Journal of Visualized Experiments

Identification of functional protein regions through chimeric protein construction --Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video
Manuscript Number:	JoVE58786R2
Full Title:	Identification of functional protein regions through chimeric protein construction
Keywords:	Chimeric proteins; structural similarity; Molecular Biology; overlap PCR; structure-function analysis; protein domains; Protein-protein interactions; protein binding properties
Corresponding Author:	Jochen Pöling Max Planck Institute for Heart and Lung Research Bad Nauheim, GERMANY
Corresponding Author's Institution:	Max Planck Institute for Heart and Lung Research
Corresponding Author E-Mail:	Jochen.Poeling@mpi-bn.mpg.de
Order of Authors:	Juan M. Adrian-Segarra
	Holger Lörchner
	Thomas Braun
	Jochen Pöling
Additional Information:	
Question	Response
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Bad Nauheim, Hessen, Germany

Max-Planck-Institute for Heart and Lung Research

W.G. Kerckhoff-Institute

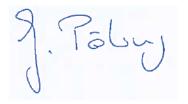
Max-Planck-Institute for Heart and Lung Research

Ludwigstr. 43 · D-61231 Bad Nauheim

Phillip Steindel

Review Editor

Journal of Visualized Experiments


Bad Nauheim, 09/06/18

Re: Re-Resubmission to Journal of Visualized Experiments

Dear Dr. Steindel,

Thank you for your decision letter from September 04th, 2018. Now, we have incorporated all editorial suggestions concerning the clarity of Figure 2, the legend of Figure 3A and the formatting of the references. Accordingly, a point—by—point response is attached in a separate letter. All corrections are tracked in the re-revised version of our manuscript. As before, we marked those passages in yellow, which should be presented in the video.

With best regards,

1 2

3

TITLE

Identification of Functional Protein Regions Through Chimeric Protein Construction

4 5

AUTHORS & AFFILIATIONS

- 6 Juan M. Adrian-Segarra¹, Holger Lörchner^{1,2}, Thomas Braun^{1,2}, Jochen Pöling^{1,2}
- 7 ¹Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung
- 8 Research, Bad Nauheim (Germany)
- 9 ²German Centre for Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am
- 10 Main, Germany

11 12

Corresponding Author:

Jochen Pöling (jochen.poeling@mpi-bn.mpg.de)

13 14 15

Email Addresses of Co-authors:

- 16 Juan M. Adrian-Segarra (juan.adriansegarra@mpi-bn.mpg.de)
- 17 Holger Lörchner (holger.loerchner@mpi-bn.mpg.de)
- 18 Thomas Braun (thomas.braun@mpi-bn.mpg.de)

19 20

KEYWORDS

Chimeric proteins, structural similarity, molecular biology, overlap PCR, structure-function analysis, protein domains, protein-protein interactions, protein binding properties

222324

25

26

27

21

SUMMARY

Structurally related proteins frequently exert distinct biological functions. The exchange of equivalent regions of these proteins in order to create chimeric proteins constitutes an innovative approach to identify critical protein regions that are responsible for their functional divergence.

28 29 30

31

32

33

34

35

ABSTRACT

The goal of this protocol encompasses the design of chimeric proteins in which distinct regions of a protein are replaced by their corresponding sequences in a structurally similar protein, in order to determine the functional importance of these regions. Such chimeras are generated by means of a nested PCR protocol using overlapping DNA fragments and adequately designed primers, followed by their expression within a mammalian system to ensure native secondary structure and post-translational modifications.

36 37 38

39

40

41

42

43

44

The functional role of a distinct region is then indicated by a loss of activity of the chimera in an appropriate readout assay. In consequence, regions harboring a set of critical amino acids are identified, which can be further screened by complementary techniques (e.g. site-directed mutagenesis) to increase molecular resolution. Although limited to cases in which a structurally related protein with differing functions can be found, chimeric proteins have been successfully employed to identify critical binding regions in proteins such as cytokines and cytokine receptors. This method is particularly suitable in cases in which the protein's functional regions are not well

defined, and constitutes a valuable first step in directed evolution approaches to narrow down the regions of interest and reduce the screening effort involved.

INTRODUCTION

Several types of proteins, including cytokines and growth factors, are grouped in families whose members share similar three-dimensional structures but often exert distinct biological functions^{1,2}. This functional diversity is usually the consequence of small differences in amino acid composition within the molecule's active sites³. Identification of such sites and functional determinants do not only offer valuable evolutionary insights but also to design more specific agonists and inhibitors⁴. However, the large number of differences in residue composition frequently found between structurally related proteins complicates this task. Even though constructing large libraries containing hundreds of mutants is nowadays feasible, assessing every single residue variation and combinations of them still remains a challenging and time-consuming effort⁵.

Techniques assessing the functional importance of large protein regions are thus of value to reduce the number of possible residues to a manageable number⁶. Truncated proteins have been the most used approach to tackle this issue. Accordingly, regions are considered to be functionally relevant if the protein function under study is affected by the deletion of a particular region^{7–9}. However, a major limitation of this method is that deletions can affect the protein's secondary structure, leading to misfolding, aggregation and the inability to study the intended region. A good example is a truncated version of the cytokine oncostatin M (OSM), in which an internal deletion larger than 7 residues resulted in a misfolded mutant that could not be further studied¹⁰.

The generation of chimeric proteins constitutes an alternative and innovative approach that permits the analysis of larger protein regions. The goal of this method is to exchange regions of interest in a protein by structurally related sequences in another protein, in order to assess the contribution of the replaced sections to specific biological functions. Widely used in the field of signaling receptors to identify functional domains^{11,12}, chimeric proteins are particularly useful to study protein families with little amino acid identity but conserved secondary structure. Appropriate examples can be found in the class of interleukin-6 (IL-6) type cytokines, such as interleukin-6 and ciliary neurotrophic factor (6% sequence identity)¹³ or leukemia inhibitory factor (LIF) and OSM (20% identity)⁶, on which the following protocol is based.

PROTOCOL

1. Chimeric Protein Design

1.1. Select a suitable protein (donor) to exchange regions with the protein of interest (recipient) The donor protein should be structurally similar, ideally belonging to the same protein family, but lacking the biological activity to be used as readout. If no structurally related proteins are known, potential candidates can be identified using an automated tool such as the Vector Alignment Search Tool (VAST)^{14,15}:

90 1.1.1. Access the Protein Data Bank (PDB)¹⁶ European website (https://www.ebi.ac.uk/pdbe/), 91 introduce the name of the protein of interest in the search box on the upper right corner, and 92 click 'Search'. Provided that a crystal structure is available, note down the PDB identifier (PDB ID; *e.g.* 1evs for OSM).

NOTE: if structural data is not available at the PDB, a homology model of the protein might be generated by a tool such as SWISS-MODEL¹⁷ instead, using available step-by-step protocols¹⁸.

