH₄OH                                                | Alfa Aesar         | L13168         | Getter precursor material   |  |
| 4           | Pt ink                                               | ESL ElectroScience | 5051           | Current collector paste     |  |
| 5           | Pt wire                                              | Alfa Aesar         | 10288          | Current collector wire      |  |
| 6           | Pt gause                                             | Alfa Aesar         | 40935          | Current collector           |  |
| 7           | Cr <sub>2</sub> O <sub>3</sub> powder                | Alfa Aesar         | 12286          | Chromium source             |  |
| 8           | Nitric acid (HNO <sub>3</sub> )                      | Sigma-Aldrich      | 438073         | Chromium extraction         |  |
|             | Potassium                                            |                    |                |                             |  |
|             | permanganate                                         |                    |                |                             |  |
| 9           | (KMnO <sub>4</sub> )                                 | Alfa Aesar         | A12170         | Chromium extraction         |  |
| 10          | LSM paste                                            | Fuelcellmaterials  | 18007          | Cathode                     |  |
| 11          | YSZ electrolyte                                      | Fuelcellmaterials  | 211102         | Electrolyte                 |  |
| 12          | Alumina fiber board                                  | Zircar             | GJ0014         | Getter substrate            |  |
| 13          | Ceramabond paste                                     | AREMCO             | 552-VFG        | For cell sealing            |  |
| 14          | ICP-MS (7700s)                                       | Agilent            | NA             | For Cr analysis             |  |
| 15          | Potentiostat (VMP3)                                  | Biologic           | NA             | For EIS/I-t measurement     |  |
| 16          | FIB (Helios Nanolab<br>460F1)                        | FEI                | NA             | For Nano-sample preparation |  |
| 17          | TEM (Talos F200X<br>S/TEM)                           | FEI                | NA             | For composition analysis    |  |



1 Alewile Center 1200 Cambridge, MA 02140 tel. 617.915.9051 www.tove.com

# ARTICLE AND VIDEO LICENSE AGREEMENT

| Title of Article: | Development as                                                | rd Validatio      | n of Chromi      | um Getters           |  |  |
|-------------------|---------------------------------------------------------------|-------------------|------------------|----------------------|--|--|
|                   | for solid                                                     | Oxido Fuel C      | <u>all Power</u> | Systems              |  |  |
| Author(s):        |                                                               |                   |                  |                      |  |  |
|                   | Ashish Aphale, j                                              | unsung Hong,      | Boxun Hu, Pr     | rabhakar Jingh       |  |  |
| Item 1: The       | Author elects to have                                         |                   |                  |                      |  |  |
|                   | .com/publish) via:                                            |                   |                  |                      |  |  |
| Standard Access   |                                                               | Open Access       |                  |                      |  |  |
| Item 2: Please se | lect one of the following ite                                 | ns:               |                  |                      |  |  |
| The Auth          | nor is <b>NO</b> T a United States go                         | vernment employee | <b>.</b> .       |                      |  |  |
|                   | nor is a United States gove<br>f his or her duties as a Unite |                   |                  | vere prepared in the |  |  |
|                   | nor is a United States govern                                 |                   | 4                | NOT prepared in the  |  |  |

# ARTICLE AND VIDEO LICENSE AGREEMENT

Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-

nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means Mylove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.

- 2. Background. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and(c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.



# ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- S. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- Protection of the Work. The Author(s) authorize
  JoVE to take steps in the Author(s) name and on their behalf
  if JoVE believes some third party could be infringing or
  might infringe the copyright of either the Author's Article
  and/or Video.
- 9. Likeness, Privacy, Personality. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole



# ARTICLE AND VIDEO LICENSE AGREEMENT

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to

**CORRESPONDING AUTHOR** 

Name:

the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 13. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 14. Transfer, Governing Law. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

# 

Signature: 12/28/2018

Please submit a signed and dated copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

# Development and Validation of Chromium Getters for Solid Oxide Fuel Cell Power Systems

Ashish Aphale, Junsung Hong, Boxun Hu\*and Prabhakar Singh

**Response to Editorial comments:** The authors thank the Editor for comments and suggestions pertaining to improving the manuscript. A detailed point by point response is provided below:

1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues.

