Journal of Visualized Experiments

Mechanical Micronization of Lipoaspirates for Regenerative Therapy --Manuscript Draft--

Article Type:	Methods Article - JoVE Produced Video		
Manuscript Number:	JoVE58765R4		
Full Title:	Mechanical Micronization of Lipoaspirates for Regenerative Therapy		
Keywords:	fat grafting, regenerative medicine, mechanical process, adipose stem cell, extracellular matrix, histologic evaluation		
Corresponding Author:	Junrong Cai Southern Medical University Nanfang Hospital Guangzhou, Guangdong CHINA		
Corresponding Author's Institution:	Southern Medical University Nanfang Hospital		
Corresponding Author E-Mail:	Drjunrongcai@outlook.com		
Order of Authors:	Huidong Zhu		
	Jinbo Ge		
	Junrong Cai		
	Feng Lu		
Additional Information:			
Question	Response		
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)		
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Guangzhou, China		

1 TITLE:

2 Mechanical Micronization of Lipoaspirates for Regenerative Therapy

3

AUTHORS AND AFFILIATIONS:

5 Huidong Zhu¹, Jinbo Ge¹, Junrong Cai¹*, Feng Lu¹*

6

- 7 ¹Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University,
- 8 Guangzhou, Guangdong, P. R. China

9

10 *These authors contributed equally to this manuscript.

11

12 Corresponding Authors:

- 13 Junrong Cai (Drjunrongcai@outlook.com)
- 14 Feng Lu (doctorlufeng@hotmail.com)

15

16 E-mail Addresses of the Co-authors:

- 17 Huidong Zhu (824970453@qq.com)
- 18 Jinbo Ge (37768973@gg.com)

19

20 **KEYWORDS**:

- 21 Adipose-derived stem cell, mechanical process, lipoaspirates, fat grafting, stem cell therapy,
- 22 stromal vascular fraction gel

23

25

24 **SUMMARY:**

Here, we present a protocol to obtain stromal vascular fraction from adipose tissue through a series of mechanical processes, which include emulsification and multiple centrifugations.

262728

29

30

31

32

3334

35

36 37

38

39

ABSTRACT:

Stromal vascular fraction (SVF) has become a regenerative tool for various diseases; however, legislation strictly regulates the clinical application of cell products using collagenase. Here, we present a protocol to generate an injectable mixture of SVF cells and native extracellular matrix from adipose tissue by a purely mechanical process. Lipoaspirates are put into a centrifuge and spun at $1200 \times g$ for 3 min. The middle layer is collected and separated into two layers (high-density fat at the bottom and low-density fat on the top). The upper layer is directly emulsified by intersyringe shifting, at a rate of 20 mL/s for 6x to 8x. The emulsified fat is centrifuged at $2000 \times g$ for 3 min, and the sticky substance under the oil layer is collected. Approximately 5 mL of oil is added to 15 mL of high-density fat and emulsified by intersyringe shifting, at a rate of 20 mL/s for 6x to 8x. The emulsified fat is centrifuged at $2,000 \times g$ for $3 \times g$ for $3 \times g$. The emulsified fat is centrifuged at $2,000 \times g$ for $3 \times g$ for $3 \times g$.

is also ECM/SVF-gel. After the transplantation of the ECM/SVF-gel into nude mice, the graft is harvested and assessed by histologic examination. The result shows that this product has the potential to regenerate into normal adipose tissue. This procedure is a simple, effective mechanical dissociation procedure to condense the SVF cells embedded in their natural supportive ECM for regenerative purposes.

INTRODUCTION:

Stem cell therapies provide a paradigm shift for tissue repair and regeneration so that they may offer an alternative therapeutic regimen for various diseases¹. Stem cells (e.g., induced pluripotent stem cells and embryonic stem cells) have great therapeutic potential but are limited due to cell regulation and ethical considerations. Adipose-derived mesenchymal stromal/stem cells (ASCs) are easy to obtain from lipoaspirates and not subject to the same restrictions; thus, it has become an ideal cell type for practical regenerative medicine². In addition, they are nonimmunogenic and have abundant resources from autologous fat³.