1.1.2. Access the VAST website (https://www.ncbi.nlm.nih.gov/Structure/VAST/vast.shtml). In case a PDB ID is available, scroll down to the 'Retrieve pre-computed results' section, input the PDB ID in the 'Show Similar Structures for' box, and click 'Go'. In the following screen, click on 'Original VAST' and then 'Entire Chain' to see a list of PDB IDs for potential structurally similar candidates.

1.1.2.1. If a PDB ID is unavailable but a homology model was generated, scroll down to the 'Search with a new structure' section and click on the 'VAST search' link. Upload the PDB file of the model by clicking 'Browse' next to 'Submit PDB file', selecting the file and clicking 'Submit'.

1.1.2.2. After the PDB file is uploaded, click the 'Start' button to start the VAST calculation. Once the calculation is performed, click on 'Entire Chain' under Domains to see the PDB IDs of structurally similar proteins.

1.1.3. Assess the biological functions of interest (e.g. receptor activation, enzymatic activity, transcription factor activity) of the top candidates, either experimentally in the readout system of choice or through a literature search. Select a donor protein with divergent function in comparison to the protein of interest.

1.2. Obtain the protein amino acid sequences of the recipient and donor proteins from the Reference Sequence (RefSeq) database¹⁹.

1.2.1. Access the gene section in the RefSeq webpage (https://www.ncbi.nlm.nih.gov/gene), type the name of the protein of interest in the search box and click 'Search'. Click on the gene name for the desired species in the resulting list.

1.2.2. Scroll down to the RefSeq section to see all documented isoforms. Click on the sequence identifier for the isoform of interest (starting with NM), scroll down and click on 'CDS' to highlight the protein-coding region of the gene. On the bottom right of the screen, click on 'FASTA' and copy the gene sequence.

1.2.3. Save the DNA sequence using a suitable DNA editing software. When using the freely available ApE²⁰, open the program, paste the copied sequence in the blank box, select the sequence name and click 'Save'.

NOTE: Repeat steps 1.2.1. to 1.2.3. for the one or more donor proteins selected.

1.3. Choose the protein regions to be substituted in the different chimeric constructs.

1.3.1. Divide the protein sequence of interest in distinct structural regions. Ideally, different domains for the protein in question will have been described in the literature. If this is not the case, the existence of distinct conserved structural features (helices, loops) should be evaluated in steps 1.3.1.1. to 1.3.1.4.

1.3.1.1. Download the structural data of the protein of interest from the PDB website (see step 1.1.1.). Access the PDB page for the protein, and download the PDB file by clicking 'download' at the right side of the screen.

1.3.1.2. Open the PDB file in a molecular visualization system like PyMOL (https://pymol.org/). In PyMOL, display the nucleotide sequence (by clicking Display > Sequence On), hide the default structural data (by clicking the H next to the PDB ID, and selecting 'everything') and select the 'cartoon' view to clearly visualize the protein's structural features (clicking the S next to the PDB ID, and selecting 'cartoon').

152 1.3.1.3. Click on the nucleotide sequence at the top of the screen to highlight different parts of the molecule, noting down the amino acids corresponding to each distinctive structural feature.

1.3.2. Annotate the distinct structural regions on the DNA sequence in ApE. To do so, open the DNA sequence from step 1.2.3., select the nucleotides coding for the amino acids in a region, right-click on the selection and select 'New Feature' to give it a name and a color. Repeat the process for each structural region identified in the previous step.

NOTE: The nucleotide selection can be double-checked by clicking ORFs > Translate, then clicking OK, to ensure that they code for the correct amino acid sequence.

1.3.3. Align the residue sequences of the two proteins employing a protein alignment tool (e.g.
 Clustal Omega²¹).

NOTE: Since the chimeras are to be produced in a mammalian expression system, these sequences should include the proteins' signal peptides.

1.3.3.1. Obtain the full amino acid sequences of donor and receptor proteins in ApE, by opening
 the DNA sequences from step 1.2.3., selecting them and clicking ORFs > Translate.

1.3.3.2. Access the Clustal Omega webpage (https://www.ebi.ac.uk/Tools/msa/clustalo/) and input the amino acid sequences of the two proteins, then scroll down and click 'Submit'. Each sequence should be preceded by a text line with '>ProteinName' to be properly identified.

176 1.3.3.3. Retrieve the alignment file by clicking the 'Download alignment file' tab and save it. This

file can be opened by any text editing program.

179 1.3.3.4. Using the alignment file as a reference, annotate the corresponding structural regions of the donor protein in their DNA sequence (see step 1.3.2.).

1.3.4. Decide which protein regions to exchange in the chimeric proteins and design the appropriate nucleotide sequences for the chimeras.

NOTE: In the absence of detailed information regarding functional importance of the different regions, it is suggested to select large substitutions such as whole loops or helices to evaluate which of them have an impact on protein function. This first exploratory experiment can then be followed by a second round of chimeric protein design, focused on smaller substitutions within the relevant regions.

1.3.4.1. Create a copy of the annotated DNA sequence of the receptor protein from step 1.3.2. and rename it as a chimeric protein. Open the renamed DNA sequence in ApE, select and delete the nucleotide sequence coding for the region to be exchanged, and replace it by the corresponding region in the donor protein (copied from the annotated sequence created in step 1.3.3.), then save the changes.

NOTE: Create a new copy and repeat this step for each different chimera designed.

2. Preparation for Molecular Cloning

2.1. Select a plasmid vector suitable for the expression system of choice. For mammalian expression, a high-expression vector like pCAGGS²² or the pcDNA vector series are recommended.

2.1.1. For the restriction enzyme-based cloning demonstrated in this protocol, ensure that the unique restriction sites present in the multiple cloning site (MCS) of the vector are compatible with the protein of interest. To do so, open the DNA sequence of the chimeric constructs with ApE, click 'Enzymes > Enzyme selector' and verify that at least two of the restriction sites in the MCS are absent in the sequence (displaying a zero next to their name).

2.2. Design the terminal primers using a DNA editor such as ApE.

2.2.1. Create a new DNA file (File > New) and initiate the N-terminal primer with a leader sequence (3-9 extra base pairs, e.g. AAAGGGAAA), followed by the first restriction site selected in the vector's MCS (6-8 base pairs, e.g. TTAATTAA for Pacl), an optional spacer (e.g. GCTAGCGCATCGCCACC in the pCAGGS vector used in the example) and the initial 18-27 base pairs of the gene of interest (e.g. ATGGGGGTACTGCTCACACAGAGGACG for OSM).

