Journal of Visualized Experiments HOX Loci Focused CRISPR/sgRNA Library Screening Identifies Critical CTCF Boundaries --Manuscript Draft--

Methods Article - JoVE Produced Video	
JoVE59382R2	
HOX Loci Focused CRISPR/sgRNA Library Screening Identifies Critical CTCF Boundaries	
CRISPR/Cas9; sgRNA library screening; CTCF boundary; HOX loci; one-step RT-PCR; Indel mutation detection; Acute Myeloid Leukemia	
Huacheng Luo, Ph.D. Penn State College of Medicine Hershey, PA UNITED STATES	
Penn State College of Medicine	
hluo1@pennstatehealth.psu.edu	
Huacheng Luo, Ph.D.	
Amin Sobh	
Christopher D. Vulpe	
Edmond Brewer	
Sinisa Dovat	
Yi Qiu	
Suming Huang	
Response	
be Standard Access (US\$2,400)	
Hershey, Pennsylvania, United States	

TITLE:

2 HOX Loci Focused CRISPR/sgRNA Library Screening Identifying Critical CTCF Boundaries

3 4

1

AUTHORS AND AFFLIATIONS:

- 5 Huacheng Luo¹, Amin Sobh², Christopher D. Vulpe², Edmond Brewer¹, Sinisa Dovat¹, Yi Qiu³, and
- Suming Huang¹ 6

7

- 8 ¹ Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA
- 9 ² Department of Physiological Sciences, University of Florida, Gainesville, FL

10

CORRESPONDING AUTHORS: 11

12 **Suming Huang** (shuang4@pennstatehealth.psu.edu) 13 Huacheng Luo (hluo1@pennstatehealth.psu.edu)

14

15

EMAIL ADDRESSES OF CO-AUTHORS:

- (asobh@ufl.edu) 16 Amin Sobh 17 Christopher Vulpe (cvulpe@ufl.edu)
- 18 **Edmond Brewer** (ebrewer1@pennstatehealth.psu.edu) (sdovat@pennstatehealth.psu.edu) 19 Sinisa Dovat
- (qiuy@ufl.edu) 20 Yi Qiu

21 22

KEYWORDS:

23 CRISPR/Cas9, sgRNA library screening, CTCF boundary, HOX loci, one-step RT-qPCR, Indel 24 mutation detection, Acute Myeloid Leukemia

25 26

27 28

29

SUMMARY:

A CRISPR/sgRNA library has been applied to interrogating protein-coding genes. However, the feasibility of a sgRNA library to uncover the function of a CTCF boundary in gene regulation remains unexplored. Here, we describe a HOX loci specific sgRNA library to elucidate the function of CTCF boundaries in HOX loci.

30 31 32

33

34 35

36

37

38

39

40

41

42 43

ABSTRACT:

CCCTC-binding factor (CTCF)-mediated stable topologically associating domains (TADs) play a critical role in constraining interactions of DNA elements that are located in neighboring TADs. CTCF plays an important role in regulating the spatial and temporal expression of HOX genes that control embryonic development, body patterning, hematopoiesis, and leukemogenesis. However, it remains largely unknown whether and how HOX loci associated CTCF boundaries regulate chromatin organization and HOX gene expression. In the current protocol, a specific sgRNA pooled library targeting all CTCF binding sites in the HOXA/B/C/D loci has been generated to examine the effects of disrupting CTCF-associated chromatin boundaries on TAD formation and HOX gene expression. Through CRISPR-Cas9 genetic screening, the CTCF binding site located between HOXA7/HOXA9 genes (CBS7/9) has been identified as a critical regulator of oncogenic chromatin domain, as well as being important for maintaining ectopic HOX gene expression

- 44 patterns in MLL-rearranged acute myeloid leukemia (AML). Thus, this sgRNA library screening

approach provides novel insights into CTCF mediated genome organization in specific gene loci and also provides a basis for the functional characterization of the annotated genetic regulatory elements, both coding and noncoding, during normal biological processes in the post-human genome project era.

INTRODUCTION:

 Recent genome interaction studies revealed that the human nuclear genome forms stable topologically associating domains (TADs) that are conserved across cell types and species. The organization of the genome into separate domains facilitates and restricts interactions between regulatory elements (e.g., enhancers and promoters). The CCCTC-binding factor (CTCF) binds to TAD boundaries and plays a critical role in constraining interactions of DNA elements that are located in neighboring TADs¹. However, genome wide CTCF binding data revealed that although CTCF mostly interacts with the same DNA-sites in different cell types, it often functions as a chromatin barrier at a specific site in one cell type but not in the other, suggesting that CTCF functions together with other activities in the formation of chromatin boundaries². What remains unknown is whether the boundary elements (CTCF-binding sites) are directly linked to the biological function of CTCF, and how these links occur. Therefore, we hypothesize that specific CTCF binding sites in the genome directly regulate the formation of TADs and control promoter/enhancer interactions within these domains or between neighboring domains. The completion of the human and mouse genome sequencing projects and subsequent epigenetic analyses have uncovered new molecular and genetic signatures of the genome. However, the role of specific signatures/modifications in gene regulation and cellular function, as well as their molecular mechanism(s), have yet to be fully understood.

Multiple lines of evidence support that the CTCF-mediated TADs represent functional chromatin domains³⁻⁵. Although CTCF mostly interacts with the same DNA-sites in different cell types, genome wide CTCF ChIP-seq data revealed that CTCF often functions as a chromatin barrier in one cell type but not in the other². CTCF plays an essential role during development by mediating genome organization^{4,6,7}. Disruption of CTCF boundaries impaired enhancer/promoter interactions and gene expression, leading to developmental blockage. This suggests that CTCF mediated TADs are not only structural components, but also regulatory units required for proper enhancer action and gene transcription^{5,8,9}.

HOX genes play critical roles during embryonic development and they are temporally and spatially restricted in their expression patterns. The HOXA locus forms two stable TADs separating anterior and posterior genes by a CTCF-associated boundary element in both hESCs and IMR90 cells¹. Recent reports demonstrated that HoxBlinc, a HoxB locus associated IncRNA, mediates the formation of CTCF directed TADs and enhancer/promoter interactions in the HOXB locus. This leads to anterior HOXB gene activation during ESC commitment and differentiation¹⁰. Furthermore, at specific gene loci including the HOXA locus, alteration of CTCF mediated TAD domains changed lineage specific gene expression profiles and was associated with the development of disease states^{11,12}. The evidence supports a primary function for CTCF in coordinating gene transcription and determining cell identity by organizing the genome into functional domains.

 Despite its role in the embryonic development, during hematopoiesis, *HOX* genes regulate hematopoietic stem and progenitor cell (HS/PC) function. This is done by controlling the balance between proliferation and differentiation 10,13-15. The expression of *HOX* genes is tightly regulated throughout the specification and differentiation of hematopoietic cells, with highest expression in HS/PCs. *HOX* gene expression gradually decreases during maturation, with its lowest levels occurring in differentiated hematopoietic cells 16. *HOX* gene dysregulation is a dominant mechanism of leukemic transformation by dysregulating self-renewal and differentiation properties of HS/PCs leading to leukemic transformation 17,18. However, the mechanism of establishing and maintaining normal vs. oncogenic expression patterns of *HOX* genes as well as associated regulatory networks remains unclear.

CRISPR-Cas9 sgRNA library screening has been widely used to interrogate protein-coding genes¹⁹ as well as non-coding genes, such as IncRNA²⁰ and miRNA²¹ in different species. However, the cost to use the CRISPR-Cas9 sgRNA library to identify new genomic targets remains high, because high-throughput genome sequencing is often applied to verify the sgRNA library screening. Our sgRNA screening system is focused on the specific genome loci and evaluates the targeting sgRNAs through one-step RT-PCR according to the marker gene expression, such as *HOXA9*. Additionally, Sanger sequencing confirmed that the sgRNA was integrated into the genome, and Indel mutations can be detected to identify the sgRNA targeting site. Through the loci-specific CRISPR-Cas9 genetic screening, the CBS7/9 chromatin boundary has been identified as a critical regulator for establishing oncogenic chromatin domain and maintaining ectopic *HOX* gene expression patterns in AML pathogenesis¹². The method can be widely applied to identify not only specific function of CTCF boundary in embryonic development, hematopoiesis, leukemogenesis, but also CTCF boundary as potential therapeutic targets for future epigenetic therapy.

PROTOCOL:

1. CTCF sgRNA library design using an online tool

- 1.1. Design the sgRNA targeting CTCF binding sites in the human *HOX* loci using the genetic perturbation platform (GPP) designer tool
- 122 (https://portals.broadinstitute.org/gpp/public/analysis-tools/sgrna-design).

1.2. Synthesize a total of 1,070 sgRNAs consisting of sgRNAs targeting 303 random targeting genes, 60 positive controls, 500 non-Human-targeting controls, and 207 CTCF elements or lncRNA targeting genes (**Figure 1, Table 1**). Each targeting DNA element is targeted by 5-10 different sgRNAs.

2. sgRNA library cloning

2.1. Clone the synthesized oligonucleotides into the CRISPR lentiviral backbone vector (lentiCRISPRv2).

2.1.1. Digest the LentiCRISPRv2 vector with BsmBI restriction enzyme at 37 °C for 2 h.

135

2.1.2. Look for the presence of the larger band (around 12,873 bp) on the gel after BsmBI

digestion, and then purify it with the gel extraction kit.

138

NOTE: A 2kb small filler piece is also present on the gel after digestion, but this should be ignored.

141

- 142 2.1.3. Ligate the synthesized oligonucleotides and digested LentiCRISPR vector with 150 ng of digested LentiCRISPR DNA, 1 μ L of 10 μ M oligos, 2 μ L of 10x T4 ligase buffer, 1 μ L of T4 ligase,
- and then incubate them at 16 °C overnight.

145

2.2. Transform the lentiviral CRISPR/sgRNA library into electro-competent cells foramplification.

148

- 2.2.1. Prepare the electroporator at 1.8 kV, 200 ohms and 25 μ F. Then pre-warm the recovery
- SOC media in a 37 °C water bath, and pre-warm LB ampicillin antibiotic plates at 37 °C.

151

152 2.2.2. Thaw the competent cells on ice for 10 min.

153

2.2.3. Prepare 1.5 mL micro-centrifuge tubes and 1 mm electroporation cuvettes on ice.

155

2.2.4. Mix 1 μL of a 10 ng/μL library plasmid DNA into 25 μL of competent cells in a 1.5 mL
 micro-centrifuge tube, and gently mix by flicking the bottom of the tube a few times manually.

158

2.2.5. Once the cuvette is cold enough, transfer the DNA/competent cell mixture to it. Tap
 twice on the countertop and wipe any water droplets from the exterior of cuvette with a tissue
 paper. Then place the cuvette in the electroporation module and press pulse.

162

163 2.2.6. Immediately add 975 μ L of 37 °C pre-warmed SOC media. Mix by pipetting up and down and transfer to a 15 mL tube.

165

166 2.2.7. Rotate and incubate at 37 °C for 1 h.

167

2.2.8. Dilute 100 μL cells into 900 μL of SOC media and place 100 μL on a LB ampicillin antibiotic agar plate. Incubate overnight at 37 °C.

170

2.3. Extract the plasmid DNA from the combined colonies using a maxi-prep column as detailed in the manufacturer's protocol.

- 2.3.1. Scrape all the colonies from the LB agar plate and inoculate a starter culture of 2 mL of LB
- ampicillin antibiotic medium and incubate overnight at 37 °C with vigorous shaking (approx. 200
- 176 x g).

- 2.3.2. Dilute the starter culture 1:500 into 100 mL of LB ampicillin medium and incubate at
- 37 °C for 12-16 h with vigorous shaking (approx. 200 x g).

2.3.3. Harvest the bacterial cell pellet by centrifugation at 6,000 x q for 15 min at 4 °C.

2.3.4. Re-suspend the bacterial pellet in 10 mL of suspension buffer.

- 2.3.5. Lyse the suspended pellet with 10 mL of the lysis buffer, and vigorously invert 4-6 times.
- Incubate the lysate for 5 min at room temperature.

2.3.6. Neutralize the lysate with 10 mL of chilled Neutralization Buffer. Mix by gently inverting the tubes 4-6 times and incubate it for 20 min on ice.

- 2.3.7. Spin down at 13,500 x g for 30 min at 4 °C. Promptly transfer the supernatant containing
- the plasmid DNA to a new tube.

2.3.8. Repeat step 2.3.7, and promptly transfer the supernatant containing the plasmid DNA to

a new tube.

2.3.9. Equilibrate the column by applying 10 mL of equilibration buffer and allow the column to empty by gravity flow.

2.3.10. Add the supernatant to the column and allow it to enter the resin by gravity flow.

2.3.11. Wash the column with 2 x 30 mL of washing buffer.

2.3.12. Elute the DNA with 15 mL of elution buffer.

- 2.3.13. Precipitate the DNA with 10.5 mL of room-temperature isopropanol to the eluted DNA.
- Mix and spin down immediately at 15,000 x q for 30 min at 4 °C, and gently decant the
- supernatant.

- 2.3.14. Wash the DNA pellet with 5 mL of 70% ethanol, centrifuge DNA pellet at 15,000 x g for
- 10 min and discard the clear supernatant.

2.3.15. Repeat step 2.5.14 twice more.

2.3.16. Centrifuge DNA pellet at 15,000 x q for 10 min, and gently decant the supernatant without disturbing the DNA pellet.

- 2.3.17. Air-dry the pellet for 5-10 min, and dissolve the DNA in a required volume of buffer
- (TE buffer, pH 8.0).

- 221 3. The high titer sgRNA library lentivirus generation
- 222
- 223 3.1. Cell preparation: Culture HEK293T cells in Dulbecco's Modified Eagle Medium (DMEM)
- 224 supplemented with 10% (vol/vol) fetal bovine serum (FBS) and 1% (vol/vol) penicillin-
- streptomycin (PS) antibiotic in T-25 flasks. Place them in the incubator at 37 °C and 5% CO₂. 225

- 3.2. Package lentivirus: Co-transfect HEK293T cells with 20 µg of purified library vectors from 227
- step 2, 15 µg of the package plasmid (psPAX2) and 10 µg of the envelope plasmid (pMD2.G) for 228
- 229 48 h before harvesting the viruses.

230

- 3.3. Virus collection: After 48 h, collect the virus supernatant and filter the virus supernatant 231
- through a 0.45 µm low protein binding PVDF membrane. 232

233

- 234 3.4. Virus concentration: Concentrate the lentiviral supernatant by 50-fold using the
- 235 concentrator and test the virus MOI in step 5.

236

3.5. Virus storage: Aliquot the concentrated viruses and store in a -80 °C freezer. 237

238 239

4. Optimized puromycin concentration

240

- 241 4.1. Leukemia cell culture: Culture MOLM13 AML cells in RPMI 1640 supplemented with 10%
- (vol/vol) fetal bovine serum (FBS) and 1x penicillin-streptomycin (PS) antibiotics in a T-125 flask. 242
- Place them in an incubator at 37 °C and 5% CO₂. 243

244

245 NOTE: Cells are typically passed every 4-5 d at a split ratio of 1:4 or 1:6, never allowing cells to reach more than 70% confluency.

246

- 247 248
- 4.2. Set up MOLM13 cells in a 12-well plate with a density of 1.0 x 10⁴ cell/mL, at a total volume of 2 mL per well (2.0 x 10⁴ cells). 249

250

- 251 4.3. Time-course assay: Treat MOLM13 cells with puromycin for 7 days in increasing
- concentrations (0.1 μ g/mL, 0.2 μ g/mL, 0.5 μ g/mL, 1.0 μ g/mL and 2.0 μ g/mL) 252

253

4.3.1. Set up MOLM13 cells without puromycin treatment on day 0 and set up 3 replicate wells 254 255 without puromycin treatment as a control from day 0 to day 7.

256

257 4.3.2. Treat MOLM13 cells with 0.1 µg/mL, 0.2 µg/mL, 0.5 µg/mL, 1.0 µg/mL and 2.0 µg/mL, 258 separately, with each experimental condition containing 3 replicate wells.

259

4.3.3. Count the live cell ratio and make a survival curve from day 0 to day 7 containing all 260 261 conditions.

- 4.4. Survival curve: Stain cells with Trypan blue and count viability daily to obtain the survival 263
- curves for each puromycin concentration. 264

4.5. Optimizing minimal puromycin concentration: Determine the minimal puromycin
 concentration through Trypan blue staining, in which all MOLM13 cells are killed between 5-7
 days.

5. Titration of lentiviral library in MOLM13 leukemia cells

5.1. AML cells preparation: Collect MOLM13 AML cells with the transduction medium (RPMI 1640, 10% FBS, 1% PS, and 8.0 μ g/mL coating medium) at a density of 1.5 x 10⁶ cells /mL.

5.2. Place MOLM13 cells in the 12-well plate with 1.5×10^6 cells in each well.

5.3. Thaw the lentivirus: Remove the concentrated lentivirus from the -80 °C freezer and thaw it on ice.

5.4. Mix MOLM13 cells with a different dose of the concentrated lentivirus in separate wells,
 including 0, 1, 2.5, 5, 7.5 and 10 μL (total 6 groups).

5.5. Immediately centrifuge these mixtures at 1,000 x g for 2 h at 33 °C and transfer the 12-well plates back to the incubator at 37 °C and 5% CO₂ for 4 h.

286 5.6. After 4 h, spin down the infected cells at 400 x g for 5 min at room temperature.

288 5.7. Gently aspirate the supernatant without disturbing the cell pellet, and re-suspend the 289 transduced cells with fresh media (RPMI 1640, 10% FBS and 1% PS), and then transfer them to 290 T-25 flasks and incubate at 37 °C for 48 h without puromycin.

5.8. After 48 h, split these cells into 2 flasks (2 groups): an experimental group treated with 1 µg/mL puromycin for 5 days, and a control group without puromycin treatment for 5 days.

5.9. Carry out puromycin selection for 5 days with 1 μ g/mL puromycin according to the step 4 until all the non-transduced control cells are dead. Exchange for fresh media every 2 days.

5.10. Measure the optimized MOI value for transduction by dividing the number of live cells treated with puromycin with the number of cells without puromycin treatment.

6. Transduction of the pooled CRISPR-Cas9 KO library

6.1. Transduction with lentivirus: Infect 1.5 x 10^6 MOLM13 cells with 0.3 MOI of sgRNA pooled lentivirus in medium (RPMI 1640, 10% FBS, 1% PS, and 8 µg/mL coating medium) in 6-well plate and use the cells without the lentivirus infection as a control.

6.2. Immediately centrifuge the 6-well plate at 1,000 x g for 2 h at 33 °C to spinfect the cells and transfer the plates back to the incubator at 37 °C and 5% CO₂ for 4 h.

309	
310	6.3. Spin down the infected cells at 400 x g for 5 min at room temperature.
311	
312	6.4. Gently aspirate supernatant without disturbing the cell pellet, and re-suspend the
313	transduced cells with fresh media (RPMI 1640, 10% FBS and 1% PS), and then transfer them to
314	T-25 flasks and incubate at 37 °C for 48 h without puromycin.
315	
316	6.5. After 48 h, treat cells with 1 μg/mL puromycin for 5 days. Exchange for fresh media after 2
317	days and keep at an optimal cell density.
318	
319	6.6. Seed the single clone in 96-well plates with limiting dilution methods and incubate these
320	single clones at 37 °C and 5% CO ₂ . Culture them for 3-4 weeks.
321	
322	6.7. After a single cell grows up into a population, transfer half of the cells into 24-well plates
323	for further culture under puromycin selection and verify these clones in the next step. Keep the
324	rest of the cells.
325	
326	7. Screening of the pooled CRISPR-Cas9 KO library with one-step RT-qPCR
327	
328	7.1. Determine the effectiveness of the sgRNA integrated clone screening by evaluating the
329	expression of the marker gene HOXA9 with one step reverse-transcriptase polymerase chain
330	reaction (one-step RT-qPCR).
331	
332	NOTE: <i>HOXA9</i> are highly expressed in MOLM13 AML cells in leukemogenesis ^{22,23} .
333	
334	7.2. Count the sgRNA integrated MOLM13 cell and transfer 1 x 10 ⁴ cells per well to a 96-well
335	PCR plate.
336	
337	7.3. Centrifuge the tube at 1,000 x g for 5 min, and then thoroughly remove and discard the
338	supernatant with a pipet without disturbing the cell pellet.
339	
340	7.4. Wash cells with 125 μ L of PBS buffer, and centrifuge the tube at 1,000 x g for 5 min. Then
341	remove 120 μL of the supernatant using a pipette and retain approximately 5 μL of PBS in each
342	well.
343	
344	7.5. Add 50 μL of the cell lysis master mix containing 48 μL of cell lysis buffer, 1 μL of proteinase
345	K solution (10 mg/mL) and 1 μL of DNase solution (1 mg/mL) to each well. Then pipet up and
346	down 5 times to re-suspend the cell pellet.
347	
348	7.6. Incubate the mix for 10 min at room temperature, followed by 5 min at 37 °C, and then
349	75 °C for 5 min.
350	7.7. Store the cell lysate at -80 °C freezer.