Currently, ASCs are obtained mainly by collagenase-mediated digestion of the adipose tissue. The stromal vascular fraction (SVF) of adipose tissue contains ASCs, endothelial progenitor cell, pericytes, and immune cells. Although obtaining a high density of SVF/ASCs enzymatically was shown to have beneficial effects, the legislation in several countries strictly regulates the clinical application of cell-based products using collagenase⁴. Digesting the adipose tissue with collagenase for 30 min to 1 h to obtain SVF cells increases the risk of both exogenous material in the preparation and biological contamination. The adherent culture and the purification of ASCs, which takes days to weeks, require specific laboratory equipment. Moreover, in most studies, SVF cells and ASCs are used in suspension. Without the protection of extracellular matrix (ECM) or another carrier, free cells are vulnerable, cause a poor cell retention after injection, and compromise the therapeutic result⁵. All of these reasons limit the further application of stem cell therapy.

To obtain ASCs from adipose tissue without collagenase-mediated digestion, several mechanical processing procedures, including centrifugation, mechanical chopping, shredding, pureeing, and mincing, have been developed⁶⁻⁹. These methods are thought to condense tissue and ASCs by mechanically disrupting mature adipocytes and their oil-containing vesicles. Moreover, these preparations, containing high concentrations of ASCs, showed considerable therapeutic potential as regenerative medicine in animal models⁸⁻¹⁰.

In 2013, Tonnard *et al.* introduced the nanofat grafting technique, which involves producing emulsified lipoaspirates by intersyringe processing¹¹. The shearing force created by intersyringe shifting can selectively break mature adipocytes. Based on their findings, we developed a purely mechanical processing method that removes most of the lipid and fluid in the lipoaspirates,

leaving only SVF cells and fractionated ECM, which is ECM/SVF-gel¹². Herein, we describe the 79 80 details of the mechanical process of human-derived adipose tissue to produce the ECM/SVF-gel. 81 82 PROTOCOL: 83 This research was approved by the Ethical Review Board in Nanfang Hospital, Guangzhou, China. Adipose tissue was collected from healthy donors who gave written informed consent to take 84 85 part in the study. All animal experiments were approved by the Nanfang Hospital Institutional 86 Animal Care and Use Committee and performed according to the guidelines of the National 87 Health and Medical Research Council (China). 88 89 1. ECM/SVF-gel Preparation 90 91 1.1 Harvest fat. 92 93 1.1.1 Perform liposuction on a human with a 3-mm multiport cannula, which contains several 94 sharp side holes of 1 mm in diameter, at -0.75 atm of suction pressure. 95 96 1.1.2 Collect 200 mL of lipoaspirates in a sterile bag. 97 98 1.2 Prepare Coleman fat. 99 100 1.2.1 Transfer the lipoaspirates into four 50 mL tubes and allow the harvested fat to stand still 101 for 10 min. 102 103 1.2.2 Collect the fat on the top layer into two 50 mL tubes by using a wide-tip pipette to transfer, 104 and discard the liquid portion at the bottom layer. 105 106 1.2.3 Using 50 mL tubes, centrifugate the fat layer at 1,200 x g at room temperature (RT) for 3 107 min. 108 109 1.2.4 Define the upper layer (approximately 80 mL) as Coleman fat. 110 111 1.2.5 Transfer the upper 2/3 of the Coleman fat to a 20 mL tube by using a wide-tip pipette, and 112 define this portion as low-density fat. 113 114 1.2.6 Transfer the lower 1/3 of the Coleman fat to another 20 mL tube by using a wide-tip pipette, 115 and define this portion as high-density fat. 116