2.2.2. In a new DNA file, the C-terminal primer sequence starts with the final 18-27 base pairs of the gene of interest (e.g. CTCGAGCACCACCACCACCACCACTGA for a gene with a 6xHistidine C-

- terminal tag), followed by an optional spacer (e.g. TAGCGGCCGC in the pCAGGS vector), the second restriction site chosen (e.g. GGCGCGCC for AscI) and a leader sequence (e.g. AAAGGGAAA). Highlight the whole sequence, right-click and select 'Reverse-Complement' to obtain the reverse primer.
- 226 2.3. Design primers for each of the border regions in the chimeric constructs.

225

227

232

236

240

242

245

247

252253

254

255256

257

258

259

263

- 2.3.1. Open the DNA sequence of the chimera (created in step 1.3.4.1.) and highlight a 30 base pair region in the zone where the original and inserted sequences are in contact, comprising 15 base pairs of each sequence. Copy the region (right-click and select 'Copy') and paste it in a new DNA file; this sequence will be the forward primer.
- 2.3.2. Make a copy of the forward primer generated in the previous step and rename it as reverse
 primer. Highlight the primer sequence, right-click and select 'Reverse-Complement' to generate
 the reverse primer sequence.
- 2.3.3. Repeat steps 2.3.1. and 2.3.2. for each contact zone in the chimeric DNA sequence.

 Generally, two sets of forward/reverse primers are required to generate one chimera, unless the
 replacement occurs at the N-terminal or C-terminal regions.
- 2.4. Order the terminal and internal primers from an oligonucleotide synthesis provider.
- Notes: Using highly purified terminal primers (*e.g.* HPLC-purified) can have a positive impact in the protocol's success rate. Desalted internal primers usually provide good results.
- 2.5. Obtain template sequences of the donor and receptor genes.
- NOTE: Employing plasmids containing the open reading frames (ORFs) of these sequences as a template greatly facilitates the procedure and is recommended. Alternatively, complementary DNA (cDNA) generated from a cell line known to express these genes can be used as a template for subsequent steps.
 - 3. Polymerase Chain Reaction (PCR) Amplification of the Individual DNA Fragments Forming the Chimera
 - 3.1. Prepare an individual PCR reaction mixture for each of the fragments composing the chimeric protein. A typical chimeric protein will require three individual fragments: the N-terminal part, the region to be inserted, and the C-terminal part.
- Notes: Use a high-fidelity DNA polymerase (*e.g.* Phusion High Fidelity DNA Polymerase) to avoid introducing mutations in the sequence. The PCR reaction can be set up in the evening and run overnight.
- 3.1.1. Set a 1.5 mL microfuge tube on ice and pipet the different reagents of the PCR mixtures in

265 the order shown in **Table 1**, ensure correct primers and templates are employed for each PCR reaction (see **Table 2**).

267268

269

270

3.1.2. Label two thin-walled 0.2 mL PCR tubes for each reaction, and transfer 20 μ L of the corresponding PCR mixture in each tube. Transfer the PCR tubes into a PCR thermocycler and initiate the protocol detailed in **Table 3.**

271272

NOTE: annealing temperature should be at least 5 degrees lower than the melting temperature of the designed primers.

273274275

276

277

278

3.2. While the PCR is running, prepare 100 mL of a 1% agarose gel in Tris-Acetate-EDTA (TAE) buffer. For this purpose, weigh 1 g of agarose, mix with 100 mL of TAE buffer in a glass flask and microwave until the agarose is completely dissolved, swirling the flask every 30-40 seconds. Allow cooling to approximately 50 °C, add 2-3 μ L of ethidium bromide (or an equivalent DNA dye) and pour in a gel tray with the desired well combs.

279280281

CAUTION: ethidium bromide is a known mutagen, ensure the use of proper protective equipment.

282283284

3.3. After the PCR reaction is completed, add 4 μ L of 6x DNA loading buffer in each tube. Insert the 1% agarose gel in an electrophoresis unit, cover with TAE buffer and carefully load the samples into the gel along with a molecular weight ladder.

286287288

285

NOTE: at the time of loading, it is preferable to leave empty lanes between the samples to facilitate DNA recovery afterwards.

289290

3.4. Run the gel at 80-120 V for 20-45 minutes.

291292293

NOTE: bands under 1000 base pairs can usually be electrophoresed in around 20 minutes at 120 V, while larger bands will require longer running times.

294295296

3.5. Turn off the electrophoresis unit, take out the agarose gel and visualize the amplified DNA bands under UV light. Using a razor blade, cut out the individual DNA fragments from the gel, and transfer them to labeled 2 mL microfuge tubes.

298299300

297

NOTE: Minimize the exposure time to UV light in order to avoid DNA damage.

301

3.6. Use a PCR clean-up kit (see **Table of Materials**) to purify the different DNA fragments.

303

3.6.1. Add 500 μ L of the NTI buffer provided by the kit to each tube containing a gel fragment. Transfer to a thermomixer at 50-55 °C and shaking at 1000 rpm until the gel is completely dissolved into the buffer.

307 308

3.6.2. Transfer each solution to a labeled kit column, spin in a microcentrifuge (30-60s, 11000xg)

- and discard the flowthrough. Add 700 μ L of the kit's NT3 wash buffer, centrifuge again under the same settings and discard the flowthrough. Centrifuge the columns again for 1-2mins at 11000xg to dry the silica membrane inside the column.
- 3.6.3. Transfer the column to a labeled 1.5 mL microfuge tube, pipet 30 μL of nuclease-free water into the column, let stand for 1 minute and centrifuge 30-60s at 11000 x g to elute the DNA.
- 3.7. Quantify the amount of DNA recovered by measuring the absorbance of the sample at 260 nm and 340 nm in a spectrophotometer (see **Table of Materials**). The DNA concentration is calculated by subtracting the 340 nm reading from the 260 nm figure, then multiplying the result by DNA's extinction coefficient (50 µg/mL)²³.
- Notes: Additional measurements at 230 nm and 280 nm allow for evaluation of DNA purity: 260/280 and 260/230 ratios above 1.8 are generally regarded as pure for DNA. The protocol can be paused after this step, storing the eluted DNA at 4 °C (short-term) or -20 °C (longer term).

4. PCR Amplification to Generate the Chimeric DNA Sequence

- 4.1. Set up 50 μ L of a PCR reaction to fuse the separate constituents of the chimera. Follow the same steps detailed in 3.1, employing the N-terminal and C-terminal primers along with 10 ng of each of the DNA fragments obtained in step 3.7.
- NOTE: The PCR reaction can be set in the evening and run overnight.
 - 4.2. Repeat steps 3.2 to 3.7 to recover and quantify the purified DNA fragment in 30 μ L of nuclease-free water. This fragment contains the chimeric DNA sequence, flanked by the restriction sites included in the terminal primers.