7.8. The preparation of one-step RT-qPCR reaction: Thaw the one-step reaction mix and other reaction components to 4 °C. Then spin down briefly to collect solutions at the bottom of tubes, and place on ice without light. Mix and spin gently.

7.9. Add 1 μ L of cell lysate to the PCR wells with the RT-qPCR reaction mix, including 1 μ L of the marker gene's forward primer (300 nM) and reverse primer (300 nM), 0.125 μ L of reverse transcriptase (10 U/ μ L), and 5 μ L of one-step reaction mix (2x).

7.10. Seal wells with optically transparent film, and gently vortex and mix the reaction components.

362 7.11. Place the 96-well PCR plate on a real-time PCR instrument.

7.12. Run the reverse transcription reaction for 10 min at 50 °C, followed by polymerase inactivation and DNA denaturation for 1 min at 95 °C.

7.13. Perform RT-PCR with 40 cycles of PCR reaction: denaturation for 15 s at 95 °C,
annealing/extension and plate fluorescence reading for 20 s at 60 °C, and then melt curve
analysis at 65-95 °C via 0.5 °C increments at 2-5 s/step.

7.14. Set up upregulated, downregulated and no change groups according to the expression levels of *HOXA9* gene by comparison to the control, separately. Use θ -actin gene as a housekeeping gene control.

8. Verification of integrated sgRNAs positive clones through genotyping and Sanger sequence

 8.1. Verify the *HOXA9* decreased expression clones through Sanger sequencing and perform PCR with 50-100 ng MOLM13 genome DNA, 5 μ L polymerase reaction buffer (10x), 1 μ L forward primer (10 μ M) (AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG) and 1 μ L reverse primer (10 μ M) (TCTACTATTCTTTCCCCTGCACTGTTGTGGGCGATGTGCGCTCTG), 1 μ L dNTP (10mM), 1 unit polymerase (5 U / μ L). Perform the PCR reaction with the initial denaturation at 94 °C for 30 s, and then more denaturation at 94 °C for 20 s, annealing at 56 °C for 20 s, extension at 68 °C for 20 s (total 30 cycles), final extension at 68 °C for 10 min, and then holding at 4 °C.

8.2. Extract and purify the PCR products (size 285 bp) with a PCR Purification Kit.

8.3. Ligate the purified PCR products into the T vector with 2 μ L T4 ligation buffer (10x), 50 ng T vector DNA (50 ng / μ L), 25 ng purified PCR DNA (285 bp), 1 μ L T4 ligase (3 units/ μ L), and place the ligation mix into an incubator at 16 °C overnight.

8.4. Transfer the ligation mix into DH5 α competent cell, grow on a LB ampicillin antibiotic agar plate, and incubate overnight at 37 °C.

8.5. Pick the single clones from the LB plate and verify them by genotyping and Sanger sequencing.

9. Detection of sgRNAs induced Indel mutation by nuclease digestion assay

9.1. Detect the sgRNA integrated single clone induced Indel rates by a nuclease test assay.

9.2. Separately prepare PCR amplicons with 50-100 ng Indel mutant (test) and wild-type (WT, reference) DNA as PCR template, 5 μ L polymerase reaction buffer (10x), 1 μ L dNTP (10mM), 1 unit polymerase (5 units / μ L), 1 μ L forward primer (10 μ M)(5'-GAGATGGCGGCGGGAAG-3'), and 1 μ L reverse primer (10 μ M) (5'-AAATATAGGGCGGCTGTTCACT-3'). The PCR reaction was performed with initial denaturation at 98 °C for 30 s, and then denaturation at 98 °C for 20 s, annealing at 56 °C for 20 s, extension at 72 °C for 30 s (total 30 cycles), and final extension at 72 °C for 10 min, and holding at 4 °C.

9.3. Set up the heteroduplex mixture group with 200 ng of the "reference" (20 ng / μ L) and 200 ng of "test" (20 ng / μ L) PCR amplicons in 0.2 mL PCR tube, and the homoduplex mixture group with only 400 ng of "reference" PCR amplicons as a control.

9.4. Separately incubate the heteroduplex and homoduplex mixture at 95 °C for 5 min in a 1 L beaker filled with 800 mL of water and then cool down gradually to room temperature to anneal and form heteroduplex or homoduplexes.

9.5. Separately digest 400 ng of the annealed heteroduplex and homoduplex mixture with 1 μ L indel mutation detection nuclease (2.5 units / μ L) and 2 μ L nuclease reaction buffer (10x) at 42°C for 60 min.

9.6. Analyze the digested samples with agarose gel electrophoresis, the heteroduplex mixture DNA should be cut into small fragments (70-250 bp), and the homoduplex DNA (320 bp) should not be cut.

REPRESENTATIVE RESULTS:

CRISPR-Cas9 technology is a powerful research tool for functional genomic studies. It is rapidly replacing conventional gene editing techniques and has high utility for both genome-wide and individual gene-focused applications. Here, the first individually cloned loci-specific CRISPR-Cas9-arrayed sgRNA library contains 1,070 sgRNAs consisting of sgRNAs targeting 303 random targeting genes, 60 positive controls, 500 non-Human-targeting controls, and 207 CTCF elements or lncRNA targeting genes in four *HOX* loci (**Figure 1, Table 1**). This library targets all CTCF core binding motifs, *HOX* gene associated lncRNAs, known regulatory elements, and several *HOX* genes as positive controls in the *HOX* loci. It also contains sgRNAs targeting random non-*HOX* genes, non-human genes and intergenic regions as negative controls. To enhance efficiency and specificity of CTCF site knock-out (KO) by lentiCRISPR transduction, each targeting site contains 5-10 sgRNAs (**Table 1**). In the protocol described here, sgRNA libraries are designed according to CTCF binding sites at the *HOXA/B/C/D* loci and lncRNAs in these loci, which is based on the Broad

Institute sgRNA tools (**Figures 1, 2**). After transduction at a low multiplicity of infection with a MOI of 0.3 in MOLM13 cells carrying the MLL-AF9 fusion, the infection rate is less than one sgRNA/cell followed by puromycin selection, and then the resistant clones grown from seeded single cell were screened for impairment of *HOXA9* gene expression.

The workflow for sgRNA library screening was briefly described (**Figure 3**). First, the virus containing sgRNA library were generated in HEK293T cells with the help of two vectors (psPAX2 and pMD2.G). sgRNA pooled library lentiviruses were concentrated and transduced into MOLM13 AML cells with polybrane (8.0 µg/mL). After a 48 h transduction, cells were treated with the optimal concentration of puromycin. After 5 days, the cells were seeded one cell/well into 96-well plates and the single clones were generated in the presence of puromycin. Finally, sgRNA single clones integrated into genome were identified by one-step RT-PCR, Sanger sequencing and Indel mutation detection (**Figure 3**). The puromycin resistant single clones are identified through one-step droplet digital RT-qPCR (RT-ddqPCR) according to altering expression of *HOXA9* oncogene (**Figure 4**). Genotyping and Sanger sequence were performed for sgRNA library construction and verification (**Figures 2, 4**).

sgRNA targeting MOLM13 positive clones in a 96-well PCR plate were further confirmed with the RT-qPCR method based on the expression levels of *HOXA9* genes through comparison with the control cells. Out of the 528 surviving clones screened, 10 clones exhibited more than 50% reduction in *HOXA9* levels (**Figure 4A**). sgRNAs integrated into the *HOXA9*-reduced, *HOXA9*-unchanged, and *HOXA9*-increased clones were further confirmed by PCR amplification of the sgRNA sequences using flanking vector primers. The purified PCR products were ligated into the T vector system through T4 ligase and sent out for identification by Sanger sequence (see step 8). The sequence data indicated that out of 30 clones sequenced, 21 clones included single sgRNA (**Table 2**). The categories of sgRNA were identified and analyzed according to the *HOXA9* expression levels. Six of ten clones showing a reduction in *HOXA9* levels contained sgRNAs targeting the CBS7/9 site, but not in the non-human genes, random human genes, and other CTCF site controls (**Figure 4 and Table 2**).

sgRNA integrated positive single clone-induced Indel mutations are determined by PCR-based genotyping and nuclease digestion based on the nuclease assay (**Figure 5**). The nuclease digestion assay has been performed to identify Indel mutations occurred in the CBS7/9 boundary in the representative *HOXA9*-reduced, *HOXA9*-unchanged, and *HOXA9*-increased clones. The results revealed that the CBS7/9 mutation has been found in 4 out of the 6 *HOXA9*-reduced clones: clones #5, 6, 28, and 121, but not in clones #15 and #31 (**Figure 5**). However, clone #15 contained the sgRNA targeting *HOTTIP* IncRNA site, while clone #31 contained several sgRNAs targeting *HOAIRM1* IncRNA, *HOTAIR* IncRNA, and *HOXD9/10* CTCF binding site (**Figures 4B, 5 and Table 2**).

FIGURE AND TABLE LEGENDS

Figure 1: Schematic diagram showing CTCF binding sites and IncRNAs in four *HOX* gene loci. Each targeting DNA element contains 5-10 different sgRNAs. CTCF ChIP-seq dataset was downloaded from GEO (GSM1335528) and visualized with Integrated Genomic Viewer (IGV). SgRNA targeting CTCF sites in *HOX* loci were labelled with orange scissors.

Figure 2: Schematic diagram representing the part of integrating sgRNA vector sequence and PCR amplification primers. The PCR amplification primers were designed according to the blank sequence of the sgRNA lentiviral vector. The forward primer (P1) was highlighted in yellow, the reverse primer (P2) was highlighted in red, and the sgRNA was highlighted in green in the sgRNA lentiviral vector.

Figure 3: Schematic diagram representing the workflow for sgRNAs library design, construction and verification. This workflow is as follows. First, the sgRNA library was designed and cloned into a lentiviral CRISPR vector, and then the lentivirus was packaged with the sgRNA library lentiviral vector, psPAX2 and pMD2.G vectors in the HEK293T cells. Next, MOLM13 cells were infected with a low MOI (0.3) virus and these cells underwent puromycin selection. Then, the single clone was seeded in a 96-well plate. Finally, the sgRNA single clones integrated into a genome were identified by one-step RT-qPCR, Sanger sequence and Indel mutation detection.

Figure 4: Pooled CRISPR-Cas9 KO library screening identified with one-step RT-qPCR and Sanger sequence. A. One step RT-droplet digital PCR screening of the *HOXA9* expression in single clones infected with lentivirus containing the sgRNA library. The screening of 528 sgRNA library infected clones for *HOXA9* expression levels is shown (528 dots). Ten of 528 clones exhibited more than 50% reduction in *HOXA9* levels (purple arrows). The red line signifies the boundary of a 2-fold decrease change by comparing with the control cells; the blue line signifies the boundary of a 2-fold increase change. **B.** The six clones #5, 6, 28, 121, 207 and 420 were targeted by the CBS7/9 specific sgRNA through Sanger sequence (green arrows). **C.** The RT-ddqPCR analysis of *HOXA9* levels in WT MOLM13 and the 21 clones containing single targeted sgRNA. The *HOXA9* expression data were grouped into five groups in accordance with the categories of sgRNA sequences: *HOXA7/9* CTCF site, non-human targets, other CTCF sites in the *HOX* loci, *HOX* associated lncRNAs, and other human targets (This figure has been modified from Luo et al.¹²). For statistics, this data was represented as the mean ± SD from three independent experiments with the Student's t-test.

Figure 5: Indel mutations of integrated sgRNAs positive clone confirmed with the PCR-based genotyping and nuclease assay. A. Genomic DNA was isolated from the representative CRISPR-Cas9 KO library screened clones that exhibited reduced, unchanged, or increased *HOXA9* expression levels. The heterozygous deletion of the CTCF site located between *HOXA7* and *HOXA9* genes (CBS7/9 boundary) was identified by PCR-based genotyping. The *HOXA9*-decreased clones #5, 6, 28, and 121 exhibited deletion in the CBS7/9 boundary location (black arrows). **B.** The Indel mutations in the CBS7/9 site were analyzed by the nuclease digestion assay from the representative clones that exhibited reduced (red line), unchanged (blue line), or increased (purple line) *HOXA9* expression levels. The *HOXA9*-decreased clones #5, 6, 28, and 121 exhibited mutations in the CBS7/9 boundary location (orange arrows). (This figure has been modified from Luo et al.¹²)

Table 1. sgRNAs pool library targeting information (This data from Luo et al. 12).

Table 2. Sanger sequencing results of sgRNAs presented in the selected *HOXA9***-decreased,** *HOXA9***-unchanged, and** *HOXA9***-increased clones.** *HOXA9*-decreased, unchanged and increased clones are highlighted in red, blue and purple, separately. (This data from Luo et al. ¹²).

DISCUSSION:

527

528

529 530

531532

533

534 535

536

537538

539

540

541

542543

544

545

546

547

548549

550

551552

553554

555

556557

558559

560 561

562

563

564

565

566

567

568569

570

Protein-coding gene related sgRNA libraries have been applied in a functional screening system to identifying genes and networks regulating specific cellular functions through sgRNA enrichment²⁴⁻²⁸. Several non-coding region related sgRNA libraries were also shown in genespecific functional screens for distal and proximal regulating elements, including BCL11A, Tdqf1a and drug-resistance regulating genes²⁸⁻³⁰. These sgRNA libraries were all generated by a detailed bioinformatics design, oligonucleotide synthesis, and sub-cloning the oligonucleotide pool(s) into vectors. The whole genome-wide screening approach is very powerful and useful but requires computational expertise for genome-wide sgRNA design and consistent funding for the expensive synthesis; thus, it is still challenging for most laboratories. However, our loci-specific sgRNA library screening approach is both convenient and efficient to identify the specific DNA element such as the CTCF binding site involved in chromatin organization and transcriptional regulation (Figures 1 and 2). By targeting the CTCF boundaries, we applied a one-step RT-PCR to evaluate sgRNA targeted clones according to the expression level of a specific marker gene, HOXA9. In addition, we performed Sanger sequencing to confirm these positive integrated sgRNAs clones (Figures 2 and 4). To functionally confirm these positive sgRNAs targeted clones, we carried out a PCR-based genotyping and mutation detection assay in order to determine whether the sgRNA induces the target site insert or deletion mutations (Figure 5). This gives us a promising method to target specific non-coding DNA elements and evaluate their biological function in mammalian cells.

In our protocol, we mentioned that a specific oligonucleotide design will ensure more efficient sub-cloning into lentiCRIPSRV2 vectors and more reliably generate an accurate sgRNA library (steps 1 - 2). In order to obtain the high titer sgRNA library lentivirus, the lentiviral supernatant should be concentrated 50-fold using the concentrator following the protocol (step 3), and stored in a -80 °C freezer in multiple aliquots (steps 3.1 - 3.5). An additional concern is finding the optimal MOI value for transduction. If the MOI is too low, the number of infected cells will decrease and lead to sgRNA screening failure. If the MOI is too high, it will integrate more than one sgRNA into a single cell, and it will interfere with the sgRNA library screening through the one-step RT-PCR and Indel mutation detection. Therefore, before screening, finding the optimal MOI for each group of cells through titration of the lentiviral library is an important step. Titration of the lentiviral library in MOLM13 leukemia cells and evaluation of the MOI will be carried out in the protocol (steps 5.1 - 5.10). Moreover, a thorough lysing of cells for reverse transcription can ensure successful one-step RT-PCR. This can be done by increasing the incubation time for lysis at all temperature stages in the protocol (steps 7.5 - 7.6). Therefore, in order to enhance the efficient for screening of the pooled CRISPR-Cas9 KO library, thorough cell lysis and reverse transcription play a critical role in determining the one-step RT-qPCR (steps 7.1 - 7.14). Additionally, increasing the quality of PCR products can ensure successful indel mutation detection, because low quality PCR products will affect the heteroduplex/homoduplex generation process (steps 9.1 – 9.6).

In addition, the method can be used to identify the role of CTCF in HOX gene regulation in early embryonic development and certain leukemia with aberrant HOX gene signature. For example, HOX genes play critical roles during embryonic development and all four clusters of HOX gens are temporally and spatially restricted in their expression patterns in embryonic development. Furthermore, NPM1 mutations are among the most common genetic abnormality in AML and account for 30% of AML patients with normal cytogenetic karyotype³¹. This subset of AML exhibits an aberrant HOXA and HOXB gene signature, which becomes a dominant mechanism of leukemic transformation¹⁷. It is critical to elucidate how HOX gene are regulated in normal development and dysregulated during leukemogenesis. We and others have shown that CTCF plays an essential role in chromatin organization and gene transcription in HOX loci^{9,12}. Thus, the HOX loci focused sgRNA library screening provides a convenient means to entangle the specific function of the CTCF binding site in HOX gene regulation during development and hematopoietic malignancies. However, a limitation of the approach is the difficulty of finding a useful marker for the high-throughput next-generation sequencing. One of the future research goals will be to find a highly selective marker and carry out genomewide next generation sequencing in order to see the marker's effects. Therefore, using a specific fluorescent marker-tagged gene as the tracking reporter will become a crucial tool in future research plans.

Enhancers play a multitude of critical roles in the regulation of promoter function and gene expression. However, it can also activate promoter activity from long distance in a position and orientation independent manner, and enhancers often regulate gene expression in a *trans* orientation. Thus, it is challenging to pinpoint the enhancer(s) for specific genes, especially in the post-genomic era. Traditional reporter assays and correlative functional analyses (e.g., chromatin immunoprecipitation and DNasel hypersensitive assays) have been used to examine enhancer function^{32,33}. Similarly, small scaled locus-focused screenings were also applied to explore the activities of distal and proximal regulatory elements for specific genes³⁴. Recently, the pooled sgRNA-KO library strategy that targets non-coding regulatory elements in the *HOX* gene loci successfully identified a CTCF binding site located between *HOXA7* and *HOXA9* genes, as well as a *HOTTIP* lncRNA that is critical for controlling posterior *HOXA* chromatin domain organization, which drives ectopic *HOXA* gene expression in acute myeloid leukemia (AML)¹². These studies demonstrated that the pooled sgRNA-KO library screening is also a powerful genetics approach to identify and evaluate biological function of non-coding elements in our genome in situ.

CTCF, as a chromatin insulator protein, plays an important role in genome organization by defining chromatin neighborhoods for specific gene expression patterns in specific cell type^{11,35}. Alteration of topologically associated domain (TAD) structure changes the enhancer/promoter interactions, resulting in a diseased state^{5,11}. CTCF is highly conserved in metazoan and is enriched at the TAD boundaries. However, it remains unclear whether and how CTCF contributes to maintain chromatin boundary structure and TAD formation. Although the pooled CTCF sgRNA-knockout library screening was focused on the four *HOX* loci, it proved to be a powerful method to identify and dissect CTCF boundaries, and define TAD domain as well as enhancer/promoter interaction and transcription within the TAD domain¹². Additionally, this method can be

- 615 efficiently applied to identify the IncRNA elements and transcription factors that mediate
- chromatin conformation and accessibility activity in *HOX* loci. We are also trying to explore the
- 617 CRISPR/sgRNA library containing the genome-wide CTCF sites through next generation
- sequencing identification according to the CTCF ChIP-seq and ChIA-PET data in future research.
- Thus, this strategy can be extended to a whole chromosome or even the whole genome.