1.3 Produce ECM/SVF-gel from low-density fat.

117

118	
119	1.3.1 Using two 20 mL syringes connected by a female-to-female Luer-Lock connector (with an
120	internal diameter of 2.4 mm) to intershift 20 mL of low-density fat.
121	
122	1.3.2 Keep the shifting speed stable (at 20 mL/s) and repeat for 6x to 8x.
123	
124	1.3.3 Centrifugate the mixture at $2,000 \times g$ at RT for 3 min.
125	
126	1.3.4 Collect the oil portion on the top in a 10 mL tube by using a wide-tip pipette at RT for further
127	<mark>use.</mark>
128	1.2.5. Calleget the esticity substance in the waiddle layer, which is 5.004/CV/5 and /Figure 4.6.\ by vaige
129 130	1.3.5 Collect the sticky substance in the middle layer, which is ECM/SVF-gel (Figure 1A), by using a wide-tip pipette, and discard the fluid at the bottom layer.
131	a wide-tip pipette, and discard the huld at the bottom layer.
132	1.4 Produce ECM/SVF-gel from high-density fat.
133	1.4 Produce Leiviy 3 Vi ger Holli High density fat.
134	1.4.1 Add 5 mL of oil (collected from step 1.3.4) to 15 mL of high-density fat.
135	in in the distriction (concerted from step first), to 15 mg of mg. density rate
136	1.4.2 Intershift the mixed fat between syringes 6x to 8x until a flocculate is observed within the
137	emulsion.
138	
139	1.4.3 Centrifugate the mixture at 2,000 x g at RT for 3 min.
140	
141	1.4.4 Discard the oil portion on the top.
142	
143	1.4.5 Collect the sticky substance in the middle layer (ECM/SVF-gel) by using a wide-tip pipette
144	and discard the fluid at the bottom layer.
145	
146	1.4.6 Mix the ECM/SVF-gel from steps 1.3.5 and 1.4.5.
147	
148	2. Nude Mouse ECM/SVF-gel Graft Model
149	
150	2.1 Anesthetize the nude mice (8 weeks old, female) with isoflurane (1% - 3%) inhalation
151	anesthesia in an animal operation room.
152	2.2 Transfer the ECM/SVF-gel to a 1 mL syringe.
153 154	2.2 Transier the Ecivi/SVF-ger to a 1 THE Syringe.
154 155	2.3 Connect the 1 mL syringe with a blunt infiltration cannula.
156	2.5 Some ce the Thirty inge with a bidne initiation cannota.

157	2.4 Insert the cannula subcutaneously into each flank of the mouse.
158	2. Funication 2 and of the FCM/CVF and
159 160	2.5 Inject 0.3 mL of the ECM/SVF-gel.
161	3. Tissue Harvesting on 3, 15, and 90 Days after ECM/SVF-gel Injection
162	3. Hissue Harvesting on 3, 13, and 30 Days after Lewy 3VF-ger injection
163	3.1 Anesthetize the mice with isoflurane (1% - 3%) inhalation anesthesia.
164	3.1 Anesthetize the finee with isolidiane (170 370) initialation anesthesia.
165	3.2 Sacrifice the mice by the cervical dislocation method.
166	5.2 Sacrifice the filled by the cervical dislocation method.
167	3.3 Make an incision at the midline of the mouse's dorsal skin with surgical scissors.
168	
169	3.4 Dissect and harvest the fat grafts on both sides of the mouse. Embed the fat grafts in the 4%
170	paraformaldehyde at RT overnight.
171	
172	3.5 Dehydrate the tissue in increasing concentrations of ethanol: 70% ethanol, two changes, 1 h
173	each; 80% ethanol, one change, 1 h; 95% ethanol, one change, 1 h; 100% ethanol, three changes,
174	1.5 h each; xylene, three changes, 1.5 h each.
175	2. C. Infiltrate the tienre with a neffin way (FO, CO (C) two showers 2 has ab
176	3.6 Infiltrate the tissue with paraffin wax (58 - 60 °C), two changes, 2 h each.
177 178	3.7 Embed the tissue into paraffin blocks. Cut sections at a thickness of about 4 µm and put them
179	on slides.
180	on sinces.
181	4. Hematoxylin and Eosin Staining
182	- Hematoxymi and Eddin Stanning
183	4.1 Deparaffinize the paraffin block slides by soaking them in xylene I, II, and III (10 min each).
184	
185	4.2 Rehydrate the tissue sections by passing them through decreasing concentrations (100%,
186	100%, 95%, 80%, 70%) of ethanol baths for 3 min each.
187	
188	4.3 Rinse the tissue sections in distilled water (5 min).
189	
190	4.4 Stain the tissue sections in hematoxylin for 5 min.
191	
192	4.5 Rinse the tissue sections in running tap water for 20 min. Decolorize in 1% acid alcohol (1%
193	HCl in 70% alcohol) for 5 s. Rinse in running tap water until the sections are blue again.
194	