5. Insertion of the Chimeric DNA into an Expression Vector

- 5.1. Label two 1.5 mL microfuge tubes and pipet the different reagents in the order indicated in **Table 4,** adding 1 μ g of the selected expression vector in one tube and 1 μ g of the recovered DNA fragment in the other. Incubate for 1-4 h at 37 °C to perform the digestion with the chosen restriction enzymes.
- **Notes:** Ensure both restriction enzymes are compatible with the buffer employed. In case they require completely different buffers, perform these steps first with only one of the enzymes and repeat. The time required for the digestion can vary depending on the restriction enzymes selected: refer to the manufacturer's instructions for detailed information.
- 5.2. Repeat steps 3.2 to 3.7 to purify and recover the digested DNA fragment and expression
 vector in 30 μL of nuclease-free water. Quantify the amount of DNA recovered as before.
- 352 5.3. Calculate the amount of insert DNA required for a 3:1 insert/vector molar ratio in the ligation

reaction, using the following equation.

 $Insert(ng) = Molar \ ratio * Vector(ng) * Insert \ size(bp)/Vector \ size(bp)$

NOTE: Different insert/vector molar ratios can be tested, although usually a 3:1 ratio is sufficient to obtain adequate results.

5.4. Set up 20 μ L of a ligation reaction in a 1.5 mL microfuge tube with 40 ng of the expression vector the amount of chimeric DNA calculated in step 5.3, buffer, and T4 DNA ligase following the order indicated in **Table 5**, and incubate overnight at 16 °C.

NOTE: Ligation efficiency is generally increased by performing the reaction overnight at 16 °C, but alternatively the reaction can be incubated for 2 h at room temperature.

5.5. Transform 5-10 μ L of the ligation mixture into chemically competent *Escherichia coli* (*E. coli*) prepared following standard protocols²⁴ Grow in selection plates and pick single colonies for expansion and plasmid DNA isolation according to established protocols²⁵.

NOTE: The *E. coli* XL1-Blue strain was employed for this protocol, but other *E. coli* variants can also be used.

5.6. Digest 1 μ g the isolated plasmids with the appropriate restriction enzymes following the instructions in step 5.1, and assess the presence of a DNA band of a size corresponding to the chimeric sequence by electrophoresis in an agarose gel (see steps 3.2-3.5).

NOTE: It is recommended that the inserted sequence is verified by means of a DNA sequencing service.

5.7. Upon successful sequence verification, the plasmids can be produced in larger amounts and employed in a mammalian expression system by following well-established protocols^{26,27}.

REPRESENTATIVE RESULTS:

Construction and generation of a chimeric protein (**Figure 1**) will be exemplified with two members of the interleukin-6 cytokine family, OSM and LIF, which were the subject of a recently published study⁶. **Figure 2** shows the three-dimensional structure of these proteins. Both molecules adopt the characteristic secondary structure of class I cytokines, with four helices (termed A to D) packed in a bundle and joined by loops²⁸. The aligned amino acid structures of the human proteins can be seen in **Figure 3A**. In this example the BC loop region of OSM was exchanged by the corresponding LIF sequence to create an OSM-LIF chimera with the amino acid sequence as shown in **Figure 3B**.

For this purpose, the DNA sequence of OSM and LIF were obtained and the encoding amino acid region corresponding to the BC loop was identified for both cytokines and replaced (**Figure 4**). A 6-histidine tag was additionally incorporated in the C-terminus to facilitate downstream protein

purification. Next, a suitable vector for mammalian expression (pCAGGS) was chosen, and unique restriction sites within its multiple cloning site were selected (*PacI* and *AscI*) after ensuring that they were not present in the chimeric gene sequence (see step 2.1.1.).

Primers were designed as shown in **Table 4.** The N-terminal forward OSM primer included a leading sequence of 9 base pairs, followed by the *PacI* restriction site, a plasmid-specific spacer, and the initial 27 base pairs of OSM. The C-terminal reverse primer incorporated the leading sequence followed by the *AscI* restriction site, a spacer, and the 27 last base pairs of the gene, which in this particular case corresponded to the C-terminal histidine tag. In addition, 30-base pair primers spanning the junction points of the BC loop were required in both forward and reverse orientations.

The first PCR amplification step consisted of three separate reactions. The N-terminal OSM fragment, which required N-terminal OSM forward and BC start reverse primers, used OSM as template. The LIF BC loop was obtained through BC start forward and BC end reverse primers using LIF as template. The C-terminal OSM fragment used BC end forward and C-terminal OSM reverse primers, as well as OSM as template. These three fragments, with expected sizes of 385, 75 and 321 base pairs respectively, can be seen in **Figure 5A** after separation in a 1% agarose gel.

These purified fragments were then used as a template in the second PCR reaction, along with N-terminal OSM forward and C-terminal OSM reverse primers. The result of this amplification, corresponding to the OSM-LIF BC loop gene sequence and is shown in **Figure 5B.** This step was followed by purification, a 4-hour digestion of the gene fragment and the chosen plasmid, gel electrophoresis and purification, overnight ligation at 16 °C, and transformation into *E. coli* XL1-Blue. Individual plasmids were isolated and screened by restriction enzyme digestion for proper insertion of the DNA fragment (**Figure 6**). Finally, positive hits were sent for sequencing to verify that the sequence corresponded to the intended OSM-LIF BC loop chimera before proceeding to protein expression, purification and testing in functional assays⁶.

FIGURE AND TABLE LEGENDS

Figure 1: Schematic representation of chimeric protein generation. (A) Chimeric design process: after selection of the regions to be exchanged, the sequence of the desired chimera and the necessary primers are constructed by means of DNA editing software. **(B)** The key steps in the generation of chimeric proteins are depicted. Two steps of PCR amplification produce a chimeric gene sequence, which is then digested with the appropriate restriction enzymes and ligated into an expression vector.

Figure 2: Structural similarities between OSM and LIF. Representation of the crystal structures of OSM²⁹ (PDB: 1EVS) and LIF³⁰ (PDB: 2Q7N), along with an approximate representation of the designed chimera. These cytokines adopt a four-helical bundle conformation joined by loops. This research was originally published in the Journal of Biological Chemistry. Adrian-Segarra, J. M., Schindler, N., Gajawada, P., Lörchner, H., Braun, T. & Pöling, J. The AB loop and D-helix in binding site III of human Oncostatin M (OSM) are required for OSM receptor activation. J. Biol Chem

2018; 18:7017-7029. © the Authors⁶.

Figure 3: Comparison of OSM and LIF amino acid sequences. (A) Alignment of the full-length amino acid sequences of human OSM and LIF, with the BC loop region highlighted. Asterisks (*) indicate fully conserved residues, colons (:) correspond to amino acids with strongly similar properties and periods (.) denote those with weakly similar features. (B) Amino acid sequence of the OSM BC loop chimera, with the BC loop region of OSM replaced by its LIF equivalent.

Figure 4: DNA sequence of the OSM BC loop chimera. Sequence of the chimeric OSM protein. The region inserted from LIF is highlighted in orange.