ACKNOWLEDGMENTS:

The authors also thank Nicholas Cesari for editing the manuscript. The work was supported by grants from National Institute of Health (S.H., R01DK110108, R01CA204044).

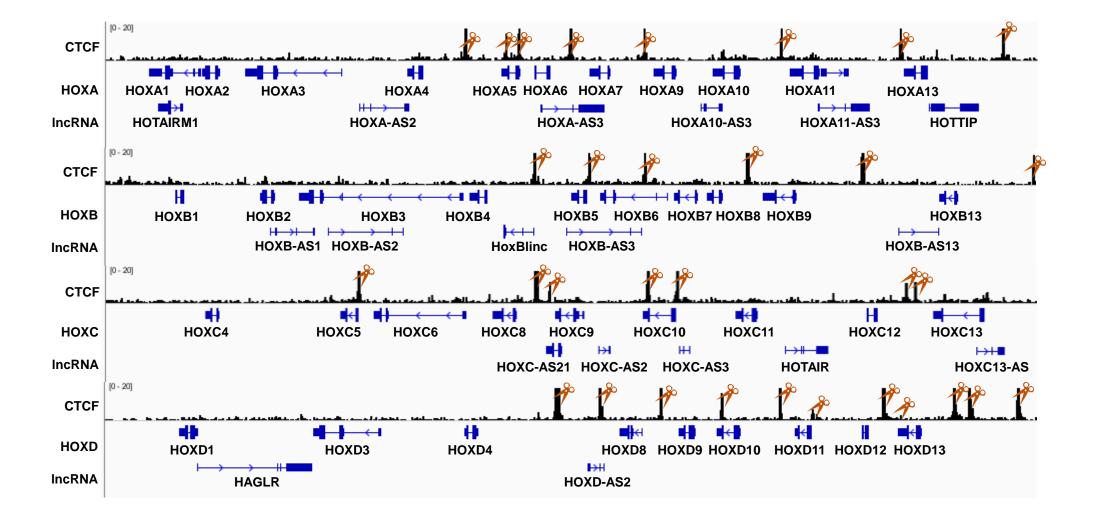
624 625

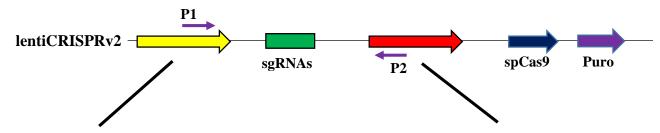
DISCLOSURES:

We have no conflicts of interest related to this report.

627 628

626

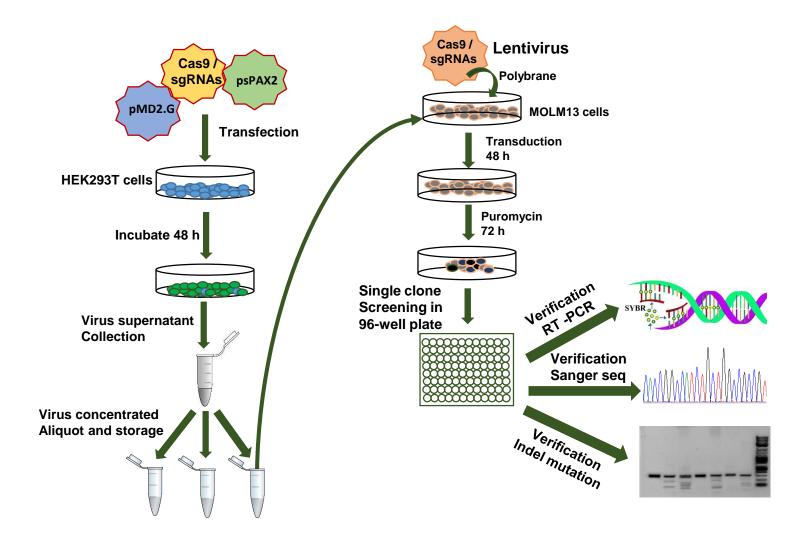

REFERENCES:

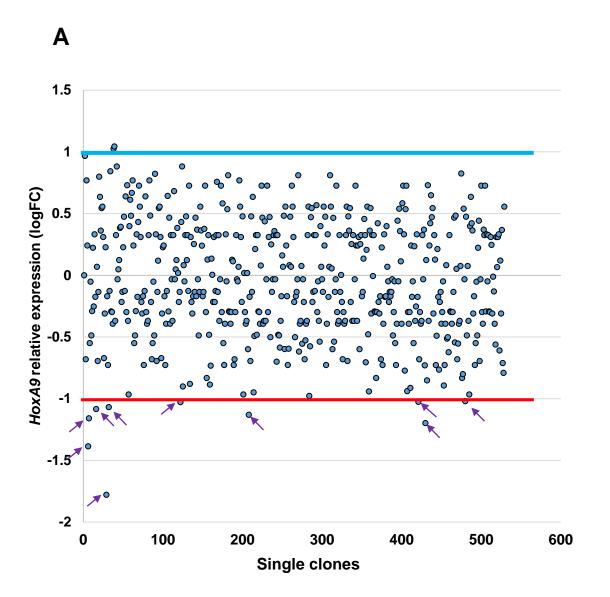

- 1 Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis of
- chromatin interactions. *Nature.* **485** (7398), 376-380, doi:10.1038/nature11082 (2012).
- Cuddapah, S. et al. Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. *Genome research.* **19** (1),
- 633 24-32 (2009).
- 634 3 Phillips, J. E., Corces, V. G. CTCF: master weaver of the genome. *Cell.* **137** (7), 1194-1211,
- 635 doi:10.1016/j.cell.2009.06.001 (2009).
- Tang, Z. et al. CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin
- Topology for Transcription. *Cell.* **163** (7), 1611-1627, doi:10.1016/j.cell.2015.11.024 (2015).
- Lupianez, D. G. et al. Disruptions of topological chromatin domains cause pathogenic
- rewiring of gene-enhancer interactions. *Cell.* **161** (5), 1012-1025, doi:10.1016/j.cell.2015.04.004 (2015).
- Dowen, J. M. et al. Control of cell identity genes occurs in insulated neighborhoods in
- mammalian chromosomes. *Cell.* **159** (2), 374-387, doi:10.1016/j.cell.2014.09.030 (2014).
- 7 Phillips-Cremins, J. E. et al. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. *Cell.* **153** (6), 1281-1295, doi:10.1016/j.cell.2013.04.053
- 645 (2013).
- Narendra, V., Bulajic, M., Dekker, J., Mazzoni, E. O., Reinberg, D. CTCF-mediated
- topological boundaries during development foster appropriate gene regulation. Genes &
- 648 Development. **30** (24), 2657-2662, doi:10.1101/gad.288324.116 (2016).
- Narendra, V. et al. CTCF establishes discrete functional chromatin domains at the Hox
- clusters during differentiation. *Science.* **347** (6225), 1017-1021, doi:10.1126/science.1262088
- 651 (2015).
- Deng, C. et al. HoxBlinc RNA Recruits Set1/MLL Complexes to Activate Hox Gene
- Expression Patterns and Mesoderm Lineage Development. Cell Reports. 14 (1), 103-114,
- 654 doi:10.1016/j.celrep.2015.12.007 (2016).
- 655 11 Patel, B. et al. Aberrant TAL1 activation is mediated by an interchromosomal interaction
- in human T-cell acute lymphoblastic leukemia. Leukemia. 28 (2), 349-361,
- 657 doi:10.1038/leu.2013.158 (2014).

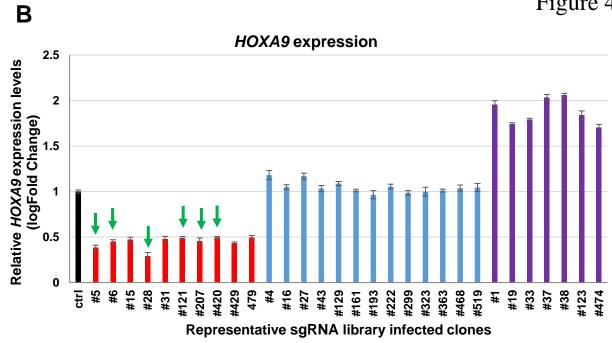
- 658 12 Luo, H. et al. CTCF boundary remodels chromatin domain and drives aberrant HOX gene
- transcription in acute myeloid leukemia. *Blood.* **132** (8), 837-848, doi:10.1182/blood-2017-11-
- 660 814319 (2018).
- Dou, D. R. et al. Medial HOXA genes demarcate haematopoietic stem cell fate during
- 662 human development. *Nature Cell Biology.* **18** (6), 595-606, doi:10.1038/ncb3354 (2016).
- 663 14 Lawrence, H. J. et al. Loss of expression of the Hoxa-9 homeobox gene impairs the
- proliferation and repopulating ability of hematopoietic stem cells. Blood. 106 (12), 3988-3994,
- 665 doi:10.1182/blood-2005-05-2003 (2005).
- 666 15 Deng, C. et al. USF1 and hSET1A mediated epigenetic modifications regulate lineage
- differentiation and HoxB4 transcription. PLOS Genetics. 9 (6), e1003524,
- 668 doi:10.1371/journal.pgen.1003524 (2013).
- 669 16 Rawat, V. P., Humphries, R. K., Buske, C. Beyond Hox: the role of ParaHox genes in
- 670 normal and malignant hematopoiesis. *Blood.* **120** (3), 519-527, doi:10.1182/blood-2012-02-
- 671 385898 (2012).
- 672 17 Alharbi, R. A., Pettengell, R., Pandha, H. S., Morgan, R. The role of HOX genes in normal
- 673 hematopoiesis and acute leukemia. *Leukemia*. **27** (5), 1000-1008, doi:10.1038/leu.2012.356
- 674 (2013).
- 675 18 Rice, K. L., Licht, J. D. HOX deregulation in acute myeloid leukemia. *Journal of Clinical*
- 676 *Investigation.* **117** (4), 865-868, doi:10.1172/JCI31861 (2007).
- Bassett, A. R., Kong, L., Liu, J. L. A genome-wide CRISPR library for high-throughput
- 678 genetic screening in Drosophila cells. *Journal of Genetics and Genomics.* **42** (6), 301-309,
- 679 doi:10.1016/j.jgg.2015.03.011 (2015).
- 20 Zhu, S. et al. Genome-scale deletion screening of human long non-coding RNAs using a
- paired-guide RNA CRISPR-Cas9 library. Nature Biotechnology. 34 (12), 1279-1286,
- 682 doi:10.1038/nbt.3715 (2016).
- 683 21 Kurata, J. S., Lin, R. J. MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-
- associated miRNAs. RNA. **24** (7), 966-981, doi:10.1261/rna.066282.118 (2018).
- 685 22 Collins, C. T., Hess, J. L. Role of HOXA9 in leukemia: dysregulation, cofactors and
- essential targets. *Oncogene*. **35** (9), 1090-1098, doi:10.1038/onc.2015.174 (2016).
- 687 23 Kroon, E., Thorsteinsdottir, U., Mayotte, N., Nakamura, T., Sauvageau, G. NUP98-HOXA9
- expression in hemopoietic stem cells induces chronic and acute myeloid leukemias in mice. *The*
- 689 *EMBO Journal.* **20** (3), 350-361, doi:10.1093/emboj/20.3.350 (2001).
- 690 24 Koike-Yusa, H., Li, Y., Tan, E. P., Velasco-Herrera Mdel, C., Yusa, K. Genome-wide
- 691 recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library.
- 692 *Nature Biotechnology.* **32** (3), 267-273, doi:10.1038/nbt.2800 (2014).
- 693 25 Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science.
- 694 **343** (6166), 84-87, doi:10.1126/science.1247005 (2014).
- 695 26 Wang, T., Wei, J. J., Sabatini, D. M., Lander, E. S. Genetic screens in human cells using
- the CRISPR-Cas9 system. *Science*. **343** (6166), 80-84, doi:10.1126/science.1246981 (2014).
- 697 27 Zhou, J. et al. Dual sgRNAs facilitate CRISPR/Cas9-mediated mouse genome targeting.
- 698 The FEBS Journal. **281** (7), 1717-1725, doi:10.1111/febs.12735 (2014).
- 699 28 Sanjana, N. E. et al. High-resolution interrogation of functional elements in the
- noncoding genome. *Science.* **353** (6307), 1545-1549, doi:10.1126/science.aaf7613 (2016).

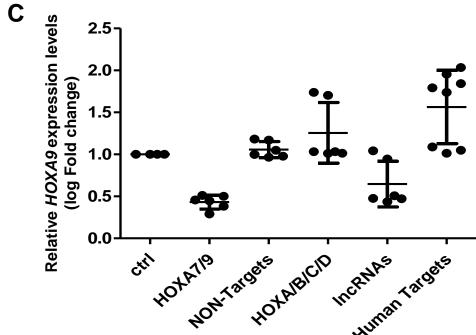
- 701 29 Rajagopal, N. et al. High-throughput mapping of regulatory DNA. *Nature Biotechnology*.
- 702 **34** (2), 167-174, doi:10.1038/nbt.3468 (2016).
- 703 30 Korkmaz, G. et al. Functional genetic screens for enhancer elements in the human
- genome using CRISPR-Cas9. *Nature Biotechnology.* **34** (2), 192-198, doi:10.1038/nbt.3450
- 705 (2016).
- Rezaei, N. et al. FMS-Like Tyrosine Kinase 3 (FLT3) and Nucleophosmin 1 (NPM1) in
- 707 Iranian Adult Acute Myeloid Leukemia Patients with Normal Karyotypes: Mutation Status and
- 708 Clinical and Laboratory Characteristics. *Turkish Journal of Haematology.* **34** (4), 300-306,
- 709 doi:10.4274/tjh.2016.0489 (2017).
- 710 32 Yaragatti, M., Basilico, C., Dailey, L. Identification of active transcriptional regulatory
- modules by the functional assay of DNA from nucleosome-free regions. *Genome Research.* **18**
- 712 (6), 930-938, doi:10.1101/gr.073460.107 (2008).
- 713 33 Wilken, M. S. et al. DNase I hypersensitivity analysis of the mouse brain and retina
- 714 identifies region-specific regulatory elements. *Epigenetics Chromatin.* **8** 8, doi:10.1186/1756-
- 715 8935-8-8 (2015).
- 716 34 Narlikar, L., Ovcharenko, I. Identifying regulatory elements in eukaryotic genomes.
- 717 Briefings in Functional Genomics and Proteomics. 8 (4), 215-230, doi:10.1093/bfgp/elp014
- 718 (2009).
- 719 35 Hnisz, D. et al. Activation of proto-oncogenes by disruption of chromosome
- neighborhoods. *Science*. **351** (6280), 1454-1458, doi:10.1126/science.aad9024 (2016).

Figure 1

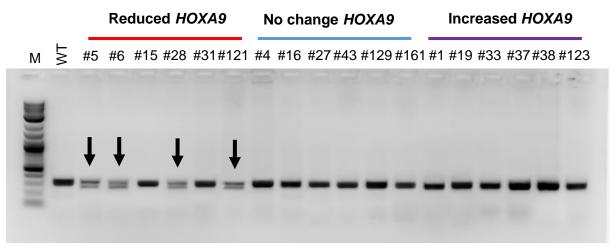


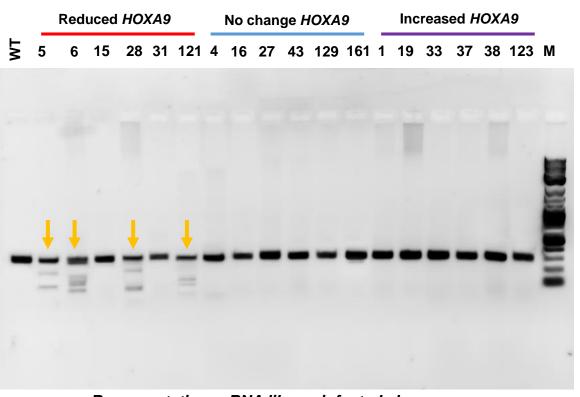

PCR product (~ 285 bp) is amplified from genomic DNA


TAGTAGA


PCR#1 Forward primer (P1): AATGGACTATCATATGCTTACCGTAACTTGAAAGTATTTCG


PCR#2 Reverse primer (P2): TCTACTATTCTTTCCCCTGCACTGTTGTGGGCGATGTGCGCTCTG





Representative sgRNA library infected clones

Representative sgRNA library infected clones

Lane 1: WT(reference) PCR products (homo-duplexes)
Lane 2-19: WT/test PCR products mixed (hetero-duplexes)
Land 20: marker (M)

Gene/Motif	sgRNA sequence	Gene/Motif	sgRNA sequence
ABCC1	AAAATGTGATTGGCCCCAAG	HOXD89-F-3	AGCTTTACGAGATCAGAAAG
ABCC1	AACCTGACAGCATCGAGCGA	HOXD89-F-4	AATTAAATTCAGTGGACTGG
ABCC1	AGTACACGGAAAGCTTGACC	HOXD89-F-5	AAAAATTAAATTCAGTGGAC
ABCC1	CAAGTTCGTGAATGACACGA	HOXD89-F-6	TAAATTCAGTGGACTGGAGG
ABCC1	CCAGCCGAAAGAGAGTTCCA	HOXD10-F-1	CGCTCTTACTGATCTCTAGG
ABCC1	GCGCCACCGGCATGGCGCTC	HOXD10-F-2	TAACGCTCTTACTGATCTCT
ABCC1	TAGAAGTAGCCCTGCCAGTC	HOXD10-F-3	AGAGCGTTAACCTCACCGAC
ABCC1	TCTGCTTCGTCAGTGGCATG	HOXD10-F-4	GATCTCTAGGCGGCGCTCGC
ACAD11	AGAACGTTCAGCCATATATG	HOXD10-F-5	TGATCTCTAGGCGGCGCTCG
ACAD11	CCACTCCGATAGCTGTTGCA	HOXD10-F-6	CTAGGCGGCGCTCGCGGGTG
ACAD11	CCTTGGCCAAAAGTAGAACA	HOXD10-11-F-1	AACGTGAGCGCGCCCTCGTG
ACAD11	CTGAGCCAATGTTTCTACCG	HOXD10-11-F-2	GGGCCTGGAGATCCACACGA
ACAD11	TGCAGTGATACTTCTGTCAT	HOXD10-11-F-3	GGGGCCTGGAGATCCACACG
ACAD11	TTACGTAATGGAACATGTGC	HOXD10-11-F-4	TCTTGGTCAAACGCGGCTTC
ACAD11	TTGTTTGTACAGACTCGGAA	HOXD10-11-F-5	GCGCCCTCGTGTGGATCTCC
ACKR3	AAGACAGCGATAATGGAGAA	HOXD12-13-R-1	GCCAATGCCGCCCAATGCCC
ACKR3	ACTGGACGCCGAGATGGCTC	HOXD12-13-R-2	GAGCGCGCTCGCCATCTCCT
ACKR3	CATCTCGGCGTCCAGTGACC	HOXD12-13-R-3	GCCGCCCAATGCCCAGGAGA
ACKR3	CCAACAATGAGACCTACTGC	HOXD12-13-R-4	GGAGCGCGCTCGCCATCTCC
ACKR3	CCGTTTCCTTACCTCCGGGC	HOXD12-13-R-5	CGGCTGCGCCCGATAGGCA
ACKR3	GCACTGCTACATCTTGAACC	HOXD12-13-R-6	CTCGCCATCTCCTGGGCATT
ACKR3	GCATTATATACACTGCAGAA	HOXD12-13-R-7	GCTCGCCATCTCCTGGGCAT
ACKR3	GGTCCACGCTCATGCACGTG	HOXD13-1-R-1	GACATCTAGCGCCAGGCGTG
ACSL3	ATGATTACTGCAATATCTGA	HOXD13-1-R-2	TTGCAGGGACATCTAGCGCC
ACSL3	CGAGTGGATGATAGCTGCAC	HOXD13-1-R-3	GGACATCTAGCGCCAGGCGT
ACSL3	GAAAGTTCGAAGCTTGCTAG	HOXD13-1-R-4	GGGACATCTAGCGCCAGGCG
ACSL3	GCAATGGTTTGCTATGAGGT	HOXD13-1-R-5	GGCTCCACTTCCCGGCCCGG
ACSL3	GTGGTGAAGAGTAACCAATG	HOXD13-1-R-6	TTCGGCTCCACTTCCCGGCC
ACSL3	TAACATACCCATGCTGGCCT	HOXD13-1-R-7	GGCGCGCAGTTCCCCACGCC
ACSL3	TATCTAAAGTATCACATCCA	HOXD13-1-R-8	CAGTGTTCGGCTCCACTTCC
ACSL3	TCACATAGTAACATTATTGC	HOXD13-2-R-1	ATGCCTTTATTGCTGTCGTT
ACTC1	CGATGGACGGGAAGACAGCG	HOXD13-2-R-2	TCACAGCAGCCGAAACCGCG
ACTC1	CTACAACTCACCAATGAAGG	HOXD13-2-R-3	AAACCGCGAGGAAAACAGAT
ACTC1	CTGGGCTTCATCACCTACGT	HOXD13-2-R-4	AACCGCGAGGAAAACAGATG
ACTC1	GGTACGGCCAGAAGCATACA	HOXD13-2-R-5	ACCGCGAGGAAAACAGATGG
ACTC1	GTGCTATCCCTGTATGCTTC	Non-Targeting Control 1	ACGGAGGCTAAGCGTCGCAA
ACTC1	GTGTGACATTGATATCCGCA	Non-Targeting Control 2	CGCTTCCGCGGCCCGTTCAA
ACTC1	TCTTCATGAGGTAGTCAGTG	Non-Targeting Control 3	ATCGTTTCCGCTTAACGGCG
ACTC1	TGGTACGGCCAGAAGCATAC	Non-Targeting Control 4	GTAGGCGCGCCGCTCTCTAC
ADGRE2	ACCGTCACAAGTCTCCATGG	Non-Targeting Control 5	CCATATCGGGGCGAGACATG
ADGRE2	AGACAAGGCCCACCACAGAA	Non-Targeting Control 6	GCGTGCGTCCCGGGTTACCC
ADGRE2	CAGACTCACCCCTGGAGTCC	Non-Targeting Control 7	CGGAGTAACAAGCGGACGGA
ADGRE2	CGAGAAAGACGAGAAAGACG	Non-Targeting Control 8	CGAGTGTTATACGCACCGTT
ADGRE2	CTGTTGCAGCATTCTGTGTC	Non-Targeting Control 9	CGACTAACCGGAAACTTTTT
ADGRE2	GAGAGCGAGAACACGTGTCA	Non-Targeting Control 10	CAGGAGTCGCCGATACGCGT
ADGRE2	GCACATCGTAGTGGGCCATG	Non-Targeting Control 11	TTCACGTCGTCTCGCGACCA