195	4.6 Add two to three drops of Eosin Y dye directly onto the slides by pipette, and let the dye set
196	<mark>for 10 min.</mark>
197	
198	4.7 Wash the slides in tap water for 1 - 5 min.
199	
200	4.8 Dehydrate the slides in increasing concentrations (70%, 80%, 95%, 100%, 100%) of ethanol
201	for 3 min each.
202	
203	4.9 Clear the slides in xylene I and II for 5 min each.
204	
205	4.10 Mount the slides in mounting media.
206	
207	5. Immunofluorescent Staining
208	
209	5.1 Deparaffinize the tissue sections in xylene I, II, and III (5 min each).
210	
211	5.2 Rehydrate the tissue sections by passing them through different concentrations (100%, 100%,
212	95%, 95%, 70%) of alcohol baths for 3 min each.
213	
214	5.3 Incubate the sections in a 3% H ₂ O ₂ solution in methanol at RT for 10 min.
215	
216	5.4 Rinse the slides 2x with distilled water, 5 min each.
217	
218	5.5 Drop the slides in a slide basket. Add 300 mL of 10 mM citrate buffer (pH 6.0) and incubate
219	the slides at 95 - 100 °C for 10 min.
220	
221	5.6 Cool the slides in RT for 20 min.
222	570:
223	5.7 Rinse the slides 2x with phosphate-buffered saline (PBS), 5 min each.
224	
225	5.8 Add 100 μL of 10% fetal bovine serum onto the slides and incubate in a humidified chamber
226	at RT for 1 h.
227	5.0 In substation and the prince with prince we entitle durable tion (suited pig anti-mouse Parilliain 1,400)
228	5.9 Incubate the sections with primary antibody solution (guinea pig anti-mouse Perilipin, 1:400)
229	at 4 °C overnight.
230	E 10 Pince the clides with PRC 2v. E min each
231	5.10 Rinse the slides with PBS 3x, 5 min each.
232	

233 5.11 Incubate the sections with secondary antibody solution (goat anti-guinea pig-488 IgG) for 2 234 h at RT. 235 236 5.12 Rinse the slides with PBS 3x, 5 min each. 237 238 5.13 Wipe off the water around the section with clean tissue paper. 239 240 5.14 Drop 4',6-diamidino-2-phenylindole (DAPI) and Alexa Fluor 488-conjugated isolectin into the 241 circle to cover the section on the slide. 242 243 5.15 Mount the coverslips and let them dry in the dark. 244 245 5.16 Observe the slides with a fluorescent microscope. 246 247 **REPRESENTATIVE RESULTS:** 248 After processing the Coleman fat to ECM/SVF-gel, the volume of discarded oil takes up 80% of 249 the final volume, and only 20% of adipose tissue preserved under the oil layer is regarded as 250 ECM/SVF-gel (Figure 1A). ECM/SVF-gel has a smooth liquid-like texture that enables it to go 251 through a 27 G fine needle; however, Coleman fat is comprised of an integral adipose structure 252 with large fibers and can only go through an 18 G cannula (Figure 1B). 253 254 On day 3 after the transplantation, large numbers of small-sized preadipocytes with multiple 255 intracellular lipid droplets, extensive well-vascularized connective tissue, and infiltrated 256 inflammatory cells appeared. Beginning on day 15, the number of inflammatory cells started to 257 get reduced gradually, and adipocytes began to mature. By day 90, most of the vascularized 258 connective tissue in the grafts had been replaced by mature adipocytes (Figure 2, upper panel). 259 260 ECM/SVF-gel grafts contained a few perilipin-positive adipocytes, 3 days after the transplantation. 261 Small-sized preadipocytes with multiple intracellular lipid droplets began to appear on day 15. 262 Each field of the ECM/SVF-gel graft sections on day 90 showed numerous perilipin-positive 263 adipocytes and newly formed blood vessels (Figure 2, lower panel). 264 265 FIGURE LEGENDS: 266 Figure 1: Images of the ECM/SVF-gel. Centrifuged Coleman fat and ECM/SVF-gel after processing 267 268 (A). ECM/SVF-gel can be easily injected through a 27 G needle; however, Coleman fat can only 269 pass through an 18 G cannula (B). 270