Figure 5: Amplification of the OSM BC loop chimera DNA fragments. (A) Result from the first PCR amplification, with bands corresponding to the N-terminal region (lane 2), BC loop (lane 3) and C-terminal region (lane 4). (B) Result from the second PCR amplification, in which the three bands obtained in the first amplification are combined to generate the OSM chimera.

Figure 6: Insertion of the OSM BC loop chimera into plasmid vector. Restriction enzyme digestion of the generated plasmids, with a lower band present at ~700 base pairs indicating the correct insertion of the OSM chimera gene sequence.

Table 1: Reagents required for the PCR reaction mixture.

Table 2: Primer and templates needed for the generation of a standard chimeric protein.

Table 3: PCR protocol used to amplify the chimeric fragments and the full chimeric protein.

Table 4: Components of the restriction enzyme digestion reaction.

Table 5: Reagents required for the ligation reaction.

Table 6: Primers used in the generation of the OSM BC loop chimera.

DISCUSSION

The generation of chimeric proteins constitutes a versatile technique, which is able to go beyond the limits of truncated proteins to address questions such as the modularity of cytokine-receptor binding domains¹³. The design of chimeras is a key step in this kind of studies, and requires careful consideration. Preliminary studies to establish functional domains will generally require substitution of broad regions in a first phase, while smaller replacements of variable lengths are more suited to detailed studies of a single region. Special attention should be given to the presence of small conserved motifs within a protein family in this step, since these are often indicative of functional sites^{31,32}. Personal experience indicates that more than one round of chimeric protein design can be necessary to narrow down a key functional region, with each round requiring significant time (weeks to months) from initial design to functional assay testing.

As long as there exists a structurally similar protein to the protein of interest, but possessing diverging biological functions, the method is applicable to any sequence of interest, although it has to be optimized for each particular gene due to its reliance on PCR amplification. Particularly, genes possessing GC-rich regions might prove particularly challenging targets, since these types of sequences are known to reduce the efficiency of the amplification³³. These issues can usually be solved by different means, such as the addition of different additives (*e.g.* betaine) to the reaction, the use of specialized DNA polymerase buffers, or the modification of the annealing parameters³⁴. Hence, it will generally require some trial and error before adequate conditions for the gene of interest are found.

The protocol provided is based on classic restriction enzyme-based cloning methods, which are generally accessible to every type of laboratory, but it can be further adapted to take advantage of more advanced cloning techniques. For example using gateway cloning, which facilitates cloning the same insert in several different vectors (e.g. if different expression systems are to be tested in parallel), would merely require particular attB recombination sites in place of the restriction sites detailed in this protocol³⁵. Other newer cloning methodologies can bypass the need for a second PCR reaction (e.g. USER³⁶ or Gibson assembly³⁷) and ligation (e.g. sequence and ligation-independent cloning (SLIC)³⁸ or In-fusion assembly³⁹). While requiring different reagents and primer design strategies, readers with access to these methods are encouraged to apply them to significantly speed up the generation of chimeric constructs after following the basic design principles detailed in step 1 of this protocol.

Overall, the application of this method can supply valuable insight regarding the mechanisms by which other protein biological functions take place, in particular involving protein-protein or protein-nucleic acid interactions, and constitutes a useful tool to identify and specify unique structure-function relationships within a protein family⁶.

ACKNOWLEDGMENTS

This work was supported by the Max Planck Society and the Schüchtermann-Clinic (Bad Rothenfelde, Germany). Part of this research was originally published in the Journal of Biological Chemistry. Adrian-Segarra, J. M., Schindler, N., Gajawada, P., Lörchner, H., Braun, T. & Pöling, J. The AB loop and D-helix in binding site III of human Oncostatin M (OSM) are required for OSM receptor activation. J. Biol Chem 2018; 18:7017-7029. © the Authors.

DISCLOSURES

The authors have nothing to disclose.

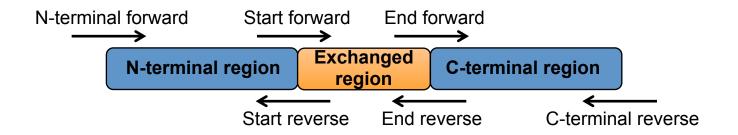
REFERENCES

- 1. Huising, M. O., Kruiswijk, C. P. & Flik, G. Phylogeny and evolution of class-I helical cytokines. *The Journal of Endocrinology* **189** (1), 1–25 (2006).
- 526 2. Brocker, C., Thompson, D., Matsumoto, A., Nebert, D. W. & Vasiliou, V. Evolutionary 527 divergence and functions of the human interleukin (IL) gene family. *Human Genomics* **5** 528 (1), 30–55 (2010).

- Bravo, J. & Heath, J. K. Receptor recognition by gp130 cytokines. *The EMBO Journal* 19
 (11), 2399–411 (2000).
- 531 4. Schneider, G. & Fechner, U. Computer-based *de novo* design of drug-like molecules. 532 *Nature Reviews Drug Discovery* **4** (8), 649–63 (2005).
- 5. Heydenreich, F. M., Miljuš, T., Jaussi, R., Benoit, R., Milić, D. & Veprintsev, D. B. Highthroughput mutagenesis using a two-fragment PCR approach. *Scientific Reports* **7** (1), 6787 (2017).
- 536 6. Adrian-Segarra, J. M., Schindler, N., Gajawada, P., Lörchner, H., Braun, T. & Pöling, J. The AB loop and D-helix in binding site III of human Oncostatin M (OSM) are required for OSM receptor activation. *The Journal of Biological Chemistry* **293** (18), 7017–7029 (2018).
- 539 7. Wang, Y. & Pallen, C. J. Expression and characterization of wild type, truncated, and mutant 540 forms of the intracellular region of the receptor-like protein tyrosine phosphatase HPTP 541 beta. *The Journal of Biological Chemistry* **267** (23), 16696–702 (1992).
- 542 8. Lim, J., Yao, S., Graf, M., Winkler, C. & Yang, D. Structure-function analysis of full-length 543 midkine reveals novel residues important for heparin binding and zebrafish 544 embryogenesis. *The Biochemical Journal* **451** (3), 407–15 (2013).
- 545 9. Kim, K.-W., Vallon-Eberhard, A., *et al. In vivo* structure/function and expression analysis of the CX3C chemokine fractalkine. *Blood* **118** (22), e156-67 (2011).
- 547 10. Chollangi, S., Mather, T., Rodgers, K. K. & Ash, J. D. A unique loop structure in oncostatin 548 M determines binding affinity toward oncostatin M receptor and leukemia inhibitory 549 factor receptor. *The Journal of Biological Chemistry* **287** (39), 32848–59 (2012).
- 550 11. Aasland, D., Schuster, B., Grötzinger, J., Rose-John, S. & Kallen, K.-J. Analysis of the 551 leukemia inhibitory factor receptor functional domains by chimeric receptors and 552 cytokines. *Biochemistry* **42** (18), 5244–52 (2003).
- Hermanns, H. M., Radtke, S., et al. Contributions of leukemia inhibitory factor receptor and oncostatin M receptor to signal transduction in heterodimeric complexes with glycoprotein 130. *Journal of Immunology* **163** (12), 6651–8 (1999).
- 556 13. Kallen, K. J., Grötzinger, J., et al. Receptor recognition sites of cytokines are organized as 557 exchangeable modules. Transfer of the leukemia inhibitory factor receptor-binding site 558 from ciliary neurotrophic factor to interleukin-6. *The Journal of Biological Chemistry* **274** 559 (17), 11859–67 (1999).
- 560 14. Gibrat, J. F., Madej, T. & Bryant, S. H. Surprising similarities in structure comparison. 561 *Current Opinion in Structural Biology* **6** (3), 377–85 (1996).
- 562 15. Madej, T., Lanczycki, C. J., *et al.* MMDB and VAST+: tracking structural similarities between macromolecular complexes. *Nucleic Acids Research* **42** (Database issue), D297-303 (2014).
- 564 16. Berman, H., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank.
 565 Nature Structural Biology **10** (12), 980 (2003).
- 566 17. Biasini, M., Bienert, S., *et al.* SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. *Nucleic Acids Research* **42** (Web Server issue), W252-8 (2014).
- 569 18. Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J. & Schwede, T. Protein structure 570 homology modeling using SWISS-MODEL workspace. *Nature Protocols* **4** (1), 1–13 (2009).
- 571 19. Maglott, D. R., Katz, K. S., Sicotte, H. & Pruitt, K. D. NCBI's LocusLink and RefSeq. *Nucleic Acids Research* **28** (1), 126–8 (2000).