Response: The authors thank the editor for the comment. All the authors have reviewed the manuscript and agree with final proof. All changes are marked in red in the manuscript.

2. JoVE cannot publish manuscripts containing commercial language. This includes company names before an instrument or reagent. Please remove all commercial language from your manuscript and use generic terms instead. All commercial products should be sufficiently referenced in the Table of Materials and Reagents. Examples of commercial language in your manuscript include Talos, FEI Helios NanoLab, FEI Quanta, etc.

Response: Thank you for the suggestion. We have carefully addressed the text and removed all the commercial language from the manuscript. Details of the commercial products have been provided in a separate Tables of Materials and Reagents document.

3. Please do not highlight notes for filming.

Response: Thank you for the suggestion. All the highlighted notes have been removed.

- 4. Steps 1.2-1.4: Are these steps sub-steps of step 1.1? If yes, please number them as 1.1.1-1.1.3. *Response: Thank you for the comment. The steps and related sub-steps have been revised and updated to reflect the protocol properly.*
- 5. 1.6: How to dry the substrate? Please add details.

Response: Thank you for the question. The substrate was dried in air for 24 hrs. This has been reflected in the manuscript in step 1.5.

6. 1.7: How to calcine?

Response: Thank you for the question. The calcination of the substrate was conducted in the air at higher temperature. This step is updated in the manuscript.

7. 3.1.7: What's the temperature of the furnace?

Response: Thank you for the question. The furnace temperature was maintained at 850°C. This is revised and updated in the manuscript.

8. 3.1.8: Please add more details to your protocol steps. Please ensure you answer the "how" question, i.e., how is the step performed? Alternatively, add references to published material specifying how to perform the protocol action.

Response: Thank you for the suggestions. The details of the protocol for conducting electrochemical tests in provided in the step 3.1.8.1-3.1.8.2. Two references (Refs. 18, 19) specifying how to perform the protocol in details was added.

9. 3.2.1-3.2.6: Please add more details to your protocol steps. Please ensure you answer the "how" question, i.e., how is the step performed? Alternatively, add references to published material specifying how to perform the protocol action.

Response: Thank you for the comment. The details of steps have been added and referred to reference [13, 14, 17,20].

10. Figure 1: Provide a short description of the figure in Figure Legend.

Response: Thank you for the comment. A short description in Figure 1 legend has been updated.

# SPRINGER NATURE LICENSE TERMS AND CONDITIONS

Feb 25, 2019

This Agreement between Ashish N Aphale ("You") and Springer Nature ("Springer Nature") consists of your license details and the terms and conditions provided by Springer Nature and Copyright Clearance Center.

License Number 4535940398638
License date Feb 25, 2019
Licensed Content Publisher Springer Nature

Licensed Content Publication JOM Journal of the Minerals, Metals and Materials Society

Licensed Content Title Low-Cost Getters for Gaseous Chromium Removal in High-

Temperature Electrochemical Systems

Licensed Content Author Ashish Aphale, Boxun Hu, Prabhakar Singh

Licensed Content Date Jan 1, 2018

Licensed Content Volume 71
Licensed Content Issue 1

Type of Use Journal/Magazine

Requestor type academic/university or research institute

Format print and electronic

Portion figures/tables/illustrations

Number of 2

figures/tables/illustrations

Will you be translating? no

Circulation/distribution >100,000

Author of this Springer

Nature content

yes

Title of new article Development and Validation of Chromium Getters for Solid Oxide

Fuel Cell Power Systems

Lead author Ashish Aphale

Publisher My Jove Corp Expected publication date Mar 2019

Portions Figure 3 and Figure 4

Requestor Location Ashish N Aphale

44 Weaver Rd

STORRS MANSFIELD, CT 06269

United States Attn: Ashish Aphale

Billing Type Invoice

Billing Address Ashish N Aphale

44 Weaver Rd

STORRS MANSFIELD, CT 06269 United States

Attn: Ashish Aphale

Total 0.00 USD

#### Terms and Conditions

Springer Nature Terms and Conditions for RightsLink Permissions
Springer Nature Customer Service Centre GmbH (the Licensor) hereby grants you a
non-exclusive, world-wide licence to reproduce the material and for the purpose and
requirements specified in the attached copy of your order form, and for no other use, subject
to the conditions below:

- 1. The Licensor warrants that it has, to the best of its knowledge, the rights to license reuse of this material. However, you should ensure that the material you are requesting is original to the Licensor and does not carry the copyright of another entity (as credited in the published version).
  - If the credit line on any part of the material you have requested indicates that it was reprinted or adapted with permission from another source, then you should also seek permission from that source to reuse the material.
- 2. Where **print only** permission has been granted for a fee, separate permission must be obtained for any additional electronic re-use.
- 3. Permission granted free of charge for material in print is also usually granted for any electronic version of that work, provided that the material is incidental to your work as a whole and that the electronic version is essentially equivalent to, or substitutes for, the print version.
- 4. A licence for 'post on a website' is valid for 12 months from the licence date. This licence does not cover use of full text articles on websites.
- 5. Where **'reuse in a dissertation/thesis'** has been selected the following terms apply: Print rights of the final author's accepted manuscript (for clarity, NOT the published version) for up to 100 copies, electronic rights for use only on a personal website or institutional repository as defined by the Sherpa guideline (www.sherpa.ac.uk/romeo/).
- 6. Permission granted for books and journals is granted for the lifetime of the first edition and does not apply to second and subsequent editions (except where the first edition permission was granted free of charge or for signatories to the STM Permissions Guidelines http://www.stm-assoc.org/copyright-legal-affairs/permissions/permissions-guidelines/), and does not apply for editions in other languages unless additional translation rights have been granted separately in the licence.
- 7. Rights for additional components such as custom editions and derivatives require additional permission and may be subject to an additional fee. Please apply to Journalpermissions@springernature.com/bookpermissions@springernature.com for these rights.
- 8. The Licensor's permission must be acknowledged next to the licensed material in print. In electronic form, this acknowledgement must be visible at the same time as the figures/tables/illustrations or abstract, and must be hyperlinked to the journal/book's homepage. Our required acknowledgement format is in the Appendix below.
- 9. Use of the material for incidental promotional use, minor editing privileges (this does not include cropping, adapting, omitting material or any other changes that affect the meaning, intention or moral rights of the author) and copies for the disabled are permitted under this licence.
- 10. Minor adaptations of single figures (changes of format, colour and style) do not require the Licensor's approval. However, the adaptation should be credited as shown in Appendix

# <u>Appendix — Acknowledgements:</u>

# **For Journal Content:**

Reprinted by permission from [the Licensor]: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication)

# For Advance Online Publication papers:

Reprinted by permission from [the Licensor]: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication), advance online publication, day month year (doi: 10.1038/sj.[JOURNAL ACRONYM].)

# For Adaptations/Translations:

Adapted/Translated by permission from [the Licensor]: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication)

# Note: For any republication from the British Journal of Cancer, the following credit line style applies:

Reprinted/adapted/translated by permission from [the Licensor]: on behalf of Cancer Research UK: : [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication)

# For **Advance Online Publication** papers:

Reprinted by permission from The [the Licensor]: on behalf of Cancer Research UK: [Journal Publisher (e.g. Nature/Springer/Palgrave)] [JOURNAL NAME] [REFERENCE CITATION (Article name, Author(s) Name), [COPYRIGHT] (year of publication), advance online publication, day month year (doi: 10.1038/sj. [JOURNAL ACRONYM])

# For Book content:

Reprinted/adapted by permission from [the Licensor]: [Book Publisher (e.g. Palgrave Macmillan, Springer etc) [Book Title] by [Book author(s)] [COPYRIGHT] (year of publication)

### **Other Conditions:**

Version 1.1

Questions? <a href="mailto:customercare@copyright.com">customercare@copyright.com</a> or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.