Figure 2: Histological change in the ECM/SVF-gel after transplantation. ECM/SVF-gel showed extensive well-vascularized connective tissue and infiltrating inflammatory cells on day 3. Subsequently, most of the vascularized connective tissue was replaced by a structure containing mature adipocytes (upper panel). Immunofluorescent staining shows that most of the tissue is comprised of the perilipin-negative area on day 3. By day 15, a large portion of perilipin + adipocytes appeared. Numerous perilipin-positive adipocytes were found after 90 days (lower panel). The scale bars = $100 \, \mu m$.

DISCUSSION:

Stem cell-based regenerative therapy has shown a great potential benefit in different diseases. ASCs are outstanding therapeutic candidates because they are easy to obtain and have the capacity for tissue repair and the regeneration of novel tissues¹⁵. However, there are limitations to expanding its clinical application, since it requires complicated procedures to isolate cells and collagenase for processing⁶. Thus, it is essential to develop a simple technique to obtain stem cells without the use of collagenase.

In this study, we presented a purely mechanical process of adipose tissue to obtain SVF cells, which are protected by the native adipose ECM. Furthermore, this process is collagenase-free. A previous study compared different intersyringe processing times and showed that the intersyringe processing of standard Coleman fat for 1 min at a flow rate of 10 mL/s is the optimal protocol for producing ECM/SVF-gel¹². By using intersyringe shifting, most adipocytes in the lipoaspirates are destroyed, with most of the SVF cells and ECM preserved. Thus, intersyringe shifting is the key step of the whole process. The intersyringe shifting speed and the time spent on conducting the shifting determine the destruction level of the adipose tissue because the sheering force created by the intersyringe process is associated with the shifting speed. We suggest that the shifting speed should be stable at 20 mL/s. Insufficient destruction leads to remaining unwanted adipocytes, while overdestruction results in damaging the SVF cells. The product of this protocol can be defined as ECM/SVF-gel only if it reached the following criteria:

1) its final volume is ~20% of the initial volume; 2) it is easily injected through a 27 G needle. A previous study demonstrated that the ECM/SVF-gel contains high densities of both CD45-/CD31-/CD34+ ASCs and the SVF cell density is >4.0 x 10⁵ cells/mL¹².

During the process of creating ECM/SVF-gel, centrifugation was conducted 2x, before and after intersyringe shifting. Before the intersyringe shifting, we use centrifugation to create "graded densities" of fat. This is another key step. It has been proven that the high-density fat layer at the bottom, after centrifugation, is rich in condensed ECM but has less oil, while the low-density fat layer on the top has more oil but less ECM fiber^{16,17}. Thus, these two layers should be processed in two different ways. Low-density fat can directly undergo the intersyringe processing to destroy the adipocytes. However, the high-density fat at the bottom layer requires additional oil to

facilitate the destruction of adipocytes. The added oil can decrease the density of high-density fat, making the shifting much easier. Moreover, the oil can help extract more oil from the broken adipocytes; however, aqueous liquid cannot. Thus, we added extra oil to the high-density fat. The centrifugation after the intersyringe shifting is to separate the oil portion from the SVF cells and ECM. Oil should be avoided in the final product.