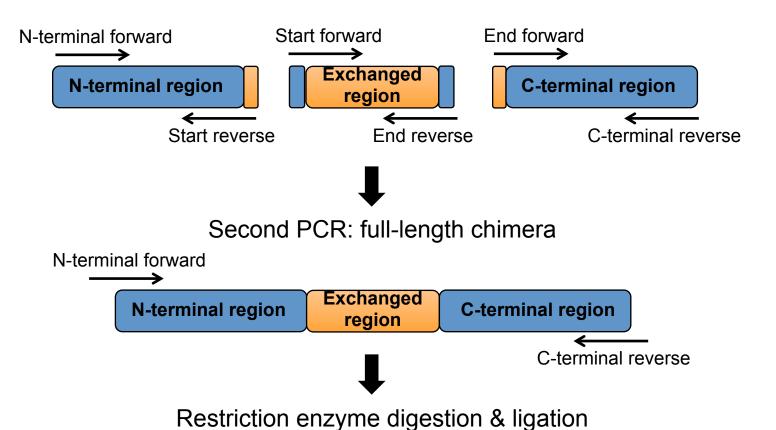
- 573 20. Davis, M. W. http://jorgensen.biology.utah.edu/wayned/ape/.
- 574 21. Sievers, F., Wilm, A., et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. *Molecular Systems Biology* **7**, 539 (2011).
- Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. *Gene* **108** (2), 193–9 (1991).
- 578 23. Barbas, C. F., Burton, D. R., Scott, J. K. & Silverman, G. J. Quantitation of DNA and RNA. 579 *Cold Spring Harbor Protocols* **2007**, pdb.ip47 (2007).
- 580 24. Sambrook, J. & Russell, D. W. Preparation and Transformation of Competent E. coli Using Calcium Chloride. *Cold Spring Harbor Protocols* **2006** (1) (2006).
- 582 25. Sambrook, J. & Russell, D. W. Preparation of Plasmid DNA by Alkaline Lysis with SDS: Minipreparation. *Cold Spring Harbor Protocols* **2006** (1) (2006).
- 584 26. Green, M. R. & Sambrook, J. Preparation of Plasmid DNA by Alkaline Lysis with Sodium Dodecyl Sulfate: Maxipreps. *Cold Spring Harbor Protocols* **2018** (1), pdb.prot093351 (2018).
- 587 27. Hopkins, R. F., Wall, V. E. & Esposito, D. Optimizing transient recombinant protein expression in mammalian cells. *Methods in Molecular Biology* **801**, 251–68 (2012).
- Wang, X., Lupardus, P., Laporte, S. L. & Garcia, K. C. Structural biology of shared cytokine receptors. *Annual Review of Immunology* **27**, 29–60 (2009).
- 591 29. Deller, M. C., Hudson, K. R., Ikemizu, S., Bravo, J., Jones, E. Y. & Heath, J. K. Crystal structure 592 and functional dissection of the cytostatic cytokine oncostatin M. *Structure* **8**, 863–74 593 (2000).
- Huyton, T., Zhang, J.-G., *et al.* An unusual cytokine:Ig-domain interaction revealed in the crystal structure of leukemia inhibitory factor (LIF) in complex with the LIF receptor. *Proceedings of the National Academy of Sciences of the United States of America* **104**, (31), 12737–42 (2007).
- Oezguen, N., Kumar, S., Hindupur, A., Braun, W., Muralidhara, B. K. & Halpert, J. R. Identification and analysis of conserved sequence motifs in cytochrome P450 family 2. Functional and structural role of a motif 187RFDYKD192 in CYP2B enzymes. *The Journal of Biological Chemistry* **283** (31), 21808–16 (2008).
- Wong, A., Gehring, C. & Irving, H. R. Conserved Functional Motifs and Homology Modeling to Predict Hidden Moonlighting Functional Sites. *Frontiers in Bioengineering and Biotechnology* **3**, 82 (2015).
- 605 33. McDowell, D. G., Burns, N. A. & Parkes, H. C. Localised sequence regions possessing high 606 melting temperatures prevent the amplification of a DNA mimic in competitive PCR. 607 *Nucleic Acids Research* **26** (14), 3340–7 (1998).
- Mamedov, T. G., Pienaar, E., et al. A fundamental study of the PCR amplification of GC-rich DNA templates. *Computational Biology and Chemistry* **32** (6), 452–7 (2008).
- 610 35. Park, J., Throop, A. L. & LaBaer, J. Site-specific recombinational cloning using gateway and in-fusion cloning schemes. *Current Protocols in Molecular Biology* **110**, 3.20.1-23 (2015).
- 612 36. Bitinaite, J., Rubino, M., Varma, K. H., Schildkraut, I., Vaisvila, R. & Vaiskunaite, R. USER 613 friendly DNA engineering and cloning method by uracil excision. *Nucleic Acids Research* **35** 614 (6), 1992–2002 (2007).
- Gibson, D. G., Young, L., Chuang, R.-Y., Venter, J. C., Hutchison, C. A. & Smith, H. O.
 Enzymatic assembly of DNA molecules up to several hundred kilobases. *Nature Methods* 6