ADGRE2	TCCACCAGCACTCACACGGT	Non-Targeting Control 12	CGCTAGTACGCTCCTCTATA
ADGRG6	AACCCATTGGTAACCTACTG	5 5	CTATCTCGAGTGGTAATGCG
ADGRG6	AGCCAATATTACCAACATTG		AATCGACTCGAACTTCGTGT
ADGRG6	AGCGTATCATCCCTGTTACC		ACGTTCGAGTACGACCAGCT
ADGRG6	CAATAATGAATCGTATTTCC		GGTCACCGATCGAGAGCTAG
ADGRG6	CTAACAGAATCGATAAACAA		CGTATTCGACTCTCAACGCG
ADGRG6	TATCTGAATGATATAACCGG		GAATCGACCGACACTAATGT
ADGRG6	TCCTTAAGGACACGGCAACT	0 0	ACTTCAGTTCGGCGTAGTCA
ADGRG6	TTTGACCTGTTCCACAATGT		CGCCTAATTTCCGGATCAAT
ADK	AAAGTCGAATATCATGCTGG		CGTGGCCGGAACCGTCATAG
ADK	ACAGCAGAGATGTCAAGCAG		ACATAGTCGACGGCTCGATT
ADK	GAGCCACTTTAATTGAATTC		CGCCGGGCTGACAATTAACG
ADK	GCTTGACATCTCTGCTGTAG		CGTCGCCATATGCCGGTGGC
ADK			
ADK	GTAGTAATGAGCATCCACAT TCTGGAGAAAAACTGGATGT		CGGGCTTCGGAGATACTTCA
			CGCCACCTCCCCAAAATCTA
ADORA2A ADORA2A	AAGCAGTTGATGATGTGTAG		CGGGACACACACACACACACACACACACACACACACACA
	ATGCTAGGTTGGAACAACTG		TCGGCATACGGGACACACGC
ADORA2A	CTCCACCGTGATGTACACCG		ATCGTATCATCAGCTAGCGC
ADORA2A	CTCCTCGGTGTACATCACGG		CGACGCTAGGTAACGTAGAG
ADORA2A	GAAGGGATTCACAACCGAAT		CATTGTTGAGCGGGCGCGCT
ADORA2A	GCGGCGGCCGACATCGCAGT		CCGCTATTGAAACCGCCCAC
ADORA2A	TAGCCATTGGGCCTCCGCTC		TTTACGATCTAGCGGCGTAG
ADORA2A	TGGCTTGGTGACCGGCACGA		GGTTAGAGACTAGGCGCGCG
ANKDD1A	ACGCACGTGGTTTCTGGCCC		CCTCCGTGCTAACGCGGACG
ANKDD1A	ACTTACATGATCAACCACGT		TTATCGCGTAGTGCTGACGT
ANKDD1A	GGCTGTGCTGCAGCGACTTG		CGCGGCCCACGCGTCATCGC
ANKDD1A	GGGGAACACTGCCCTTCATC		AGCTCGCCATGTCGGTTCTC
ANKDD1A	GTAGCCACTTACATTGTCCA		AACTAGCCCGAGCAGCTTCG
ANKDD1A	TCGACGCCATCGAGCAACAG		CGCAAGGTGTCGGTAACCCT
ANKDD1A	TGCGGTAGGGGCCCTCACAG		CTTCGACGCCATCGTGCTCA
ANKDD1A	TGTGCTGGCGTTCATAATGG		ATAGCCGCCGCTCATTACTT
ANKRD32	ACTATGAATTATATAGTCCT		GTCGTCCGGGATTACAAAAT
ANKRD32	AGAGACCATGTATAGAACCC		TATCGCTTCCGATTAGTCCG
ANKRD32	AGGAAAGTGGATACTAACCA		GTACCATACCGCGTACCCTT
ANKRD32	CATGGCTATTAAGACAGATG	<u> </u>	TAAGATCCGCGGGTGGCAAC
ANKRD32	CCATCTTAAATCCTGTCATC	Non-Targeting Control 47	GTTCGCTTCGTAACGAGGAA
ANKRD32	GCATGAAGAACGCATACAGG	Non-Targeting Control 48	GACCCCGATAACTTTTGAC
ANKRD32	GCTTATCAGTTCTAACAAGG		ACGTCCATACTGTCGGCTAC
ANXA8L1	ACCTTGAAGTCTGAGCTCAG	Non-Targeting Control 50	TGGTTCCGTAGGTCGGTATA
ANXA8L1	ACTTACCCAGGCTTTCCACC	Non-Targeting Control 51	CGCTAGGTCCGGTAAGTGCG
ANXA8L1	CATGGCGTCATGCAGCTCCT	Non-Targeting Control 52	AGCACGTAATGTCCGTGGAT
ANXA8L1	CCAAGAGAAGCAACACGCAG	Non-Targeting Control 53	AAGGCGCGCGAATGTGGCAG
ANXA8L1	CCCTCTACAAAGCCATGAAG	Non-Targeting Control 54	ACTGCGGAGCGCCCAATATC
ANXA8L1	CTTGCCGAACTGAGCCTTGA	Non-Targeting Control 55	CGTCGAGTGCTCGAACTCCA
ANXA8L1	TCTGTATGGCGGATACATAA	Non-Targeting Control 56	GCCGTGTTGCTGGATACGCC
ANXA8L1	TGTGAGCAGCTTTGTGGACC	Non-Targeting Control 57	TACCCTCCGGATACGGACTG
APOOL	AGCGGTGGTGCAGTATATAT	Non-Targeting Control 58	CCGTTGGACTATGGCGGGTC

APOOL	GCAGCTAGTGAAACCAGAGC	Non-Targeting Control 59 A	AGAGTAGTAGACGCCCGGG
APOOL	GCGGTGGTGCAGTATATATG	, , , , , , , , , , , , , , , , , , ,	GGCTCGTTCTACGCACTGA
APOOL	TCAGTCCGTAATAATTGCTA		CCAGCGCGAGCTTACTCGT
APOOL	TGTAACAACCAGTTGCAGTG		AATCGGCGACGTTTTAAAT
APOOL	TGTACATGCAGCCAAACAAG	, ,	TACCCCTATGGCCGTTCTA
APOOL	TTGTAGACATGGCGGCCATC		ACCCACGCGTATTCCATCT
APOOL	TTGTTACATTGGCTGGTGCA		TTGTTGCGTATACGAGACT
AQP3	ATCTTTGCTACCTACCCCTC	<u> </u>	GCGAACCCCGTAGCCAGGCT
AQP3	CAAGCTGCCCATCTACACCC		CGGGAGATTAACGTTAATT
AQP3	CAGCACACACACGATAAGGG		TCTCGGGTCGACTGCGGAT
AQP3		 	GCCGGGACCGTTAGGGAAT
	GATGGTGAGGAAACCACCGT		
AQP3	TACAACAACCCCGTCCCCCG		GCAAACCCGAGTGACACGTC
AQP3	TGCCCCGGCTGAGCACAACC		TGCGTGAGTATTAACGCTC
ARHGEF37	ATACAATCTGGACATCCCCG		GGCCACGAATTCCGCCGCC
ARHGEF37	ATTTAGAAGAGAGGTTCCAG		TTAAGGCCCGCGCATTAA
ARHGEF37	CAGATTCCTCCATGATCTGC		TCCTTACGTCGGGCATTAA
ARHGEF37	CCGGGAGCTCATCGACACTG		TTCCTTCGGCGCTCTGCGT
ARHGEF37	GACGAGCCATCCTCCAGGTC		TGCGCTTTAATCGCCGTTC
ARHGEF37	GAGGAACAAGTGCAGCTAGT	 	TAGCCCTCGATTGGTTGCG
ARHGEF37	GCACATTCGTGACCCTCCAG		ACGCTGTCGTACGTGTATA
ARHGEF37	TGCAGCCTCCAAGTACACCA	Non-Targeting Control 79 T	AACGCGCATATCTGAACAC
ARID1B	AAGTTGCTTCCGTTCCCGTG	Non-Targeting Control 80 C	GCTAGGTTATTTCGTGGCC
ARID1B	CAAAGTTGCTTCCGTTCCCG	Non-Targeting Control 81 C	GGCCGCATCCTGTTATATT
ARID1B	CAGCAGAGCAGTCCGTACCC	Non-Targeting Control 82 C	TGGATCGCCCGCAGAAATA
ARID1B	CTGCCCATGCCATACAACTG	Non-Targeting Control 83 A	TTAGCCGTTGCCATATCAA
ARID1B	GGAAGCAACCAGTCTCGATC	Non-Targeting Control 84 A	CCCGATAATAGCTACTGGT
ARID1B	GTAATTATTAAACTCCGGGA	Non-Targeting Control 85 C	CCGCCGAAGACCCTGCTTG
ARID1B	GTCCGACCCTGGATGCCAAT	Non-Targeting Control 86 C	TTACGCGCCTGGTCAAAAG
ARID1B	TGAGTGCAAGATCGAACGTG	Non-Targeting Control 87 C	GCATAAGTCGATAGACACA
ATF1	AAGTATCTGCTGTCCATCAG	Non-Targeting Control 88 G	TCATCAGCGATTTGACGAG
ATF1	ATCTGTCTTAGTTGTCTGAG	Non-Targeting Control 89 C	GAATCGGAACTTTGTACCG
ATF1	CAACTGTAAGGCTCCATTTG	Non-Targeting Control 90 A	GGTCAAGCCGACCTCGAAC
ATF1	CCCATCTATCAGACTAGCAG	Non-Targeting Control 91 T	GCGCCTTACTCGTTAACTG
ATF1	GCGCCGTGCTAGGATCCCGT	Non-Targeting Control 92 A	TCTGAGCGTTTTCGGCCGC
ATF1	TTATCTTCTGAAGATACACG	Non-Targeting Control 93 T	GACGCGATAGAGTTGGCTT
ATF1	TTGTACGACCACCTGATTGC	Non-Targeting Control 94 G	GAATTACGACTAACCGATT
ATG2A	CACTGCACAGTGCGCGTGTC	Non-Targeting Control 95 G	GGTGCCCACTAATAGCCGC
ATG2A	CCTCTGCACACGGACCTCGA	Non-Targeting Control 96 T	GCAGTCGCGCTGAGCGTCA
ATG2A	GGAACGTGGTGTGGCCGTCG	Non-Targeting Control 97 G	GATTGAATGGCTAACGCGG
ATG2A	GGAGTCAATGGAGTCACCGC	Non-Targeting Control 98 G	SACGTAGCCTTCCGAAATAT
ATG2A	GGCGGCTGATGCACGTCCAC		GTTCGAGACCTACTTAAGT
ATG2A	GGTCTTCGGCACCTAGCGGG		GGCTTTGTTGCCCGTAAGC
ATG2A	GTACCTGTCCGACAAGTGTG		AGGCGCCCGTAGCATTGGA
ATG2A	TTATACCGAACATGGCTACA	 	CGGCGTCTGGGAATCGTTC
ATXN2L	AACTTACCACAACAGCTGTA		TCAATCACCTCACGGTAAG
ATXN2L	AAGACACTCACAGGTGACTG		GGTTTACATCTGCCCATCG
ATXN2L	CAAACTGGCAGCCCCCCGGT		GGTATAGACGCGATCCTCA

ATVNOL	CCACAATCTCCTCCCACCA	Non Torgating Control 10	A C A C C C C T C T C T C T A T
ATXN2L ATXN2L	CCACAATGTCCTCCGACGA		ACAGCGCTCTTCCCCACTAC
	CTTCAACACCCTAACCTCAA		ACTAGCCTGTCACATAACCTCA
ATXN2L	CTTCAAGACGCTAAGCTCAA		GACCGCGTGAGATAACGTCA
ATXN2L	TCCTCCTTTAAGATCCGGGG		AAAACATCGACCGAAAGCGT
BCLAF1	ACCTAGAAGATCTATATGAC		ACACCGAAGCACCTGTACGT
BCLAF1	AGACGACCTTATGGGTACAG		CCTACGCGGTAGGGAACTTT
BCLAF1	ATTCATCGATAGACTCAGAT		AAGCACTAGTCCGTATGATG
BCLAF1	GCTTGATAGGGGTAATACCA		AGGCGCCAACATTGACCGTA
BCLAF1	TAAAGAGACTGGATATGTAG		CGTCGGGTAGCTATTTCTTT
BCLAF1	TACCTGTTAGAATCATCAAG		TACTGGAGTTTGCGACTCGG
BCLAF1	TTCCTCTTGATGATTCTAAC		AACATCTCGTTAGGGGTATC
BIN1	ACCTGGCCTCCGTCAAAGGT	Non-Targeting Control 11	GTCAGGTAATAGTCGGACTC
BIN1	AGTCACGCATTGCCAAGCGG	Non-Targeting Control 11	TTCGAGGTCCGGACAGGTCG
BIN1	CATCACTCCTACCTGAGATG	Non-Targeting Control 11	AGCTGCGCGCTACTGGATCA
BIN1	CCAGCTGCTTGTTGAAATTC	Non-Targeting Control 12	GCAAAAACCCAACGCTATTC
BIN1	CTGCTCAAACTGCTCATCCT	Non-Targeting Control 12	GCCGCCGATTTCATAAGTAA
BIN1	TGAGGCAAACAAGATCGCAG	Non-Targeting Control 12	GTTCCGTGAGGGTTACTTCA
BPGM	AAGAAATCTACAACGACCGG	Non-Targeting Control 12	TGTCTTTAAACACGCCATCG
BPGM	ACTCAACAGCGAAGGAATGG	Non-Targeting Control 12	ACAAAATGCCGTGCGTCAAT
BPGM	CTTGGATCAACTGCCACGGT	Non-Targeting Control 12	ACGCTCAGCACCCGCTATGC
BPGM	GATGAGGCCCAACAGCACGC	Non-Targeting Control 12	CGAAACCCTCTTAAGTTAAC
BPGM	GGATCGCCTCTTGGTCACCC	Non-Targeting Control 12	CCATTCTCAACCGGTCCAAT
BPGM	GGCCTTGATCGGTCTCAACA	Non-Targeting Control 12	GTTATTGACCCGTCGGGAGT
BPGM	TCCTTTAAGCTTTCCGACCG	Non-Targeting Control 12	GGTTTCACTTCGAGACCGGC
BRD8	AAGAGGAGGCTGAAGTAAAG	Non-Targeting Control 13	CCCCAACTTTCGCGACTCCG
BRD8	AGGAGGTGATTATCCACTTG	Non-Targeting Control 13	CGGCACACCAATGCGTTCGT
BRD8	ATAAGTACCTATATCTCTCC	Non-Targeting Control 13	ATCGATATACCGCCATAAAA
BRD8	CAGGAGTCAGGACTTAGATG	Non-Targeting Control 13	GGGACGCGAAAGAAACCAGT
BRD8	CTGTTGAAGATGTTATTGTT	Non-Targeting Control 13	TGTCATTAGCGTAACGATAT
BRD8	GATATTGCTGTGTCTTACAC	Non-Targeting Control 13	AGGGCGAGCAGCAGAGTACG
BRD8	TCTTGCTTGACCGTCATTTC	Non-Targeting Control 13	CGTCCAGAAGAACGGCCCCT
BRD8	TGGGACACAGACTCTACAGG		GATGGCGCGCAGTTGAGTCA
C10orf91	ACGCAGAGAAAGCGCTCTCG		GCGATCGGAGTGCCACGATA
C10orf91	ATGCGTCCAGCAAGCTCCCA		GTTACCTGCTACGAAAACGA
C10orf91	CATGTGTACTGAGTTATCCT		ATACCAGATGCGTCCGCTTG
C10orf91	CCATGTGTACTGAGTTATCC		AGGATCGTGTACCGGGGACG
C10orf91	CGCATGACCAGGATTCTGGG		CGACAACGTGCAGGTGTATC
C10orf91	GAAATGTGGAGTTTCCTCCC	ů č	TTATGTGAGCACGCCATTAC
C10orf91	TGCAGCTACCTCTCAGCTCC		CGACGGTAATGCACCTACTA
C10orf91	TTCCCCGCTTCAGGCTTCGA		CAGCGCCGAAACTCTTTCCG
C10orf91	TTTCTCTACAGCGTGTCCAT		TCGTAAACACACGACCAAGT
C10orf95	AGCAACGCAGCTACAAAGTG		ACTACTCCGGCAAATACTCG
C10orf95	AGCCCCGCTCTGGATCCCGC		CTAATCACGACCTCACCCTA
C100ff95	AGCTGGCCGCCCCAAACA		TTGCGTCAGCGCTGCACATC
C100ff95	CCTACGCCACGACCCTGCGC		CGGTGTGCCCCCAAATATTG
C100ff95			
	GAAGCGGTGGTATTCCCGTG		TATACTGCGGATCAATCTTTT
C10orf95	GGGTCGTGGCGTAGGCCGGA	Ivon-Targeting Control 15	ACGATCGGTAATGGTCTGTT