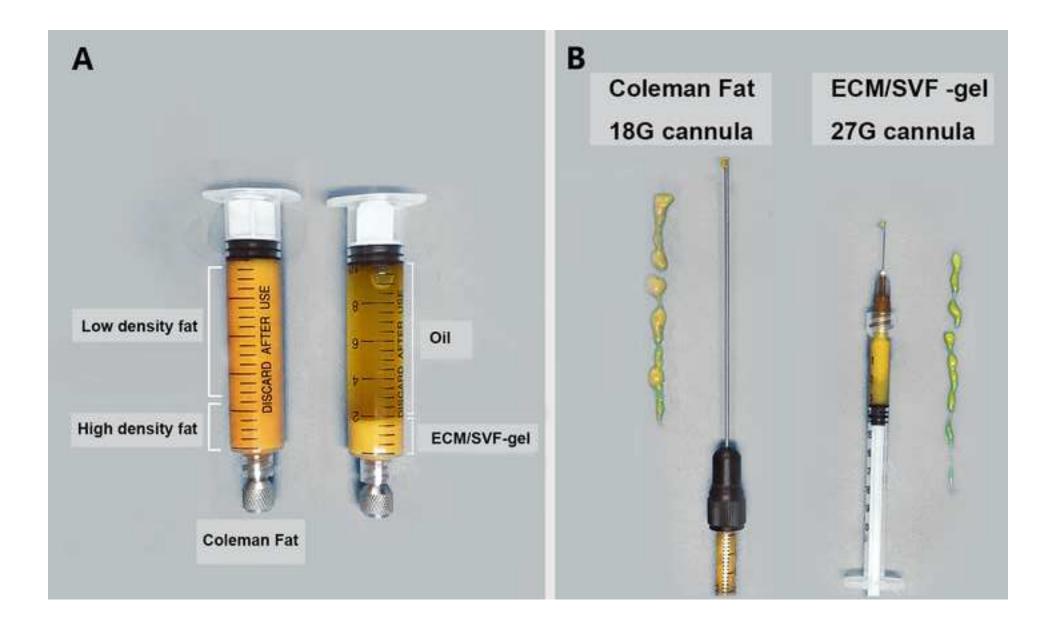
The transplantation of ECM/SVF-gel resulted in a great retention rate. As we mentioned above, the key step of the processing of ECM/SVF-gel is intersyringe shifting, which destroys most of the adipocytes. Thus, little adipocytes remained in the ECM/SVF-gel. As shown in **Figure 2**, a small perilipin-positive area appeared in the transplanted ECM/SVF-gel on day 3. However, after 15 days, lots of perilipin-positive adipocytes appeared and became mature after 90 days. A previous study has shown that the transplantation of ECM/SVF-gel induced host cell-mediated adipose tissue regeneration¹⁴. Using anti-human leukocyte antigen to identify the origin of the newly formed adipocytes, we discovered that, although most of the cells in the SVF were graft-derived, most of the newly formed adipose tissue was host-derived. ECM/SVF-gel has a great regenerative function, as we previously reported. This product had great therapeutic effects in wound healing¹². Moreover, it helped to improve the survival rate of the free flap in a mouse model by accelerating angiogenesis¹⁰.

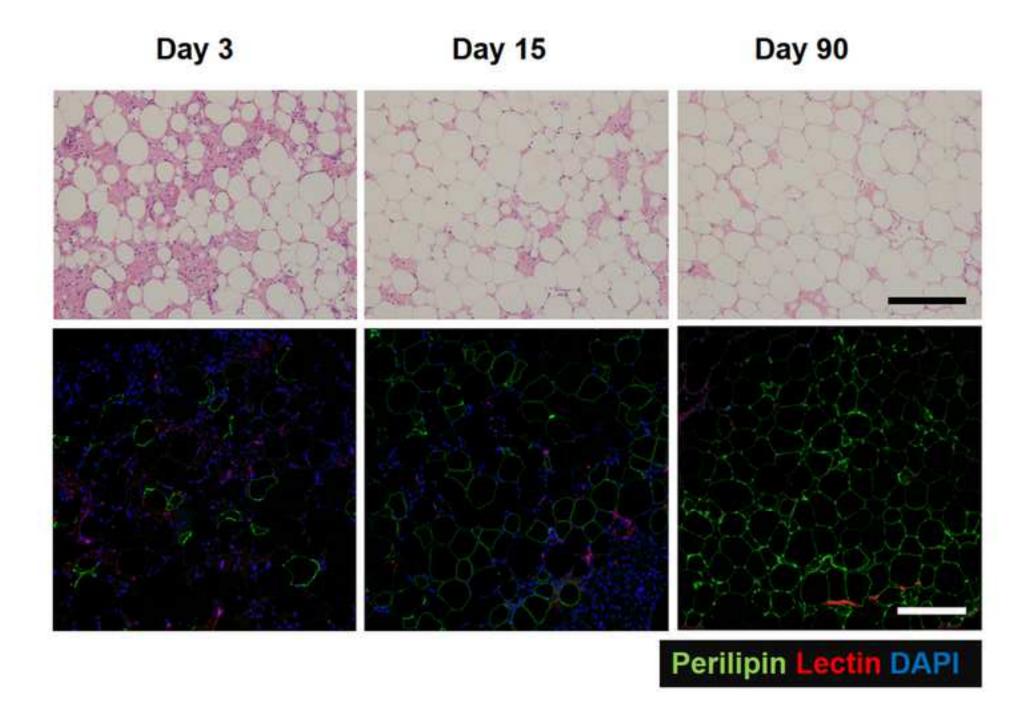
SVF-gel is an autologous injectable containing native ECM and functional cellular components. The product is generated from lipoaspirate by a simple mechanical process, which can be performed easily without any concerns regarding regulatory issues. However, the regenerative effect of ECM/SVF-gel remains unclear. In order to better characterize the beneficial effects of ECM/SVF-gel, further investigations to characterize the underlying molecular mechanisms of the regenerative effect of ECM/SVF-gel are on the way.