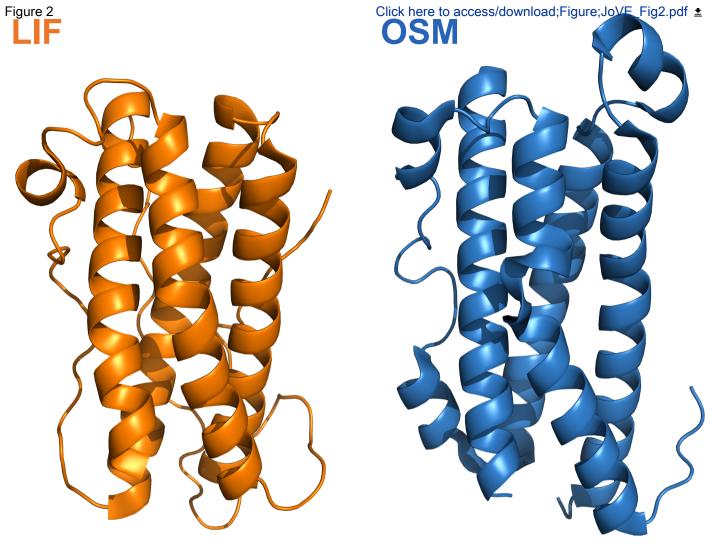
617 (5), 343–5 (2009).

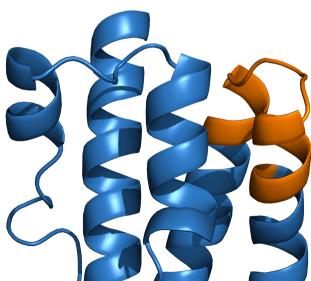

623

- 618 38. Li, M. Z. & Elledge, S. J. Harnessing homologous recombination *in vitro* to generate recombinant DNA via SLIC. *Nature Methods* **4** (3), 251–6 (2007).
- 39. Zhu, B., Cai, G., Hall, E. O. & Freeman, G. J. In-fusion assembly: seamless engineering of multidomain fusion proteins, modular vectors, and mutations. *BioTechniques* **43** (3), 354–622 9 (2007).

Donor protein

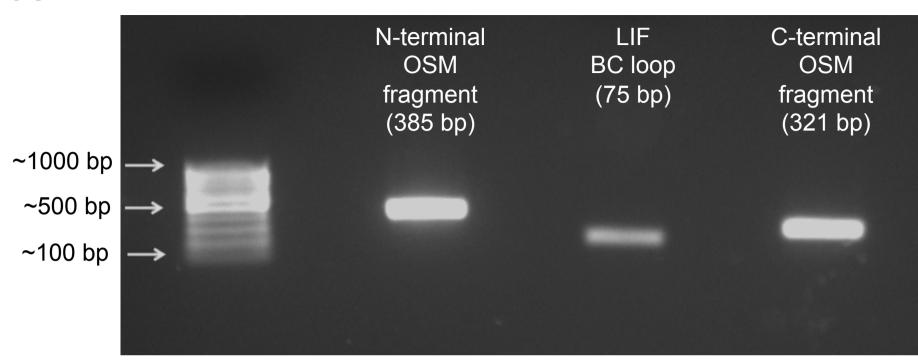

Protein of interest


N-terminal region Region of interest C-terminal region N-terminal region Region of interest C-terminal region C-terminal

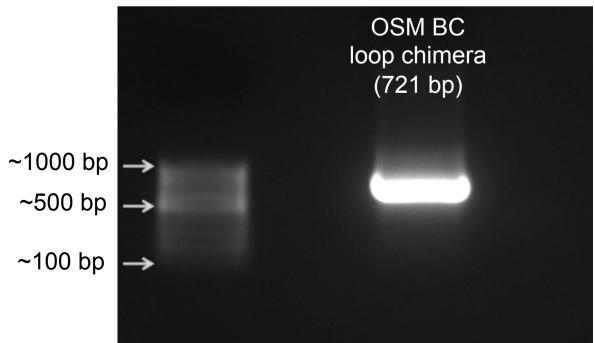

B

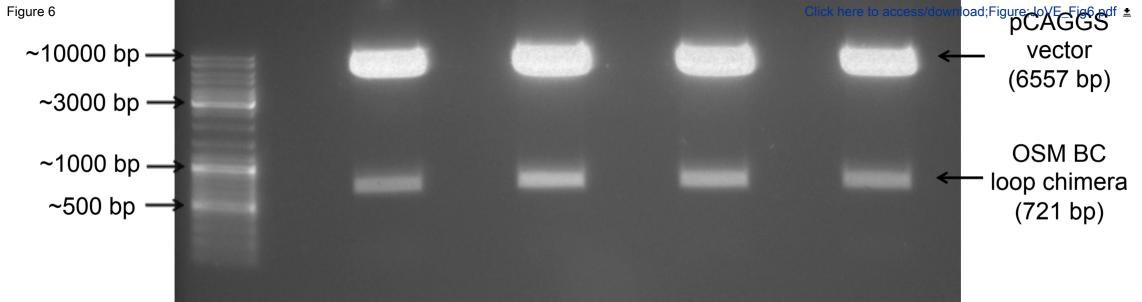
First PCR: fragment generation

OSM BC loop chimera


B

OSM chimera


AAIGSCSKEYRVLLGQLQKQTDLMQDTSRLLDPYIRIQGLDVPKLRE BC loop HCRERPGAFPSEETLRGLGRRGFLQTLNATLGCVLHRLADQKILNPS **ALSLHSKL**QMARPNILGLRNNIYCMAQLLDNSDTAEPTKAGRGASQP PTPTPASDAFQRKLEGCRFLHGYHRFMHSVGRVFSKWGESPNRSR


ATGGGGGTACTGCTCACACAGAGGACGCTGCTCAGTCTGGTCCTTGCACTCCTGTTTCCAA GCATGGCGAGCATGGCGGCTATAGGCAGCTGCTCGAAAGAGTACCGCGTGCTCCTTGGCCA GCTCCAGAAGCAGACAGATCTCATGCAGGACACCAGCAGACTCCTGGACCCCTATATACGT ATCCAAGGCCTGGATGTTCCTAAACTGAGAGAGCACTGCAGGGAGCGCCCCGGGGCCTTCC CCAGTGAGGAGACCCTGAGGGGGCTGGGCAGGCGGGGCTTCCTGCAGACCCTCAATGCCAC ACTGGGCTGCGTCCTGCACAGACTGGCCGACCAGAAGATCCTCAACCCCAGTGCCCTCAGC CTCCACAGCAAGCTCCAGATGGCGAGGCCGAACATCCTCGGGCTCAGGAACAACATCTACT GCATGGCCCAGCTGCTGGACAACTCAGACACGCCTGAGCCCACGAAGGCTGGCCGGGGGG CTCTCAGCCGCCCACCCCACCCTGCCTCGGATGCTTTTCAGCGCAAGCTGGAGGGCTGC AGGTTCCTGCATGGCTACCATCGCTTCATGCACTCAGTGGGGCGGGTCTTCAGCAAGTGGG GGGAGAGCCCGAACCGGAGCCGGCTCGAGCACCACCACCACCACCACTGA