C10orf95	GGGTGACGCGCACGTCGGCG	Non-Targeting Control 15	GGGCCTACGATCAGAGGTGT
C15orf41	ACATGCCAAACATCATACTT		AGTTGAATGGACCTCGACTA
C15orf41	CAATTGAAAGTTATTACCAG		GAGTAATTTCGAACGTATTG
C15orf41	GAGGTTTCTACAGGAACACG		TTCCACGGTAAAATCGGTCA
C15orf41	TCTGCTGAGCATCTTCTCCC	<u> </u>	CCGGCAAGAAACTATACTTG
C15orf41	TGCTTCCGAAGTATGATGTT	5 5	CCGCTGTCTCACTAATCTCA
C15orf41	TGCTTGATGCAGTCCACTAG		TGCTACCTTCGGGACCACCA
C15orf41	TGGTAGGCGCACAGACACT		CTTAGCTGACCGACAAGGTG
C16orf59	AAGCAGCTTCCCAGAACTCG		CCCTTCTGGCGGGCCAAACA
C16orf59	AAGGCTGTACGAGTTCGAAG		TCTGACGATTAATGCTTCTA
C16orf59	AGGGCCAGAAACTAATGGAG		CAGACGGTTGGTAAGGACGC
C16orf59	CACCGCCGAGCAGCCCGC		GGGACTGATATATGGCGAAC
C16orf59	CGGGCTTTGAAGCCACCTCC		CAGGTTTGCACGCATAGCTA
C16orf59	GGGTCCTCTCCATTAGTTTC		GGCCGTCGTATTCCCCCAAG
C16orf59	TCAGACACGAGACCCACCAA		CTCCCATTGATCTACGATGG
C16orf59	TTGCAATTGTCGCTGTGCGC		TTTCGTGCCGATGTAACACA
Clorf86	AACCAGGGGCGGCCGCCAGA	5 5	GCCTATCGGCATTCCCACTG
C1orf86	CCGACAGTGAAGACTTCAGT		CAACGACGGCCTAGTCTCA
C1orf86	CGCGGCTGGGGTTGAGCCGC		GATATCCCGCGAAAAAATCT
C1orf86	CGGCGGCTCAACCCCAGCCG		CGCCTCTCACGTGTAGGCTT
C1orf86	GCAGCCGGTAGGAACGGCCC		GGGCGCTAAGATATATGCCC
C1orf86	GGAGCTGATCCTGGATCACG		CGTTGGGCATAGCGAACACT
C1orf86	GGGGCCGGGCCGTTCCTAC		GCGGGCGGTGACTTTCAAG
C1orf86	TCACCCCCAGGAGAAACCA		AAGGGCGTGCCCTGCGTTGT
C2orf82	CACCGTCGCGCCAGGACCCG		GATCCAGGAGTGATCGAGTA
C2orf82	CATCGTGATCGCCGCCCTGC		AGCATTTGCGCGGCAACTGT
C2orf82	CCAGCAGCAGCGCCATGCGC		TTGTCCCTGAGAAAACGCGG
C2orf82	CTCTTACCTGTGAGCACCGC		GTCCTCATCCGGTCAGGCTG
C2orf82	CTTACCTGTGAGCACCGCAG		TATAGCTGTTTCGAAGGCGC
C2orf82	GCCCACGCTGTGGAACGAGC		TGAATCGTAACCTCGCCATT
C2orf82	GCCGTCGGGAGAAGGCCCCG		AGGACTAGTGTCGCACTCAG
C2orf82	GGCCGGCTCGTTCCACAGCG	Non-Targeting Control 18	GGCACTCCGAAAGACCTTAT
C9orf41	ACCTAGCATAGCTATTTCCC	Non-Targeting Control 18	GACCGCAAAGTGGTCCGAAG
C9orf41	ATGCTAGGTTATGCTTGTCA	Non-Targeting Control 18	GTTGCGAGTTACTATTGGTT
C9orf41	ATGTATGCAATCATTCACAA	Non-Targeting Control 18	TCTAAAGCCGTCCTGATGTT
C9orf41	GCCAGCATCTACATTTGACA		GCCGTGGTATCAAGTCGGTA
C9orf41	GGGCTCCTTACCCGTAGTAG		CGCAATCCCTTAGGATAGCC
C9orf41	TACTCAAGCCAGGTGGAATT	Non-Targeting Control 19	CTAGAGGGGTATAGCAACAA
C9orf41	TCCATGTCAAATGTAGATGC	Non-Targeting Control 19	GAAAACACGATGACGTCTCT
CABIN1	AGTGATTAGGTTATCCAAAC		GACGCCCTAATGCCCATCGT
CABIN1	CTGGAGAACCTAACCAACGG		GGATATTGAGTAAACCCGAT
CABIN1	GGGGGATCCGGATGAGCCTC		TGACTCGGGCAATATCGGTT
CABIN1	GTAATCGTGGTCAATCGGAG		GATCTAGTCCTCTAATCGAT
CABIN1	GTACTTCATCTGCAAAGCTT		GGTACCTGAACAACGGCACC
CABIN1	GTAGTGCAGCAAGTAAACGG		TGGCGGCCCAAACTTAACAC
CABIN1	TGAAATGATAATCAGCCAGG		GGGCGGTCAGGTCGCTCCGA
CACNA1A	CGTCAGTTTCATCCTCGGCG		TCCGGAGGCTCAAACCAAGT

CACNA1A	CTCACCACCCCTTCACACAT	Non Torgating Control 20	CCCGTGGCGTGCGCACCTGT
CACNA1A CACNA1A	CTCACCAGCCGTTCAGACAT		
CACNA1A CACNA1A	GACACACACACACATACTTCAT		GGCTGGTTGACGACTCCTGA
	GACACAGAACCATACTACAAC		GCCATTCTAGTCCCGGCATA TGAATGGAATAGAAAGGATG
CACNA1A	GCGCTCCAGCCACGCTGA		TGAATCGAATACGGGGAAGGG
CACNA1A	GTTTGACCTACGGACGCTGA		CCAATGATAAGCCCGAACGG
CACNA1A	TCCACAAAGGCTCCTACTTG		AGCGATTCACGTATTAGATG
CACNA1A	TCTCACCTTGTACGACGGTG		ATGCTGCAGCTTTACGATCA
CALB1	AGCCGAGTATACAGACCTAA		GTGTATGATGCTTCGACTTA
CALB1	CAGTATGGGCAAAGAGATGA		ACAGCCCTCACGAGCCCGAA
CALB1	CCAGATCTCGAAAAACTGTG		GCTGTTGTAACGGTAGATAT
CALB1	CCAGCAGCTGAAGTCCTGTG		CATTGCACGCCACAGCATTG
CALB1	CGAAAGAAGCTGGATTGGT	Non-Targeting Control 21	CCAGCAATACCCCGGTATGG
CALB1	TACCTTCATGAATTCCTCAC	Non-Targeting Control 21	TCGAGATGCGCAGCAGATGA
CALB2	ACAGGAAATGGGTATATTGA	Non-Targeting Control 21	ACGGGGTGAAACCATGTCGT
CALB2	ATGTCAAAGAGTGACAACTT	Non-Targeting Control 21	AGCTAGCGATGGCTCTAAGT
CALB2	CTCCAGCGCCGAGTTTATGG	Non-Targeting Control 21	GGTCCGCGCACAAGAGCAGG
CALB2	GAACTGGGACGCCGTCAGCT	Non-Targeting Control 21	TCCTCGATAGCTGGAATCCA
CALB2	GCTGACGGCGTCCCAGTTCC	Non-Targeting Control 21	TACGGATCACCAAATCTTAG
CALB2	GGCAAGGAAAGGCTCTGGCA	Non-Targeting Control 21	ACCGCTCATATAGGTAAAAA
CALB2	GGGACGCCGTCAGCTCGGCC	Non-Targeting Control 21	AGTATTGTGGTGTCGTCAAC
CALB2	TGGAAGCACTTTGACGCAGA	Non-Targeting Control 22	GCTCGCAAGTATTTAAGGAC
CASC4	ACAATAATACCTTTCCCATG	Non-Targeting Control 22	GCCAGGGTTCTTGGTCCCGA
CASC4	CAAGAAACAGATCGACCAGA	Non-Targeting Control 22	GTCGCTGCGCCAGTGAGAAC
CASC4	CAAGCAATCATATTCCACAT	Non-Targeting Control 22	CAGGCTGCGCTTCGCAAGCT
CASC4	CATATTCTAACCTCTTCACA	Non-Targeting Control 22	GATTGTGGTCGCTCAAAACC
CASC4	CATCATTTGATTGAATCTTT	Non-Targeting Control 22	CTTAGGATTCCGAGGTATCT
CASC4	GAACAACATATCGTATCAGA	Non-Targeting Control 22	GAACTGGCAAACAGGCGTGG
CASC4	GGGCCTCGGGAAGAGATGCG	Non-Targeting Control 22	ATAGCAGGACGAGGTTCCTT
CASC4	TGCTCCAGTAGTTGAAGGCG	Non-Targeting Control 22	GCACGCTGTACAGACGACAA
CCDC115	ACGAACGGTGTTGAACGCCC		GAGAGCGTTAGCGTGGGATG
CCDC115	AGCTGGTGTCCACGCCCCAG		TTCAATTCACCGAGGGCGCA
CCDC115	AGTTCCTCACAGTCTACGTC	Non-Targeting Control 23	ATGTCTAGACCTAATCGTTT
CCDC115	ATGTGGGAAGCATACTGCAG		GCTGAACGCCGACAGGACGG
CCDC115	CCGGTTCTGGGGTCTTAGTG		GCCCAGACGCCCTAGAATAG
CCDC115	GCCTCCAGAACCGCATTGAC		GGGATGCGTCTTGCTAAACC
CCDC115	GGCTTCGACCCCAGTCAATG		ATCGTTGCTGACAGGATCTA
CCDC115	GGGGGCTCACCTGCTTCGCG		TAGTCTCACCTGATGGCGTG
CCDC121	AACTGAGCGAGCCAGACAGG		GTTATCCTGTCGAAGTAAAG
CCDC121	AATTTGTTCTGCATATCTGG		CAGCGGTGCTATTTGGTCTT
CCDC121	AGCACCGAACGAATAAACTA		CGCACATCTAAAGTTACTAC
CCDC121	CCAGCGGAAACAGCTACTGG		GTAGGGTACAGCGTCAGCTT
CCDC121	CTGAGACAGCTTCAAAGACA		GAAATGCTATGCTTCGGTTC
CCDC121			AATGCGAGTGTATCCGCAGT
	TAATCAGTGCCTAAATAGAC		
CCDC121	TCGGGCTTATTCGGTAGCCG		TTTATGCATTTAATACGCCG
CCDC121	TTGGAACATCCTGTCTATTT		TCCGTCTGCTTCATGAGCGG
CCL19	AAGTTCCTCACGATGTACCC		CTAACGGACTGCAGAACGGA
CCL19	ACCCCAGGTTCACCACACTG	Non-Targeting Control 24	CATGGCCTACGGTGTCTTTG

CCL19	ACCCTCC ATCCCCCTCCTAC	Non Torgeting Control 24	CTGGCCGAATCTCACTATGT
CCL19	ACCCTCCATGGCCCTGCTAC	9 0	
	AGTTCCTCACGATGTACCCA		GGGGCTTACGTGATAACCGA
CCL19	CCCACAACTCACACTACAGC		ACACCCATTCTCATAACGGA
CCL19	GAGCTGGCGGCCCCTCAGTG		GGCCACGAGAGGGCGAGAGG
CCL19	GGGAAGTCCAGAGAACCAGC		TAACCGATACTCCCCACATT
CCL19	TGCAGCCATCCTTGATGAGA		GAGAGTGCGCCTTGATAGTA
CCL3L3	AGCCATGGTGCAGAGGAGGA		GGATTTGTCGCTTGCCACAC
CCL3L3	ATTCTGTGGAATCTGTCGGG		ATTGCTCTGTCGCATCAATC
CCL3L3	CACAGCTTCCTAACCAAGAG		CTCAGTGGATACGATTTGCT
CCL3L3	CCCCTCAGGCACTCAGCTCC		ACTACTGGCTATCCGCGCCA
CCL3L3	GAGGACGGCAAGGGCAGCAG		ACCCAATGTGGCGGAGCCGA
CCL3L3	TAGTCAGCTATGAAATTCTG	Non-Targeting Control 25	TAGGAGCTGTATCTAGTGGC
CCL3L3	TGCCGTCCTCTCTGCACCA	Non-Targeting Control 25	CCAATCTTGAACGTCATGTT
CCL3L3	TGGACTCACGTGGTGCAGAG	Non-Targeting Control 26	ACCCATATATGCTGCCGCAC
CCL5	AAGGAGTATTTCTACACCAG	Non-Targeting Control 26	CATAGGTCCCTAGCAACTCC
CCL5	ACTGCCCCGTGCCCACATCA	Non-Targeting Control 26	TTCGTAGGAACTAAACTGTA
CCL5	AGGTACCATGAAGGTCTCCG	Non-Targeting Control 26	CGGTGCTGTGAAAGCCGAGC
CCL5	CTGAGACTCACACGACTGCT	Non-Targeting Control 26	ACGGTTATGGTCTCATGGGG
CCL5	GCAATGTAGGCAAAGCAGCA	Non-Targeting Control 26	AACTAGAATAGGCGGGCTTG
CCL5	GTAGAAATACTCCTTGATGT	Non-Targeting Control 26	TAATCACATTGCTTAACCGG
CCL5	TCAAGACCAGGACTTACATG	Non-Targeting Control 26	CGCCCGTTTATGTGGCTACC
CCL5	TCCCGAACCCATTTCTTCTC	Non-Targeting Control 26	GAGTACAGCGATTCCTCATG
HOXB4-EX1-1	GTGCACCGTGCAGCGCTACG	Non-Targeting Control 26	TTTCTAGTTACTACTGGACG
HOXB4-EX1-2	ACCGCCCGGTCTGTCCCCTC	Non-Targeting Control 27	CACGCACAATCCTTCACGCA
HOXB4-EX1-3	GCCCGAGGGGACAGACCGGG	Non-Targeting Control 27	TGCCGCTATACTAAAACCTT
HOXB4-EX1-4	CGAGGGGACAGACCGGGCGG	Non-Targeting Control 27	GTTTACTCATATCCAGTCAC
HOXB4-EX1-5	TGGCGCCCAGGAGCCCGAG	Non-Targeting Control 27	TCGGCTCCTGAAGCCAGTAT
HOXB4-EX1-6	AGCCGGAGGCGGGCTTCGGG	Non-Targeting Control 27	TCGATGTAGCCCCGCCCAAG
HOXB4-EX1-7	CACCGCCCGGTCTGTCCCCT	Non-Targeting Control 27	AGACCCCGTAGGCAGGACGT
HOXB4-EX1-8	GGAGCCCGAGGGGACAGACC	Non-Targeting Control 27	TCCCAAGGGTTTAAGTCGGG
HOXB4-EX1-9	GTGGCGGCGCAGGAGCCCGA	Non-Targeting Control 27	CGTGCCTTTACATTCACTTT
HOXB4-EX1-10	AGCGCTGGCCGGGCTCCGGG	Non-Targeting Control 27	GCTGTTCCGAAGTTGAGAAT
HOXB3-EX3-1	GGTGCCGGGACCGCACTTTG	Non-Targeting Control 27	ACTAGAGTCATGATCAGCGA
HOXB3-EX3-2	ACTAGCAACAGCAGTAATGG		CTGCCCCAGGCGTAATCCTC
HOXB3-EX3-3	GTGCCGGGACCGCACTTTGG		GTCCCGTGATTTTAGCCAGG
HOXB3-EX3-4	AGCAACAGCAGTAATGGGGG		GGTCTCACCTGCACCCCGAA
HOXB3-EX3-5	GGGGCGGCCCAGCAAAAG		TAGTCAACATTCGCAAGAGG
HOXB3-EX3-6	GCAACAGCAGTAATGGGGGC	5 5	GTAGCTGCTGTAAATCGCAT
HOXB3-EX3-7	CTGTTGCTAGTGGCACTGGT	9 0	CGAAACCTCCTAACTGAGAG
HOXB3-EX3-8	CCCATTACTGCTGTTGCTAG		ATAAGCCACACTACCCGCCT
HOXB3-EX3-9	CACTAGCAACAGCAGTAATG		TACGTAAGTGACGACAGGAA
HOXB3-EX3-10	AGCTCAACGGCAGCTGCATG		CTTTATCTGGCGTGGGGTAT
DPY30-EX4-1	TGATCCAGGTAGGCACGAGT		CCCCTATGCAGACTACAATT
DPY30-EX4-2	GTTGTGCCTATCTTATTACA		CTGGTGACCGACAATTACAC
DPY30-EX4-2	CACAACTGTCTGATCCAGGT		ACGTGGGGACATATACGTGT
DPY30-EX4-4	AGAAAAGTCATCAAAGCAGA		GTTCCCCGGGAAGTCTATGC
DPY30-EX4-5	AGGCACGAGTTGGCAAAGAC	INOn-Targeting Control 29	ATTTCCCTACGGAGATATCC

DDV100 DV11 6	mmagg, , cmggmgggm, gg		
DPY30-EX4-6	TTTGCCAACTCGTGCCTACC		ATCAAGTCAGGTTATGCGGG
DPY30-EX4-7	TAGGCACAACTGTCTGATCC		GGATACCTGGGCCGACTTTC
DPY30-EX4-8	GCAAGTCCCTGTAATAAGAT		CGCAGGCTAGATGACACCAG
DPY30-EX4-9	AGTTGTGCCTATCTTATTAC		TTCGGAACTTACTCAGGGTA
DPY30-EX4-10	GGGACTTGCTGTGCTTGCAA	Non-Targeting Control 29	AAGCGGCACACATGACAAG
WDR5-EX3-1	TCCGTGAAATTCAGCCCGAA	Non-Targeting Control 29	GTAAAGAAGCGGAAAGGTCC
WDR5-EX3-2	AATTCAGCCCGAATGGAGAG	Non-Targeting Control 30	TACGTCATTAAGAGTTCAAC
WDR5-EX3-3	ATTCGGGCTGAATTTCACGG	Non-Targeting Control 30	CGATGGATCCCTAGTTCCTG
WDR5-EX3-4	CGGAGGACACTGCTTTGGTG	Non-Targeting Control 30	GCTGCGGCGAGATCACATAA
WDR5-EX3-5	TTTCACGGAGGACACTGCTT	Non-Targeting Control 30	CAGAGCCTTGCGCAATTTTG
WDR5-EX3-6	CTTGCCAGCCACTCTCCATT	Non-Targeting Control 30	CCGCGCATTTCAGAGCACAA
WDR5-EX3-7	GCTCTAAAGTTCACCCTTGC	Non-Targeting Control 30	ACCTATTGTCCCTTCAAGCT
WDR5-EX3-8	CAGCCCGAATGGAGAGTGGC	Non-Targeting Control 30	TTGCAAAGCTGATCGGCTGT
WDR5-EX3-9	TTGCCAGCCACTCTCCATTC	Non-Targeting Control 30	AAAATTATCGGAAACGGTAG
WDR5-EX3-10	TCCATTCGGGCTGAATTTCA		AGTCATAACTGAGTGAATCG
HOXA5-EX1-1	AACTCCCTAAGCAACTCCAG		TAGTTACAGACTCAGCGGGT
HOXA5-EX1-2	CAGCAGAGAGGGGGTTGGCA		CACTTACACATGAGGCGGTA
HOXA5-EX1-3	AAGCAACTCCAGCGGCGCCT		ATAGAAGTGTGACCGCTGGG
HOXA5-EX1-4	CCCACATCAGCAGCAGAGAG		GTATTAAGATGCGTCTTAGA
HOXA5-EX1-5	TGGCACGGCGTCCGGAGCCG		ACTGAGTGGGTAACACGCAT
HOXA5-EX1-6	CCACATCAGCAGCAGAGAGG		CCTAAGGGGTACCACCATGG
HOXA5-EX1-7	GATGTGGGTGCTGCCGGCGT		TCCCCGAGACCATCTTAGGG
HOXA5-EX1-8			TACCCTGGATTGTCCTTGCG
	CACCCACATCAGCAGCAGAG		
HOXA5-EX1-9	GCTGGCAGGGGGCTCCTCCT		ACGCCATATTTCTGGCTCTA
HOXA5-EX1-10	CGCACTCGCCTGCTCGCTGC		CATCTGTAGGGTTGCAAGCC
HOXA10-EX1-1	AGATCGAAACCGCGCCCCGG		TAGCTCGAGTCATTTCTCTA
HOXA10-EX1-2	GAGATCGAAACCGCGCCCCG		TTTAACTGTCCCGGTGTGCA
HOXA10-EX1-3	AGCCTCCGGCTCGGCCGATG	<u> </u>	CCTCGTCCAGATTCCGGCGG
HOXA10-EX1-4	GCCCGCGCTAGCCTCCGGCT		TGGATCGGCAGTGGTACTGG
HOXA10-EX1-5	GGGGGCGCGCGAATCGA		AAATACAAGCTATAGCGATA
HOXA10-EX1-6	CTCCCGCCCGCGCTAGCCTC	Non-Targeting Control 32	CATGAGCGCATTGAATAATA
HOXA10-EX1-7	CCGGCTCGGCCGATGCGGCC	Non-Targeting Control 32	GACTTTGGTTGAGCTTCAAT
HOXA10-EX1-8	GCCGAGCCGGAGGCTAGCGC	Non-Targeting Control 32	GTTGGCATATTGGCCCAGAC
HOXA10-EX1-9	GCCGCTGCCGCAAGCCAGCG	Non-Targeting Control 32	GGAACCCTCCCTGCGATAGA
HOXA10-EX1-10	GGCGCGCAGCAACTCGGGGC	Non-Targeting Control 32	CGACCCGGAGGATGAGATGT
HOXA45-R-1	AAGATAAATCTGCACACCCT	Non-Targeting Control 32	TATTTTGACTTGACGCAGGC
HOXA45-R-2	TCACAGTCAATTCACCCGCT	Non-Targeting Control 33	CGGGATGGTCCCTGCCGAGA
HOXA45-R-3	CACAGTCAATTCACCCGCTT	Non-Targeting Control 33	TAGATTGGCCCCACAAAGCG
HOXA45-R-4	GTTGGGAGAGCTGGCCCAAG	Non-Targeting Control 33	GAACCCAACCTTTTACCGCA
HOXA45-R-5	TGTACTAAAGCGTGCTCTGC	Non-Targeting Control 33	GTACACACTTATGCCATCAC
HOXA45-R-6	TTGGGAGAGCTGGCCCAAGC	Non-Targeting Control 33	TTCCTGCCCGAACTGCAGAA
HOXA67-F-1	TCCCGGCGACGGCCACGGCG	Non-Targeting Control 33	CGGCTGAGGCACCTGGTTTA
HOXA67-F-2	TGCCACGCCGTGGCCGTCGC		AGGTTGAATACCCCTTACTA
HOXA67-F-3	GCCGGTCCCGGCGACGGCCA		CCTGCGCGTAGAACAGTGGT
HOXA67-F-4	CGCTCGCTGCTGCCACGCCG		AATCGCAGGTATCCCAGAGC
HOXA67-F-5	GCCACGCCGTGGCCGTCGCC		ACAAACGACCTTGAGCAGGG