ACKNOWLEDGMENTS:

This work was supported by the National Nature Science Foundation of China (81471881, 81601702, 81671931), the Natural Science Foundation of the Guangdong Province of China (2014A030310155), and the Administrator Foundation of Nanfang Hospital (2014B009, 2015Z002, 2016Z010, 2016B001).

DISCLOSURES:


343 The authors have nothing to disclose.


REFERENCES:

1. Bateman, M. E. *et al.* Using Fat to Fight Disease: A Systematic Review of Non-Homologous Adipose-Derived Stromal/Stem Cell Therapies. *Stem Cells.* **36** (9), 1311-1328 (2018).

- 2. Baer, P. C., Geiger, H. Adipose-derived mesenchymal stromal/stem cells: tissue localization,
- characterization, and heterogeneity. *Stem Cells International*. 812693 (2012).
- 350 3. Gimble, J. M., Katz, A. J., Bunnell, B. A. Adipose-derived stem cells for regenerative medicine.
- 351 *Circulation Research.* **100** (9), 1249-1260 (2017).
- 4. Halme, D. G., Kessler, D. A. FDA regulation of stem-cell-based therapies. *New England Journal*
- 353 *of Medicine*. **355** (16), 1730-1735 (2006)
- 354 5. Cheng, N. C., Wang, S., Young, T. H. The influence of spheroid formation of human adipose-
- derived stem cells on chitosan films on stemness and differentiation capabilities. *Biomaterials*.
- 356 **33** (6), 1748-1758 (2012).
- 357 6. van Dongen, J. A. et al. Comparison of intraoperative procedures for isolation of clinical grade
- 358 stromal vascular fraction for regenerative purposes: a systematic review. Journal of Tissue
- 359 Engineering and Regenerative Medicine. **12** (1), e261-e274 (2018).
- 360 7. van Dongen, J. A. et al. The fractionation of adipose tissue procedure to obtain stromal vascular
- fractions for regenerative purposes. Wound Repair and Regeneration. 24 (6), 994-1003 (2016).
- 362 8. Mashiko, T. et al. Mechanical Micronization of Lipoaspirates: Squeeze and Emulsification
- Techniques. *Plastic and Reconstructive Surgery*. **139** (1), 79-90 (2017).
- 9. Feng, J. et al. Micronized cellular adipose matrix as a therapeutic injectable for diabetic ulcer.
- 365 *Regenerative Medicine*. **10** (6), 699-708 (2015).
- 366 10. Zhang, P. et al. Ischemic flap survival improvement by composition-selective fat grafting with
- novel adipose tissue derived product stromal vascular fraction gel. *Biochemistry and Biophysics*
- 368 Research Communication. **495** (3), 2249-2256 (2018).
- 369 11. Tonnard, P. et al. Nanofat grafting: basic research and clinical applications. Plastic and
- 370 *Reconstructive Surgery.* **132** (4), 1017-1026 (2013).
- 371 12. Yao, Y. et al. Adipose Extracellular Matrix/Stromal Vascular Fraction Gel: A Novel Adipose
- 372 Tissue-Derived Injectable for Stem Cell Therapy. *Plastic and Reconstructive Surgery*. **139** (4), 867-
- 373 879 (2017).
- 374 13. Yao, Y. et al. Adipose Stromal Vascular Fraction Gel Grafting: A New Method for Tissue
- 375 Volumization and Rejuvenation. *Dermatologic Surgery*. **44** (10), 1278-1286 (2018).