Reagent	Stock Concentration	Volume (in 50 μL)	
Sterile Water		to 50 μL	
PCR Buffer	10X	5 μL	
dNTPs	10 mM	1 μL	
DMSO	100%	1.5 μL	
Forward Primer	10 μΜ	1 μL	
Reverse Primer	10 μΜ	1 μL	
		As required for	
Template DNA	Variable	2.5-12.5 ng of	
		plasmid DNA	
Phusion High Fidelity	2 Units/μL	0.51	
DNA Polymerase	2 ΟΠΙΙΟ/ μΕ	0.5 μL	

	N-terminal	Chimeric	C-terminal
	fragment	insertion	fragment
Forward Primer	N-terminal	First junction	Second junction
Forward Primer	forward	forward	forward
Reverse Primer	First junction	Second junction	C-terminal
	reverse	reverse	reverse
Template DNA	Recipient	Donor	Recipient

Cycle step	Temperature	Time	Number of cycles
Initial Denaturation	98 ºC	30s	1
Denaturation	98 ºC	10s	23-25
Annealing	68 ºC*	25s	23-25
Extension	72 ºC	30s per kilobase	23-25
Final Extension	72 ºC	300s	1
Hold	4 ºC	∞	1

^{*}At least 5 °C lower than the primer melting temperature

Reagent	Stock Concentration	Volume (in 50 μL)
Sterile Water		to 50 μL
Restriction Enzyme Buffer*	10X	5 μL
Template DNA	Variable	As required for 1 μg of DNA
Enzyme #1	Variable	1 μL
Enzyme #2	Variable	1 μL

^{*}Ensure both enzymes are compatible with the buffer selected

Reagent	Stock Concentration	Volume (in 20 μL)
Sterile Water		to 20 μL
T4 DNA Ligase Buffer	10X	2 μL
Vector DNA	Variable	As required for 40 ng of DNA
Insert DNA	Variable	As required for a 3:1 molar ratio
T4 DNA Ligase	Variable	1-2 μL

Name	Primer sequence
	AAAGGGAAA-TTAATTAA-
N-terminal OSM	GCTAGCGCATCGCCACC-
forward primer (Pacl)	ATGGGGGTACTGCTCACACAGAGGACG
C-terminal HisTag	TTTCCCTTT-GGCGCGCC-GCGGCCGCTA-
reverse primer (AscI)	TCAGTGGTGGTGGTGCTCGAG
BC loop start forward	AACATCACCCGGGACTTAGAGCAGCGCCTC
BC loop start reverse	GAGGCGCTGCTCTAAGTCCCGGGTGATGTT
BC loop end forward	GACTTGGAGAAGCTGAACGCCACCGCCGAC
BC loop end reverse	GTCGGCGGTGGCGTTCAGCTTCTCCAAGTC

Name of Material/ Equipment	Company	Catalog Number	Comments/Description
Labcycler thermocycler	Sensoquest	011-103	Any conventional PCR machine can be employed to carry out this pr
NanoDrop 2000c UV-Vis	ThermoFisher		
spectrophotometer	Scientific	ND-2000C	DNA quantification
	ThermoFisher		
GeneRuler 100 bp DNA ladder	Scientific	SM0241	
	ThermoFisher		
GeneRuler DNA Ladder Mix	Scientific	SM0331	
	New England		
Ascl restriction enzyme	Biolabs	R0558	
	New England		
Pacl restriction enzyme	Biolabs	R0547	
Phusion Hot Start II DNA	ThermoFisher		
Polymerase	Scientific	F-549S	
dNTP set (100 mM)	Invitrogen	10297018	
T4 DNA ligase	Promega	M1804	
NucleoSpin Gel and PCR clean-up	Macherey-		
kit	Nagel	740609	
MGC Human LIF Sequence-			
Verified cDNA (CloneId:7939578),		MHS6278-	
glycerol stock	Scientific	202857165	
LE agarose	Biozym	840004	
Primers	Sigma-Aldrich		Custom order
Human Oncostatin M cDNA			Gift of Dr. Heike Hermanns (Division of Hepatology, University Hospi
pCAGGS vector with Pacl and Ascl			
restriction sites			Gift of Dr. André Schneider (Max Planck Institute for Heart and Lung

otocol

ital Würzburg, Germany)

Research, Bad Nauheim, Germany)

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Identification of functiona) protein regions through x
Author(s):	Identification of functional protein regions through & Juan M. Addion-Segarra, Holger Lordner Thomas Braun, Joden Por Chimeric protein construction box): The Author elects to have the Materials be made available (as described at
Item 1 (check one	box): The Author elects to have the Materials be made available (as described at
	.jove.com/author) via: X Standard Access Open Access
tem 2 (check one bo	ox):
X The Aut	hor is NOT a United States government employee.
The Au course of his	thor is a United States government employee and the Materials were prepared in the s or her duties as a United States government employee.
The Aut	thor is a United States government employee but the Materials were NOT prepared in the s or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. Background. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish. reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. <u>Grant of Rights in Video Standard Access</u>. This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's

CODDECDONIDING ALITHOD.

expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law.</u> This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

COMMEST CHOIL	id Admor.
Name:	PO Dr. Jochen Poling
Department:	Department of Cardiac Development and Remodelling
Institution:	Max Planck Institute for Heart and Lung Research
Article Title:	Identification of functional protein regions through chimeric protein construction
Signature:). Poly Date: 07/15/2018

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

Editorial comments:

1. 1.2.3: Please cite this url as a reference instead of putting it in the main text.

The url has been moved to the references, appearing now as reference 20 in the revised manuscript.

2. Figure 2 is a bit confusing-it looks like you're starting with a chimeric sequence and finishing with the same one. Can you make this match the protocol a bit better?

Figure 2 has been modified as requested: the lower 3D structure representing the chimera is no longer the crystal structure of OSM, but rather an approximate representation of the 3D structure that the target chimera would adopt with a much shorter BC loop. To make this clear to the readers, we have added the remark "an approximate representation" in the legend of Figure 2.

3. Figure 3A: Please define the stars and dots here.

We have included the following text in the legend of Figure 3 to address this point: "Asterisks (*) indicate fully conserved residues, colons (:) correspond to amino acids with strongly similar properties and periods (.) denote those with weakly similar features."

4. Your references have inverted parenthesis around volume numbers; can you address this?

Parentheses in the reference section have been corrected in the revised manuscript.