HOXA67-F-7	GCTGGCGCCGGTCCCGGCGA		GGCTGGTTGACCTTCCCGCT
HOXA67-F-8	ATTATTTATTGCGACCGTGC	<u> </u>	GATGTGATCTATGGTTGCGA
HOXA79-R-1	GAGGCTGCAGTACCAAACGG	Non-Targeting Control 34	ACGTCAACTGCTGGAGTGGG
HOXA79-R-2	AACGGCGGCCAGCAGATGGC	Non-Targeting Control 34	ATTTAAACCGTTACACAGTC
HOXA79-R-3	ACCAAACGGCGGCCAGCAGA	Non-Targeting Control 34	CACGCCAACTAAAACTGCAG
HOXA79-R-4	GGAGCCACACTGCCATCTGC	Non-Targeting Control 34	CCTAGAGGTCCCAAGGCGTG
HOXA79-R-5	GCGGCCAGCAGATGGCAGTG	Non-Targeting Control 34	CCGTTGATCCCCAGGCGTGC
HOXA79-R-6	CGGCGCGGAAGCCTCTTGCA	Non-Targeting Control 34	CCTCGATGGTCACCTGTAGC
HOXA1011-N-1	GGAAGTGCGCCATCTCGTGG	Non-Targeting Control 34	GTGCGCATGGGCTGATGTTA
HOXA1011-N-2	ATCGGAAGTGCGCCATCTCG	Non-Targeting Control 35	AGACTCGTATTGTCATATTA
HOXA1011-N-3	GGCGCGCAGCCGCCACGAGA	Non-Targeting Control 35	GGATCTAGCTACCTCAAAAG
HOXA1011-N-4	CTGGAACTCCGGCCCAACCT	Non-Targeting Control 35	AGAACCCAGACGCCAGCGGT
HOXA1011-N-5	CCGGCGGCTTTGACATTGAT	Non-Targeting Control 35	GGGACATCCTTGCCGTCTCA
HOXA1113-F-1	GGAGGCTTGTCAACGCGAGG	Non-Targeting Control 35	AGCATTCTCACCAAGACCGA
HOXA1113-F-2	TAGCTGGATTAGTAGATCAA	Non-Targeting Control 35	GAGTGTAAGCTAACACTCTG
HOXA1113-F-3	TTAGCTGGATTAGTAGATCA		ATACAATACTTTGGCGCATA
HOXA1113-F-4	TTGGTTGAAGAATTACAAGG		CTCCCTGCCGGCCGGGTTAG
HOXA1113-F-5	GCTCATGAATTGGCCTTAGC		GAACCTCCCCGAATATCTGG
HOXA13-F-1	GAATGCTAGACTTCAAAAAG		ATCTTCAGGGTAACTACGAA
HOXA13-F-2	CTAGACTTCAAAAAGCGGCA		TTCTAAGCCACGTGTGGTAC
HOXA13-F-3	GCTAGACTTCAAAAAGCGGC		AGAAACTGAACTATCCTACT
HOXA13-F-4	TAGACTTCAAAAAGCGGCAG		TCAATTCTCACTCACGACCA
HOXA13-F-5			
	CTGCTCCTCGGGCCGAGACT		CGAAGTCTTTCTTAGATGGT
HOXA13-F-6	GGAAACCGAGTCTCGGCCCG		ATGCGAAACGACATTTATTA
HOXA13-F-7	CGGCAGGGGAAACCGAGTCT		CATGATAGATCAGTCTTCCC
HOTTIP-1	GGCTGGAGATCCTACTTGAG		AGTGGGGCGCTAAGTGGGGG
HOTTIP-2	CCAAAATAGAGTGAAATAGC		CCCAATGGCTTCTGCGTGAC
HOTTIP-3	CAAGAAAAAGGGGCTCTTTG		CTTTTTTATTTATCGATCG
HOTTIP-4	GTAGGATCTCCAGCCTGCAG		TGTAGCTAAGTGAGTATGCC
HOTTIP-5	GACTGGTTCTTGGGCAAAGA		AGTAGACGGACGGTGAGCTG
HOTTIP-6	CAGGCTGGAGATCCTACTTG		TCTACGTGTAGTTGTACATA
HOTTIP-7	GTTGCATTTCCCAGGCACAG	5 5	GGTTTTATAAGGGTGGGCCT
HOTTIP-8	AGAGGAAAGGCTTCTTGGAC	Non-Targeting Control 37	TCGGAAGCAAACTTCTGGAG
HOTTIP-9	TAGGATCTCCAGCCTGCAGA	Non-Targeting Control 37	TTAGCCAGTAGTGCATATGA
HOTTIP-10	ACAAGAAAAAGGGGCTCTTT	Non-Targeting Control 37	GGGACTGTAGGAACATCCGC
HOTAIRM1-1	AGCTGCTGCGGCGACTGCAA	Non-Targeting Control 37	AAGAATTAGGCACGGTTACT
HOTAIRM1-2	CTAGGCGGCGGCAGCTGCTG	Non-Targeting Control 37	TTTTTCTCACCCGATGAATC
HOTAIRM1-3	GCGGGCGGGCAGCGAGTC	Non-Targeting Control 37	AAACCCTATGCCCAAATGAG
HOTAIRM1-4	CGCAGCAGCTGCCGCCGCCT	Non-Targeting Control 37	CATTAGTCTGATACCTGTGC
HOTAIRM1-5	CTCCCGGAGGCCTGGCGGGG	Non-Targeting Control 38	GGTGCTTAGCTCTGCGCACA
HOTAIRM1-6	TCCCAGCCCCACCTCCCGG	Non-Targeting Control 38	ATGCCTTAGACTTAACCTCG
HOTAIRM1-7	CCAGTTCATCTTTCATTGAA	Non-Targeting Control 38	CCAGTGCCCTTTTGTCGCAA
HOTAIRM1-8	CAAAGGCCGATTTGGAGTGC	Non-Targeting Control 38	AGCGATCTGGACACTCTCCA
HOTAIRM1-9	GCCCGCCCGCCAGGCCTCC	Non-Targeting Control 38	AGTCTTAAAGACCCTAAGCT
HOTAIRM1-10	GCCTCCCAGCCCCCACCTCC	Non-Targeting Control 38	AGGTAAGCCCCTTAGAACTG
HOXB45-R-1	GGGGCTCCTCGGGAGCAGAA		GTGTAAATCTGTCCAAGTAG
HOXB45-R-2	CTCTAGCCCTGTGAGCACAG		GACCTATGCCAGAAAGTTCG

HOVD 45 D 2		N. T. d. G. t. 120 ATCCCCA CCTCCA CA ATTTTT
HOXB45-R-3	GGGCTCCTCGGGAGCAGAAG	Non-Targeting Control 38 ATGCGCAGCTCCAGAATTTT
HOXB45-R-4	AGGGGCTCCTCGGGAGCAGA	Non-Targeting Control 38 GGTCCCTCAGGGTGCAACTT
HOXB45-R-5	AGCGGCCCTTCTGCTCCCG	Non-Targeting Control 39 GCCCCAAGCTAGAACTCAGC
HOXB45-R-6	GAAGGGCCGCTGTGCTCAC	Non-Targeting Control 39 CCATTCCGTAAGGGCTTGGA
HOXB45-R-7	AGCTTGGAGCAGGGGCTCCT	Non-Targeting Control 39 GGTCTGCTCCAATGGGAACC
HOXB45-R-8	GCTTGGAGCAGGGGCTCCTC	Non-Targeting Control 39 GAGCAATCCAAAGTTAACGG
HOXB56-R-1	CCGCGCTCCCGTCGGTCGCC	Non-Targeting Control 39 TTCTTAGAAGTTGCTCCACG
HOXB56-R-2	TCCCGTCGGTCGCCGGGAGG	Non-Targeting Control 39 ATCTCTATACTGTCACTCGC
HOXB56-R-3	GAGCAGAGCGCGCCACCTCC	Non-Targeting Control 39 GAACGTAGAAATTCCCATTT
HOXB56-R-4	CCCGCGCTCCCGTCGGTCGC	Non-Targeting Control 39 CATCATAAATGTACAACGGG
HOXB56-R-5	CGCCACCTCCCGGCGACCGA	Non-Targeting Control 39 TCCCTCCTAGTCAAGAAGAG
HOXB56-R-6	GCCACCTCCCGGCGACCGAC	Non-Targeting Control 39 CGACTGACCCCTGGGTGAAG
HOXB56-R-7	CCGGCGACCGACGGAGCGC	Non-Targeting Control 40 GGGTGGTCATTCTCTACTTG
HOXB6-F-1	GCCGCGTGTCTCCGAACGGA	Non-Targeting Control 40 AGTGAGTGACAACCAGATCG
HOXB6-F-2	GCTGCCATCTACCGTCCGTT	Non-Targeting Control 40 TATGACCCTGTTACATTGCC
HOXB6-F-3	GGCAGCAGACCGCATAATTT	Non-Targeting Control 40 TGAGCATGTCGGGAGTAACT
HOXB6-F-4	TGGCAGCAGACCGCATAATT	Non-Targeting Control 40 TGGGGACGTTTATCAATATA
HOXB6-F-5	ACCGTCCGTTCGGAGACACG	Non-Targeting Control 40 CGTCCCTTCGTCTCTGCTTA
HOXB89-R-1	GGAGCAAGGGTGCCATCTAG	Non-Targeting Control 40 GTTTTTGGTTAATTGCCTAC
HOXB89-R-2	TTCGCAGAGCAGCCGCTAGA	Non-Targeting Control 40 CATTAGCAGCCCAGCGCCCA
HOXB89-R-3	GGGAGTTTCACATGGAGCAA	Non-Targeting Control 40 ATCAGCCCATTTCTGCGCAC
HOXB89-R-4	CTAGCGGCTGCTCTGCGAAA	Non-Targeting Control 40 GTGAAACAGAGGGTCCATCA
HOXB89-R-5	CCGCTCCAGGGAGTTTCACA	Non-Targeting Control 41 CGTAGTAAATATCTAGCTAA
HOXB89-R-6	AGGGAGTTTCACATGGAGCA	Non-Targeting Control 41 ATTAAACGACACCTTATTCT
HOXB9-1-N-1	CGAGACAGAGACCAACCTCT	Non-Targeting Control 41 CCCTCAGGAGCTACTAAGGT
HOXB9-1-N-2	AACGCCAGGGCGCCCCTAG	Non-Targeting Control 41 GAGGGGGCTTCAAACATGTG
HOXB9-1-N-3	GACAGAGACCAACCTCTAGG	Non-Targeting Control 41 TCGCAAGGAAGCCAGCTAAG
HOXB9-1-N-4	CCAACCTCTAGGCGGCGCCC	Non-Targeting Control 41 CGGAGCTTAGCGTGGGGGCG
HOXB9-1-N-5	TCAGCGCGGACTCAACGCCA	Non-Targeting Control 41 GCTCCCATCCATAGTAAAAA
HOXB9-1-N-6	CCAGGGCGCCGCCTAGAGGT	Non-Targeting Control 41 TGACTAGCTCTTACATATTC
HOXB9-1-N-7	TTCAGCGCGGACTCAACGCC	Non-Targeting Control 41 CCTTATGGAATCAGACCGTT
HOXB9-1-N-8	CGAGAGAATCTTGTTCAGCG	Non-Targeting Control 41 ATAGCGGATGTCCTTGGAAA
HOXB9-2-F-1	TACCGTGGACAGACACTAGA	Non-Targeting Control 42 ACGCATGCTTCCCAAAGCGT
HOXB9-2-F-2	AACACTCGGCTTTCTGAGCG	Non-Targeting Control 42 AGTGTATCTTCCACCTGTCT
HOXB9-2-F-3	TTACCGTGGACAGACACTAG	Non-Targeting Control 42 AGTATGAGACTCATAGGGTG
HOXB9-2-F-4	TCTAGTGTCTGTCCACGGTA	Non-Targeting Control 42 GAAACGAGAAGTTTGTACTA
HOXB9-2-F-5	CACCCTCTAGTGTCTGTCCA	Non-Targeting Control 42 GTTGATCGAAAATGGGAGAA
HOXB9-2-F-6	GTGTCTGTCCACGGTAAGGC	Non-Targeting Control 42 TAGGGGATTAGCTGACAGTC
HOXB9-2-F-7	ACGTTGGACCCGCCTTACCG	Non-Targeting Control 42 GCTAAGGTCATGTTTGCAAT
HOXB9-2-F-8	GTCCCGGGCCTGGAAACACT	Non-Targeting Control 42 GACACTATCCAACCCAAGAG
HOXB9-3-F-1	GGCCAAACACTGACCCCTGC	Non-Targeting Control 42 GAGTTATTTATTCTCTCGAG
HOXB9-3-F-2	GGGCGCCGCCTTCCCTCGGG	Non-Targeting Control 42 CAGTCGTTTCTATGGGATCT
HOXB9-3-F-3	CCTTCCCTCGGGCGGCCGGC	Non-Targeting Control 43 AAAATCGATGGGCTGAATCT
HOXB9-3-F-4	TTCCCTCGGGCGGCCGGCAG	Non-Targeting Control 43 GACGCCTTGCCCGGCTCACA
HOXB9-3-F-5	GCCGCCTTCCCTCGGGCGGC	Non-Targeting Control 43 ATTTAGTAATGCACACCCAG
HOXB9-3-F-6	CTTCCCTCGGGCGGCCGGCA	Non-Targeting Control 43 TAGTTCTAATCGTTCCTTGA
HOXB9-3-F-7	GACCCCTGCCGGCCGCCCGA	Non-Targeting Control 43 CACCCTTATATTCAGTAACT

HOXB9-3-F-8	GGCCGGCAGGGGTCAGTGTT	Non-Targeting Control 43	TGCCCACTTAGCAACACTCT
HOXB9-3-F-9	TGACCCCTGCCGGCCGCCCG		TGCCTCTCCCTTACCCGGAC
HOXB9-3-F-10	GCCCGAGGGAAGGCGGCGCC		AGAGCATGATGACCCGTGAC
HOXB13-F-1	TAGGACCATTAAAAAGACGT		GGTGTCACCACCGCTTACCA
HOXB13-F-2	TTAGGACCATTAAAAAGACG		ACGCTCTCCTGGCAACAAGT
HOXB13-F-3	GGTGAGCCTCTGTCGGAAGG		GGCGTTAATTAAACTGTTTT
HOXB13-F-4	GTGGTGAGCCTCTGTCGGAA	Non-Targeting Control 44	CAGGGTTGCGCAGAGGACTC
HOXB13-F-5	TGGTGAGCCTCTGTCGGAAG	Non-Targeting Control 44	AAGTGACGGTGTCATGCGGG
HOXB13-F-6	CTGGAGTGGTGAGCCTCTGT	Non-Targeting Control 44	TGTCAGTAGTCAGGACCCCG
HOXB13-F-7	AGTGGTGAGCCTCTGTCGGA	Non-Targeting Control 44	CATTAAACCTTGCCCCACAA
HOXB13-F-8	GCCCGCAGGTTCTCCTGGAG	Non-Targeting Control 44	CGGCACTAGAAGTTTTTGAA
HOXBLINC-1	AAGCGCCTCTCAGCGAAGGG	Non-Targeting Control 44	CCAGTTATAATTAGGGGTTT
HOXBLINC-2	CAGCTGTAAAGAAAAATGCT	Non-Targeting Control 44	TAACCCAGAAGCCCATTCAG
HOXBLINC-3	GAAGAGGCGGCTGGGTGTGA	Non-Targeting Control 44	GCAGTACTACTGAGTTTTTC
HOXBLINC-4	CCCTTCGCTGAGAGGCGCTT	Non-Targeting Control 44	CGACCCATGGATGTGAACCC
HOXBLINC-5	TGGTGTAATAAAAGTCCTTT	Non-Targeting Control 45	GACAGTGAAATTAGCTCCCA
HOXBLINC-6	TGCCCGTCATTAAATATCCG	Non-Targeting Control 45	TGTTCTACTTTCGAAGTTAA
HOXBLINC-7	TGCTGGGAGACCAAGCAGAT	Non-Targeting Control 45	GGGAGTTGATTGTTTCGAGA
HOXBLINC-8	GAGGCGGCTGGGTGTGAAGG	Non-Targeting Control 45	TAGAATTTGACCAAAGGCAC
HOXBLINC-9	GGGAGGAGGAAGAGGCGGCT		CTTCTAGCTGGTTCATTGCT
HOXBLINC-10	ACAGCTGTAAAGAAAAATGC		CCCTGTGAAGGAGGCGTAAG
HOXC5-F-1	AGGATGCAATTCCCCCACAT		CAAGCATTTAGACACCTGTC
HOXC5-F-2	AACAAGCCCACAGCGACACC		CGGCCAAAGAATTAGAAGTT
HOXC5-F-3	AATTCCCCCACATAGGCACC		TGAACGGTGAAGAGATAGGG
HOXC5-F-4	GACACCTGGTGCCTATGTGG		AGCCGGCTTGTGACAGTGAA
HOXC5-F-5	CGACACCTGGTGCCTATGTG		AGGGGCAGGGCTATCTTATG
HOXC5-F-6	ATAGGCACCAGGTGTCGCTG		GTAAACTTTGTCTGGAGTAT
HOXC5-F-7	GCGACACCTGGTGCCTATGT	<u> </u>	GAATAGATTTGTCAGTTAGG
HOXC5-F-8	TAGGCACACGTGTCGCTATC		AGTTCTGTTCGATAGATGCC
HOXC5-F-9	AGCGACACCTGGTGCCTATG		GTGATAATGATGTATTCTCG
HOXC89-F-1	CATTGGACCAAATGGACGCG		GTTTTCAGTTGCCCAACAGC
HOXC89-F-2	TGGACCAAATGGACGCGAGG		CGCGCAGAAGGCAAGCAGGG
HOXC89-F-3	AGCGCCACCTCGCGTCCATT	5 5	ATTTTCGAAAGCTTAGGCCA
HOXC89-F-4	CCGGACTGCATTGGACCAAA	Non-Targeting Control 46	GTTTCGAAACTTGAAGTAAG
HOXC89-F-5	CTGTTGCTCAATGTTAGAGG		TTCTAAGCGCCCTGGGGACA
HOXC89-F-6	GCGCTGTTGCTCAATGTTAG	Non-Targeting Control 47	ATCCTAGGTACAAAAGGACG
HOXC89-F-7	TTGCTCAATGTTAGAGGCGG	Non-Targeting Control 47	GTATTACTGATATTGGTGGG
HOXC10-F-1	GCCATCTAGCAGCTGCCTCG	Non-Targeting Control 47	CTTAAGGCGAGAAAAATTAG
HOXC10-F-2	GGCAGGCGGAGCGCGCAGAG	Non-Targeting Control 47	GGATGTTTCTGTGCGCACAT
HOXC10-F-3	GCTCCGGTGCCCCTACCCCG	Non-Targeting Control 47	TCAGTATCGGCTGCTGGTAA
HOXC10-F-4	TTGTTCGCGGGGAAGGGCTC	Non-Targeting Control 47	CACCATAGAACCTGAAATAC
HOXC10-F-5	TAGCAGCTGCCTCGGGGTAG	Non-Targeting Control 47	AGCTGAAAATATACGTATTC
HOXC10-F-6	GCGCCATCTAGCAGCTGCCT	Non-Targeting Control 47	GGATTAATTCGCTAAATGAT
HOXC10-F-7	CTAGCAGCTGCCTCGGGGTA	Non-Targeting Control 47	ATAAGCTACTCTGAGTTCCT
HOXC10-F-8	TCTAGCAGCTGCCTCGGGGT	Non-Targeting Control 47	GTGAACTGCAATCTTATTAT
HOTAIR-1	TCAGGTCCCTAATATCCCGG	Non-Targeting Control 48	ATGCAAGACAGCCTCCCAGC
HOTAIR-2	TGAGGGTCTAAGTCCCGGGT	Non-Targeting Control 48	TGTAGTCTGGGGTAGACTCC

TCCGGGATATTAGGGACCTG	Non-Targeting Control 48 CTGCCCTCTTGAAATAGCCA
ACCAACACCCCTGCTCCTGG	Non-Targeting Control 48 AGGGATCGTTAGGAAGGGAA
GCCGCCAGGAGCAGGGGTGT	Non-Targeting Control 48 CACATAACATGAGGTATCAG
TAAGAGAGCACCAGGCACTG	Non-Targeting Control 48 CTTCCTGCGTGGCTTTAAAC
TGTTGGTCTGTGGAACTCCC	Non-Targeting Control 48 ATAGCTAAAGTTGATGTGTA
AGCACCAGGCACTGAGGCCT	Non-Targeting Control 48 AGGGAAACCTCTATGGGTAA
AACTCCCAGGCCTCAGTGCC	Non-Targeting Control 48 CCAGAGCCTTGGTTTATATC
CAGACCAACACCCCTGCTCC	Non-Targeting Control 48 TGTAGATATAGGGTGTCTAC
GAGGAAATCGCGCCCCTCC	Non-Targeting Control 49 GCGAATGCCTGAAAGTATAA
CGCTTTCTCCGCGCTCCCGG	Non-Targeting Control 49 TTGCAATGCTGCTATAGAAG
GCTTTCTCCGCGCTCCCGGA	Non-Targeting Control 49 AAGGCAATTTACTGGATCCT
CGAGGAAATCGCGCCCCTC	Non-Targeting Control 49 CTGCACTGTGGAGACGCCCG
CTTTCTCCGCGCTCCCGGAG	Non-Targeting Control 49 GGAGAGGAAAATCGGCACAG
TTTCTCCGCGCTCCCGGAGG	Non-Targeting Control 49 TCAGGATCAGGGTGTATGGC
TCGCGCCCCTCCGGGAGCG	Non-Targeting Control 49 GGGAGGTGGCTTTAGGTTTT
CCTCGCTTTCTCCGCGCTCC	Non-Targeting Control 49 AGGATGGATTGAGCAGCGGT
GCTCCTACAAGCGCAGCACG	Non-Targeting Control 49 AACAGGAAACGTGACTAAAG
GGAGCAACAGCGCTCTCTAG	Non-Targeting Control 49 GCAAAAGTGGCATAAAACCG
AGTGGACTGGAGGTGGCATT	Non-Targeting Control 50 TGACACATTGGCTGGTGTT
	ACCAACACCCCTGCTCCTGG GCCGCCAGGAGCAGGGGTGT TAAGAGAGCACCAGGCACTG TGTTGGTCTGTGGAACTCCC AGCACCAGGCACTGAGGCCT AACTCCCAGGCCTCAGTGCC CAGACCAACACCCCTGCTCC GAGGAAATCGCGCCCCCTCC CGCTTTCTCCGCGCTCCCGGA CGAGGAAATCGCGCCCCCTC CTTTCTCCGCGCTCCCGGAG TTTCTCCGCGCTCCCGGAG CCTCGCTTTCTCCGCGCTCCCGGAG GCTCCCCGCCCCCCC CCTCCCCTCC

Clone #	sgRNAs	Targets	Genome locus
<u>#5</u>	ACCAAACGGCGGCCAGCAGA	HOXA7/9	chr7: 27200761-27200780
_	ACGTTCGAGTACGACCAGCT	Non-target	
<u>#6</u>	CGGCGCGAAGCCTCTTGCA	HOXA7/9	chr7: 27200725-27200744
_	GCTCCGGTGCCCCTACCCCG	HOXC10/11	chr12:54378732-54378751
#15	GTAGGATCTCCAGCCTGCAG	HOTTIP	chr7: 27240871-27240890
	GCTGCCATCTACCGTCCGTT	HOXB6/7	chr17:46680110-46680129
	GCCAGCATCTACATTTGACA	C9orf41	Chr9:77631311-77631330
<u>#28</u>	<u>AACGGCGGCCAGCAGATGGC</u>	HOXA7/9	chr7: 27200757-27200776
#31	CAAAGGCCGATTTGGAGTGC	HOTAIRM1	chr7:27135844-27135863
	TAAGAGAGCACCAGGCACTG	HOTAIR	chr12: 54361157-54361176
	AGCTCGCCATGTCGGTTCTC	Non-target	
	AGAGCGTTAACCTCACCGAC	HOXD9/10	chr2:176983838-176983857
<u>#121</u>	GCGGCCAGCAGATGGCAGTG	HOXA7/9	chr7: 27200753-27200772
#207	AACGGCGGCCAGCAGATGGC	HOXA7/9	chr7: 27200757 -27200776
#420	CGGCGCGGAAGCCTCTTGCA	HOXA7/9	chr7:27200725 -27200744
#429	TAGGATCTCCAGCCTGCAGA	HOTTIP	chr7: 27240872 -27240891
#479	GTAGGATCTCCAGCCTGCAG	HOTTIP	chr7: 27240871 27240890
#4	GTCGTCCGGGATTACAAAAT	Non-target	
#16	TTATACCGAACATGGCTACA	ATG2A	chr11: 64678504-64678523
#27	GTCGTCCGGGATTACAAAAT	Non-target	
#43	AGAGCGTTAACCTCACCGAC	HOXD9/10	chr2: 176983838-176983857
#129	AGGTAAGCCCCTTAGAACTG	Non-target	
#161	CCTCGTCCAGATTCCGGCGG	Non-target	
#193	AAGACACTCACAGGTGACTG	ATXN2L	chr16: 28836715-28836734
#222	CCCCAACTTTCGCGACTCCG	Non-target	
#299	TGTTGGTCTGTGGAACTCCC	HOTAIR	chr12:54361131-54361150
	ACCCAATGTGGCGGAGCCGA	Non-target	
#323	CGACACCTGGTGCCTATGTG	HOXC5/6	chr12:54426519-54426538
#363	TTGCTCAATGTTAGAGGCGG	HOXC8/9	chr12:54399922-54399941
#468	CTCCTCGGTGTACATCACGG	ADORA2A	chr22: 24829387 24829406
#519	TGGTGAGCCTCTGTCGGAAG	HOXB13-up	chr17:46802040-46802059
	AACTCCCAGGCCTCAGTGCC	HOTAIR	chr12:54361144-54361163
#1	ACCCTCCATGGCCCTGCTAC	CCL19	chr9: 34691124-34691143
#19	GGCCAAACACTGACCCCTGC	HOXB9/13	chr17: 46755965-46755984
	ACCCAATGTGGCGGAGCCGA	Non-target	
#33	AAGAGGAGGCTGAAGTAAAG	BRD8	chr5:137506062-137506081
	ACCCAATGTGGCGGAGCCGA	Non-target	
#37	AAGGAGTATTTCTACACCAG	CCL5	chr17: 34205559 -34205578
#38	TACCTGTTAGAATCATCAAG	BCLAF1	chr6: 136596978-136596997

#123	AGTGGACTGGAGGTGGCATT	HOXD8/9	chr2: 176991910-176991929
	CTGCTCAAACTGCTCATCCT	BIN1	chr2: 127834229-127834248
#474	GCTTGACATCTCTGCTGTAG	ADK	chr16: 75960555-75960574

Note: HOXA9-decreased, unchanged and increased clones are highlighted in red, blue and purple

Lipofectamine 3000 reagent Thermo Fisher Scientific L3000-008 Proteinase K Thermo Fisher Scientific 25530049 Puromycin Thermo Fisher Scientific A1113802 Stb13 cells Life Technologies C737303 HEK293T ATCC CRL-3216 MOLM-13 DSMZ ACC 554 lentiCRISPRv2 Addgene 52961 pMD2.G Addgene 12259 pMD2.G Addgene 12260 pGEM®-T Easy Vector Systems Promega A137A 74 ligase New England Biolabs M0202S QIAquick Gel Extract kit QIAGEN 28706 QIAuick PCR purification kit QIAGEN 28106 SingleShot™ SYBR® Green One-Step Kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine <th>Name of Material/ Equipment</th> <th>Company</th> <th>Catalog Number</th>	Name of Material/ Equipment	Company	Catalog Number
Puromycin Thermo Fisher Scientific A1113802 Stbl3 cells Life Technologies C737303 HEK293T ATCC CRL-3216 MOLM-13 DSMZ ACC 554 lentiCRISPRv2 Addgene 52961 pMD2.G Addgene 12259 psPAX2 Addgene 12260 pGEM®-T Easy Vector Systems Promega A137A 74 ligase New England Biolabs M0202S QIAquick Gel Extract kit QIAGEN 28706 QIAuick PCR purification kit QIAGEN 28106 SingleShot™ SyBR® Green One-Step Kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution	Lipofectamine 3000 reagent	Thermo Fisher Scientific	L3000-008
Stb13 cells Life Technologies C737303 HEK293T ATCC CRL-3216 MOLM-13 DSMZ ACC 554 lentiCRISPRv2 Addgene 52961 pMD2.G Addgene 12259 psPAX2 Addgene 12260 pGEM®-T Easy Vector Systems Promega A137A T4 ligase New England Biolabs M02028 QIAquick Gel Extract kit QIAGEN 28706 QIAuick PCR purification kit QIAGEN 28106 SingleShot™ SYBR® Green One-Step Kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene	Proteinase K	Thermo Fisher Scientific	25530049
HEK293T ATCC CRL-3216 MOLM-13 DSMZ ACC 554 lentiCRISPRv2 Addgene 52961 pMD2.G Addgene 12259 psPAX2 Addgene 12260 pGEM®-T Easy Vector Systems Promega A137A T4 ligase New England Biolabs M02028 QIAquick Gel Extract kit QIAGEN 28706 QIAuick PCR purification kit QIAGEN 28106 SingleShot™ SYBR® Green One-Step Kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffe	Puromycin	Thermo Fisher Scientific	A1113802
MOLM-13 lentiCRISPRv2 Addgene 52961 pMD2.G pMD2.G pSPAX2 Addgene 12259 psPAX2 Addgene 12260 pGEM®-T Easy Vector Systems Promega A137A T4 ligase New England Biolabs M0202S QIAquick Gel Extract kit QIAGEN QIAGEN 28706 QIAuick PCR purification kit SingleShot™ SYBR® Green One-Step Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific Penicillin/streptomycin/L-glutamine Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific Thermo Fisher Scientific Thermo Fisher Scientific Polybren Santa Cruz Biotechnology Sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific Thermo Fisher Scientific Thermo Fisher Scientific 25-507 TAE buffer Thermo Fisher Scientific Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies Toy-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific Thermo Fisher Scientific	Stb13 cells	Life Technologies	C737303
lentiCRISPRv2 Addgene 52961 pMD2.G Addgene 12259 psPAX2 Addgene 12260 pGEM®-T Easy Vector Systems Promega A137A T4 ligase New England Biolabs M0202S QIAquick Gel Extract kit QIAGEN 28706 QIAuick PCR purification kit QIAGEN 28106 SingleShot™ SYBR® Green One-Step Kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific TSX40086V	НЕК293Т	ATCC	CRL-3216
pMD2.G Addgene 12259 psPAX2 Addgene 12260 pGEM®-T Easy Vector Systems Promega A137A T4 ligase New England Biolabs M0202S QIAquick Gel Extract kit QIAGEN 28706 QIAuick PCR purification kit QIAGEN 28106 SingleShot™ SYBR® Green One-Step Kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific 75-507 TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific TSX40086V	MOLM-13	DSMZ	ACC 554
psPAX2 Addgene 12260 pGEM®-T Easy Vector Systems Promega A137A T4 ligase New England Biolabs M02028 QIAquick Gel Extract kit QIAGEN 28706 QIAuick PCR purification kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific TSX40086V	lentiCRISPRv2	Addgene	52961
PGEM®-T Easy Vector Systems T4 ligase QIAquick Gel Extract kit QIAGEN SingleShot™ SYBR® Green One-Step Kit QIAGEN QIAGEN QIAGEN QIAGEN QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology Phosphate Buffered Saline (PBS) Genessee Scientific 25-507 TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators	pMD2.G	Addgene	12259
T4 ligase New England Biolabs M0202S QIAquick Gel Extract kit QIAGEN 28706 QIAuick PCR purification kit QIAGEN 28106 SingleShot™ SYBR® Green One-Step Kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific 25-507 TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scient	psPAX2	Addgene	12260
QIAquick Gel Extract kit QIAGEN QIAuick PCR purification kit QIAGEN SingleShot TM SYBR® Green One-Step Kit QIAGEN QIAGEN QIAGEN Plasmid Maxi Kit QIAGEN QIAGEN QIAGEN QIAGEN QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology Sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies Todo20 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific	pGEM®-T Easy Vector Systems	Promega	A137A
QIAuick PCR purification kit QIAGEN 28106 SingleShot™ SYBR® Green One-Step Kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific 25-507 TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific 7SX40086V TSX Series Ultra-Low Freezers Thermo Fisher Scientific TSX40086V Forma™ Ste	T4 ligase	New England Biolabs	M0202S
SingleShot™ SYBR® Green One-Step Kit Bio-Rad Laboratories 1725095 QIAGEN Plasmid Maxi Kit QIAGEN 12163 Dulbecco's Modified Eagle Medium Thermo Fisher Scientific 11965084 RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific 25-507 TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific 88870002 TSX Series Ultra-Low Freezers Thermo Fisher Scientific TSX40086V Forma™ Steri-Cult™ CO2 Incubators Thermo Fisher Scientific 3308 <td>QIAquick Gel Extract kit</td> <td>QIAGEN</td> <td>28706</td>	QIAquick Gel Extract kit	QIAGEN	28706
QIAGEN Plasmid Maxi KitQIAGEN12163Dulbecco's Modified Eagle MediumThermo Fisher Scientific11965084RPMI 1640Thermo Fisher Scientific11875093Fetal bovine serum (FBS)Thermo Fisher Scientific10-082-147Penicillin/streptomycin/L-glutamineLife Technologies10378016Lenti-X ConcentratorClontech631232Trypan Blue SolutionThermo Fisher Scientific15250061PolybreneSanta Cruz Biotechnologysc-134220Phosphate Buffered Saline (PBS)Genessee Scientific25-507TAE bufferThermo Fisher ScientificFERB49Surveyor® Mutation Detection KitsIntegrated DNA Technologies706020Biorad Universal Hood II Gel Doc SystemBio-Rad170-8126Centrifuge 5424 REppendorf5404000138Digital Dry Baths/Block HeatersThermo Fisher Scientific88870002TSX Series Ultra-Low FreezersThermo Fisher ScientificTSX40086VForma™ Steri-Cult™ CO2 IncubatorsThermo Fisher Scientific3308	QIAuick PCR purification kit	QIAGEN	28106
Dulbecco's Modified Eagle Medium Thermo Fisher Scientific Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific 25-507 TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies To6020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	SingleShot™ SYBR® Green One-Step Kit	Bio-Rad Laboratories	1725095
RPMI 1640 Thermo Fisher Scientific 11875093 Fetal bovine serum (FBS) Thermo Fisher Scientific 10-082-147 Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology Phosphate Buffered Saline (PBS) Genessee Scientific Thermo Fisher Scientific 75-507 TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies Todo20 Biorad Universal Hood II Gel Doc System Bio-Rad Tro-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	QIAGEN Plasmid Maxi Kit	QIAGEN	12163
Fetal bovine serum (FBS) Thermo Fisher Scientific Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific Thermo Fisher Scientific 25-507 TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	Dulbecco's Modified Eagle Medium	Thermo Fisher Scientific	11965084
Penicillin/streptomycin/L-glutamine Life Technologies 10378016 Lenti-X Concentrator Clontech 631232 Trypan Blue Solution Thermo Fisher Scientific 15250061 Polybrene Santa Cruz Biotechnology Phosphate Buffered Saline (PBS) Genessee Scientific 75-507 TAE buffer Thermo Fisher Scientific Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies To6020 Biorad Universal Hood II Gel Doc System Bio-Rad Tro-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	RPMI 1640	Thermo Fisher Scientific	11875093
Lenti-X ConcentratorClontech631232Trypan Blue SolutionThermo Fisher Scientific15250061PolybreneSanta Cruz Biotechnologysc-134220Phosphate Buffered Saline (PBS)Genessee Scientific25-507TAE bufferThermo Fisher ScientificFERB49Surveyor® Mutation Detection KitsIntegrated DNA Technologies706020Biorad Universal Hood II Gel Doc SystemBio-Rad170-8126Centrifuge 5424 REppendorf5404000138Digital Dry Baths/Block HeatersThermo Fisher Scientific88870002TSX Series Ultra-Low FreezersThermo Fisher ScientificTSX40086VForma™ Steri-Cult™ CO2 IncubatorsThermo Fisher Scientific3308	Fetal bovine serum (FBS)	Thermo Fisher Scientific	10-082-147
Trypan Blue Solution Thermo Fisher Scientific Polybrene Santa Cruz Biotechnology Sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific Thermo Fisher Scientific Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies Toenda Universal Hood II Gel Doc System Bio-Rad Tro-8126 Centrifuge 5424 R Eppendorf Supposed Thermo Fisher Scientific TSX4000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	Penicillin/streptomycin/L-glutamine	Life Technologies	10378016
Polybrene Santa Cruz Biotechnology sc-134220 Phosphate Buffered Saline (PBS) Genessee Scientific 25-507 TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific 88870002 TSX Series Ultra-Low Freezers Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	Lenti-X Concentrator	Clontech	631232
Phosphate Buffered Saline (PBS) Genessee Scientific TAE buffer Thermo Fisher Scientific Surveyor® Mutation Detection Kits Integrated DNA Technologies Toentrifuge 5424 R Eppendorf Centrifuge 5424 R Eppendorf Thermo Fisher Scientific Serveyor® Mutation Detection Kits Tro-8126 Thermo Fisher Scientific Thermo Fisher Scientific TSX Series Ultra-Low Freezers Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific TSX4086V	Trypan Blue Solution	Thermo Fisher Scientific	15250061
TAE buffer Thermo Fisher Scientific FERB49 Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific 88870002 TSX Series Ultra-Low Freezers Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	Polybrene	Santa Cruz Biotechnology	sc-134220
Surveyor® Mutation Detection Kits Integrated DNA Technologies 706020 Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific 75X40086V Forma TM Steri-Cult TM CO2 Incubators Total DNA Technologies 706020 Total Dry-8126 Thermo Fisher Scientific 75X4000138 Thermo Fisher Scientific 3308	Phosphate Buffered Saline (PBS)	Genessee Scientific	25-507
Biorad Universal Hood II Gel Doc System Bio-Rad 170-8126 Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX Series Ultra-Low Freezers Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	TAE buffer	Thermo Fisher Scientific	FERB49
Centrifuge 5424 R Eppendorf 5404000138 Digital Dry Baths/Block Heaters Thermo Fisher Scientific 88870002 TSX Series Ultra-Low Freezers Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	Surveyor® Mutation Detection Kits	Integrated DNA Technologies	706020
Digital Dry Baths/Block Heaters Thermo Fisher Scientific TSX Series Ultra-Low Freezers Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	Biorad Universal Hood II Gel Doc System	Bio-Rad	170-8126
TSX Series Ultra-Low Freezers Thermo Fisher Scientific TSX40086V Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	Centrifuge 5424 R	Eppendorf	5404000138
Forma TM Steri-Cult TM CO2 Incubators Thermo Fisher Scientific 3308	Digital Dry Baths/Block Heaters	Thermo Fisher Scientific	88870002
	TSX Series Ultra-Low Freezers	Thermo Fisher Scientific	TSX40086V
Herasafe™ KS, Class II Biological Safety Cabinet Thermo Fisher Scientific 51022484	Forma TM Steri-Cult TM CO2 Incubators	Thermo Fisher Scientific	3308
	Herasafe™ KS, Class II Biological Safety Cabinet	Thermo Fisher Scientific	51022484

Sorvall TM Legend TM XT/XF Centrifuge Series	Thermo Fisher Scientific	75004506
Fisherbrand™ Isotemp™ Water Baths	Thermo Fisher Scientific	FSGPD02
Thermo Scientific™ Locator™ Plus Rack and Box Systems	Thermo Fisher Scientific	13-762-353
CFX96 Touch Real-Time PCR Detection System	Bio-Rad	1855195
MiniAmp™ Thermal Cycler	Applied Biosystems technology	A37834
Thermo Scientific™ Owl™ EC300XL2 Compact Power Supply	Thermo Fisher Scientific	7217581
Thermo Scientific™ Owl™ EasyCast™ B1 Mini Gel Electrophoresis Systems	Thermo Fisher Scientific	09-528-178
VWR® Tube Rotator and Rotisseries	VWR International	10136-084
VWR® Incubating Mini Shaker	VWR International	12620-942
Analytical Balance MS104TS/00	METTLER TOLEDO	30133522
DS-11 FX and DS-11 FX+ Spectrophotometer	DeNovix Inc.	DS-11 FX

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	sgRNA mediated CRISPR/Cas9 KO screening library to identify CTCF boundaries in AML
Author(s):	Huacheng Luo, Amin Sobh, Christopher Vulpe, Yi Qiu, Suming Huang
	box): The Author elects to have the Materials be made available (as described at ove.com/author) via: $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
Item 2 (check one box	x):
× The Autl	or is NOT a United States government employee. hor is a United States government employee and the Materials were prepared in the or her duties as a United States government employee. for is a United States government employee but the Materials were NOT prepared in the
	or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties. incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional. laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. <u>Fees.</u> To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law.</u> This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

Name:	Suming Huang and Huacheng Luo	
Department:	Department of Pediatrics	
Institution:	Pennsylvania State University College of Medicine	
Article Title:	sgRNA mediated CRISPR/Cas9 KO screening library to identify CTCF boundaries in AML	

Please submit a <u>signed</u> and <u>dated</u> copy of this license by one of the following three methods?

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- 2) Fax the document to +1.866.381.2236;

Coursian III.

CORRESPONDING AUTHOR:

3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

Date:

For questions, please email submissions@jove.com or call +1.617.945.9051

Signature:

Pediatric Hematology/Oncology

PO Box 850, M.C. H085 Hershey, PA 17033 717 531 6012 Tel 717 531 4789 Fax

Suming Huang, PhD

Professor of Pediatrics & Pharmacology Four Diamonds Epigenetics & Gene Regulation Research Endowed Program

Jan 14, 2019

Editor, JoVE

Dear Editor,

We sincerely appreciate all of the editor's and reviewers' constructive comments and suggestions. We have revised the manuscript and point-to-point answered all of the comments raised by the editor and reviewers.

In summary, our manuscript should be intriguing for a large number of readers who are interested in understanding the role of non-coding elements in gene regulation. It will fit well with the scope of *JoVE* for publication. Thank you very much for your consideration.

Sincerely,

Suming Huang, PhD

Professor of Pediatrics and Pharmacology

Four Diamonds Epigenetics and Gene Regulation Research Endowed Program

Comments and Answers

Editorial comments:

Changes to be made by the author(s) regarding the manuscript:

1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues.

Answer: We appreciate the Editor's comment. We have corrected spelling and grammar issues, and polished the manuscript with the help of language experts.

2. Please revise lines 98-100, 223-225, 255-257, 302-305, and 309-312 to avoid previously published text.

Answer: We have modified these sentences and paragraphs to avoid previously published text.

3. Please obtain explicit copyright permission to reuse any figures from a previous publication. Explicit permission can be expressed in the form of a letter from the editor or a link to the editorial policy that allows re-prints. Please upload this information as a .doc or .docx file to your Editorial Manager account. The Figure must be cited appropriately in the Figure Legend, i.e. "This figure has been modified from [citation]."

Answer: We have obtained the permission for reusing the figures in *JoVE* from the *Blood* journal.

4. Please upload each Figure individually to your Editorial Manager account as a .png, .tiff, .pdf, .svg, .eps, .psd, or .ai file.

Answer: We have uploaded our figures individually in the PDF format.

5. Figure 2: Please include a space between numerical values and their corresponding units (48 h, 72 h). Please replace commercial language with generic terms (Surveyor, Lipo3000).

Answer: We have corrected these issues in Figure 2 (now Figure 3).

6. Figure 3: Please line up the panels better. Please explain what different colors and arrows represent. Please define the error bars in the figure legend. Please indicate the units for numbers in panels B and C.

Answer: We revised Figure 3 (now Figure 4) according to the suggestion. We have added the error bar to Figure 4B (new), and explained the color and arrow markers in the legend of Figure 4.

7. Tables 2-4: Please remove commercial language (SingleShot, iTaq™ Universal SYBR® Green, iScript, Bio-Rad® CFX96™, SYBR®). Please abbreviate liters to L to

avoid confusion. Please include a space between numerical values and their temperature units (50 °C, 95 °C, etc.). Please change the time unit "sec" to "s".

Answer: We have corrected these issues and removed Tables 2-4, and put the useful information into Protocol section.

8. Please shorten the Summary to no more than 50 words.

Answer: We have shorted the summary of this manuscript to less than 50 words.

9. Please rephrase the Abstract to more clearly state the goal of the protocol.

Answer: We have modified the Abstract section, and highlighted changes in yellow.

- 10. Please revise the Introduction to include all of the following:
- a) A clear statement of the overall goal of this method
- b) The rationale behind the development and/or use of this technique
- c) The advantages over alternative techniques with applicable references to previous studies
- d) A description of the context of the technique in the wider body of literature
- e) Information to help readers to determine whether the method is appropriate for their application

Answer: We have modified the introduction section of this manuscripts, and highlighted changes in yellow.

11. Please use SI abbreviations for all units: L, mL, µL, h, min, s, etc.

Answer: We have modified the units to conform to SI standards: L, mL, μ L, h, min, s, etc. in this manuscripts, and highlighted changes in yellow.

12. Please include a space between all numerical values and their corresponding units: 15 mL, 37 °C, 60 s; etc.

Answer: We have added a space between all numerical values and their corresponding units.

13. JoVE cannot publish manuscripts containing commercial language. This includes trademark symbols (™), registered symbols (®), and company names before an instrument or reagent. Please remove all commercial language from your manuscript and use generic terms instead. All commercial products should be sufficiently referenced in the Table of Materials and Reagents. You may use the generic term followed by "(see table of materials)" to draw the readers' attention to specific commercial names. Examples of commercial sounding language in your manuscript are: CustomArray, Gibson assembly, Steriflip, Millipore, Lenti-X, Clontech, Eppendorf, SingleShot™ SYBR, iTaq™ Universal SYBR®, QIAquick, pGEM®-T, Invitrogen, Surveyor®, etc.

Answer: We have removed the commercial language, trademark symbols, registered symbols, and company names from this manuscript.

14. Please revise the protocol text to avoid the use of any personal pronouns (e.g., "we", "you", "our" etc.).

Answer: We have revised this protocol text to avoid to use the personal pronouns in this manuscript.

15. Please revise the protocol to contain only action items that direct the reader to do something (e.g., "Do this," "Ensure that," etc.). The actions should be described in the imperative tense in complete sentences wherever possible. Avoid usage of phrases such as "could be," "should be," and "would be" throughout the Protocol. Any text that cannot be written in the imperative tense may be added as a "Note." Please include all safety procedures and use of hoods, etc. However, notes should be used sparingly and actions should be described in the imperative tense wherever possible. Please move the discussion about the protocol to the Discussion.

Answer: We have revised this protocol text to avoid the use of "could be," "should be," and "would be" in this manuscript. We also have adjusted the "Note" section of this manuscript. We have moved the discussion about the protocol to the "Discussion" section.

16. In the JoVE Protocol format, "Notes" should be concise and used sparingly. They should only be used to provide extraneous details, optional steps, or recommendations that are not critical to a step. Any text that provides details about how to perform a particular step should either be included in the step itself or added as a sub-step. Please consider moving some of the notes about the protocol to the discussion section.

Answer: We have revised the "Note" part in this manuscript.

17. Please add more details to your protocol steps. There should be enough detail in each step to supplement the actions seen in the video so that viewers can easily replicate the protocol. Please ensure you answer the "how" question, i.e., how is the step performed? Alternatively, add references to published material specifying how to perform the protocol action. See examples below.

Answer: We have added more details and steps in the protocol section, and highlighted changes in yellow.

18. 2.4: Please describe how to transform the lentiviral vector library into electro-competent cells and specify the electro-competent cells.

Answer: We have described the details of electro-competent cell transformation, and highlighted changes in yellow.

19. 2.5: Please describe how to extract plasmid DNA from the combined colonies.

Answer: We have given the details on plasmid DNA extraction from the combined colonies, and highlighted changes in yellow.

20. 3.1, 4.1: At what temperature are the cells cultured?

Answer: HEK293T and MOLM13 cells were cultured in a 37 °C incubator.

21. 4.3: Please describe how this assay is done.

Answer: We have described the time-course assay in the manuscript, and highlighted in yellow .

22. 5.5: What happens after centrifugation, supernatant discarded? Please specify.

Answer: Spin down the mixes at 1000 g for 2 h in 33 °C, and gently discard the supernatant without disturbing the cell pellet. We specified this in the text with a yellow highlight.

23. 5.9: Please mention how puromycin selection is carried out.

Answer: We have mentioned the puromycin selection in the step 4 procedure of the Protocol section.

24. 6.2: Please specify the temperature of the incubator.

Answer: We specified this in the text with a yellow highlight.

25. 7.1: Please describe how this is done.

Answer: This assay was carried out from step 7.2 to 7.13.

26. 7.5: Is the medium removed using a pipet?

Answer: Yes, this protocol is to thoroughly remove and discard as much supernatant as possible with a pipet, and without disturbing the cell pellet.

27. Please specify all volumes and concentrations used throughout. We need these details to film.

Answer: We have revised these issues in the manuscript.

28. Please include single-line spaces between all paragraphs, headings, steps, etc.

Answer: We have revised these issues in the manuscript.

29. After you have made all the recommended changes to your protocol (listed above),

please highlight 2.75 pages or less of the Protocol (including headings and spacing) that identifies the essential steps of the protocol for the video, i.e., the steps that should be visualized to tell the most cohesive story of the Protocol.

Answer: The essential steps of the protocol have been highlighted with underline marker.

30. Please highlight complete sentences (not parts of sentences). Please ensure that the highlighted part of the step includes at least one action that is written in imperative tense. Notes cannot usually be filmed and should be excluded from the highlighting.

Answer: The essential steps of the protocol have been highlighted with an underline marker.

31. Please include all relevant details that are required to perform the step in the highlighting. For example: If step 2.5 is highlighted for filming and the details of how to perform the step are given in steps 2.5.1 and 2.5.2, then the sub-steps where the details are provided must be highlighted.

Answer: The essential steps of the protocol have been highlighted with an underline marker.

- 32. JoVE articles are focused on the methods and the protocol, thus the discussion should be similarly focused. Please revise the Discussion to explicitly cover the following in detail in 3-6 paragraphs with citations:
- a) Critical steps within the protocol
- b) Any modifications and troubleshooting of the technique
- c) Any limitations of the technique
- d) The significance with respect to existing methods
- e) Any future applications of the technique

Answer: We have revised the discussion section, with changes highlighted in yellow.

33. References: Please do not abbreviate journal titles.

Answer: We have revised these issues in the manuscript.

34. Table of Equipment and Materials: Please remove trademark (™) and registered (®) symbols and sort the items in alphabetical order according to the name of material/equipment.

Answer: We have removed trademarks and commercial symbols, trademark and registered symbols from the manuscript.

Reviewers' comments:

Reviewer #1:

Manuscript Summary:

Luo et al design a genome-wide CRISPR/cas9 KO library targeting CTCF binding regions at HOX loci along with controls and demonstrate efficacy of their protocol

Major Concerns:

1. The title is misleading and gives the impression that this library targets CTCF regulatory elements across the entire genome rather than those associated with four HOX gene loci.

Answer: We appreciate the reviewer's constructive comment. We have changed to a more specific title for the manuscript.

2. The strategy was to target single guides that I assumed resulted in deletions at the target site rather than dual guides designed to excise regulatory elements by targeting 5' and 3' regions. It would be useful to provide a schematic at the start of a target region in relation to a HOX gene locus and again detail precisely where the sgRNAs were in relation to the target region and then show sequencing results where the deleted bands are shown.

Answer: We appreciate the reviewer's thoughtful comment. We have provided a new figure to explain this question in Figure 1. Also we employed the Indel mutation kit to screen the mutation clones.

3. There are several incidental grammatical errors that should be proofed by a professional copy editor.

Answer: We have revised the grammatical errors in the manuscript.

4. The utility of this library is limited. A library covering genome-wide CTCF sites would have had much greater utility

Answer: The method is focused on determining the role of the CTCF binding site in genome organization and gene regulation in all *HOX* loci. *HOX* genes play critical roles in embryonic development, organ development, hematopoiesis, and leukemogenesis. Thus, the method can be widely used to define CTCF boundary function in these developmental processes. We are also trying to explore genome-wide CTCF sites through next generation sequencing according to CTCF ChIP-seq data in the future research. As a non-coding sequence, the consensus CTCF binding sites are widely presented in the genome, and it will be quite a challenge to distinguish, as well as specifically target each CTCF binding site and monitor its biological effect for selection.

Reviewer #2:

Manuscript Summary:

Luo et al. nicely describe a targeted CRISPR/Cas9 screening approach to interrogate the relative impact of CTCF binding site disruption surrounding HOX gene loci. This is a well-written and easy-to-follow protocol that highlights an approach that could be taken

in many different cell types and contexts to target CTCF sites in lineage transcription factor loci. Screens with focused subsets of sgRNAs are much more likely to succeed in yielding interpretable results and the authors have nicely demonstrated this for the HOX genes in the MOLM13 cell line. In all, I feel that this manuscript is quite suitable for publication in JOVE.

Major Concerns:

None.

Minor Concerns: Minor copy-editing only. "SURVEYOR" misspelled in line 336.

Answer: We have revised this issue in the manuscript.

Reviewer #3:

Manuscript Summary:

The topic is excellent. Using of CRISPR/Cas to probe chromatin binding regions is an excellent application of the technology. Moreover, the selection of HOX genes offers an excellent biomedical application for the screen.

In compliance with data protection regulations, please contact the publication office if you would like to have your personal information removed from the database.

The stage and the Children and the stage and	Vineeta Bajaj <vineeta.bajaj@jove.com:< th=""></vineeta.bajaj@jove.com:<>

Fwd: FW: Reuse the published figures in published in Blood 132: 837-848

Stephanie Weldon <stephanie.weldon@jove.com>

Tue, Jan 8, 2019 at 1:12

РΜ

To: Vineeta Bajaj <vineeta.bajaj@jove.com>

Cc: Adria Gottesman-Davis <Adria.Gottesman-Davis@jove.com>

Dear Vineeta,

The author of JoVE59382 just contacted me with figure permissions (forwarded below). Also, there seemed to be some confusion in our department as to who should be contacted with this kind of information; is the review editor the person I should be providing this to? If not, who should I pass it to in the future?

Thanks! Stephanie

Stephanie R. Weldon, PhD Science Editor JoVE

1 Alewife Center | Suite 200 | Cambridge | MA | 02140 Phone: 617-401-7677 Ext: 850 | Fax: 866.381.2236

Follow us: Facebook | Twitter | LinkedIn

----- Forwarded message ------

From: **Huang, Suming** <shuang4@pennstatehealth.psu.edu>

Date: Tue, Jan 8, 2019 at 1:04 PM

Subject: FW: Reuse the published figures in published in Blood 132: 837-848

To: stephanie.weldon@jove.com <stephanie.weldon@jove.com>

Cc: Luo, Huacheng <hluo1@pennstatehealth.psu.edu>

Hi Stephanie,

I obtained the permission for reusing the figures in JoVE from the Blood journal. See below email. Thanks.

Suming

Suming Huang, PhD.

Professor of Pediatrics and Pharmacology

Four Diamonds Endowed Chair in Epigenetics & Gene Regulation Research Program

Department of Pediatrics

Pediatric hematology and Oncology

Penn State Hershey Medical Center

500 University Drive, C7830J

Hershey, PA 17033

Email: shuang4@pennstatehealth.psu.edu

Tel: (717) 531-7295 (O), (717) 531-0003 ext. 320230 or 320231 (L)

From: Blood Permissions [mailto:bloodpermissions@hematology.org]

Sent: Tuesday, January 08, 2019 12:49 PM

To: Huang, Suming <shuang4@pennstatehealth.psu.edu>

Subject: RE: Reuse the published figures in published in Blood 132: 837-848

Hi Dr. Huang,

Thank you for contacting Blood and for your contributions to our journal!
This is approved as you may reuse your Blood paper for this new one.
Kind regards,
Pat Baggott
Patrick Baggott
Sr. Manager, Publications
American Society of Hematology
Blood, Blood Advances, & ASH Permissions via:
www.copyright.com
www.bloodjournal.org
www.bloodadvances.org
www.hematology.org

From: Huang, Suming <shuang4@pennstatehealth.psu.edu> **Sent:** Tuesday, January 08, 2019 11:25 AM To: Blood Permissions <bloodpermissions@hematology.org> **Subject:** Reuse the published figures in published in Blood 132: 837-848 Hello, We are invited by the protocol based journal JoVE to published a detailed protocol of the sub-genomic CTCF sgRNA screening library that we developed. This HOX loci specific sgRNA screening library was used to identify the critical chromatin boundary in the HOXA locus in MLL rearranged AML and published in Blood last year (Blood, 132(8): 837-848, 2018; doi: 10.1182/blood-2017-11-814319). I would like to ask for the permission to reuse the figures 2B, 2C, 2D, S2A, and supplementary Table 1. Thank you for the consideration and I look forward to hearing from you. Best regards, **Suming** Suming Huang, PhD. Professor of Pediatrics and Pharmacology Four Diamonds Endowed Chair in Epigenetics & Gene Regulation Research Program

Department of Pediatrics

Pediatric hematology and Oncology

Penn State Hershey Medical Center

500 University Drive, C7830J

Hershey, PA 17033

Email: shuang4@pennstatehealth.psu.edu

Tel: (717) 531-7295 (O), (717) 531-0003 ext. 320230 or 320231 (L)