- 376 14. Zhang, Y. et al. Improved Long-Term Volume Retention of Stromal Vascular Fraction Gel
- 377 Grafting with Enhanced Angiogenesis and Adipogenesis. *Plastic and Reconstructive Surgery*. **141**
- 378 (5), 676e-686e (2018).
- 379 15. Sun, B. et al. Applications of stem cell-derived exosomes in tissue engineering and
- neurological diseases. *Reviews in the Neurosciences*. **29** (5), 531-546 (2018).
- 381 16. Allen, R. J. et al. Grading lipoaspirate: is there an optimal density for fat grafting? Plastic and
- 382 *Reconstructive Surgery.* **131** (1), 38-45 (2013).
- 383 17. Qiu, L. et al. Identification of the Centrifuged Lipoaspirate Fractions Suitable for Postgrafting
- 384 Survival. *Plastic and Reconstructive Surgery*. **137** (1), 67e-76e (2016).

Name of Material/ Equipment	Company	Catalog Number	Comments/Description	
Alexa Fluor 488-conjugated	1			
isolectin GS-IB4	Molecular Probes	I21411		
guinea pig anti-mouse perilipin	Progen	GP29		
DAPI	Thermofisher	D1306		
wide tip pipet	Celltreat	229211B		
Confocal microscope	Leica	TCS SP2		
nude nice	Southern Mdical University	/		
light microscope	Olympus	/		
50 mL tube	Cornig	430828		
sterile bag	Laishi	/		
microtome	Leica	CM1900		
centrifuge	Heraus			

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Adipose Extrational Natrix/Stronal Vascular Fraction-Gel: A Novel Fat Tissue-Derived Product				
Author(s):	Huidong Zhu	. Linbo Ge.	Innray Ceri.	Ferg lu	Reg
Item 1 (check one http://www.		elects to have the			as described at
Item 2 (check one bo	hor is NOT a United	States government e	mployee.		neanarad in tha
The Author is a United States government employee and the Materials were prepared in the course of his or her duties as a United States government employee.					
		tes government empl United States governr		terials were NOT	prepared in the

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncat: nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- Background. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness</u>, <u>Privacy</u>, <u>Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

1 Alewife Center #200 Cambridge, MA 02140 fel. 617.945.9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JOVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. <u>Fees</u>. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. Transfer, Governing Law. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDIN	IG AUTHOR:			
Name:	Juney Cei			
Department:	Plantic and Reconstructive Surgery Nowtang Hospital, Southern Medical University			
Institution:				T
Article Title:	Adipore Extraollular Maria / Strong Vascular-Front	ion Cel. A Nov	el tar lieureDeriud Produc	from Sixuple Medicircl Porcy
Signature:	Lunney Cai	Date:	2018-8-19	Jul 19

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- 2) Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

1. Please obtain explicit copyright permission to reuse any figures from a previous publication. Explicit permission can be expressed in the form of a letter from the editor or a link to the editorial policy that allows re-prints. Please upload this information as a .doc or .docx file to your Editorial Manager account. The Figure must be cited appropriately in the Figure Legend, i.e. "This figure has been modified from [citation]."

Author's response: We used pictures different from those in the published study. Thus, we may not need the copyright permission.

2. Please ensure that the references appear as the following: [Lastname, F.I., LastName, F.I., LastName, F.I. Article Title. Source. Volume (Issue), FirstPage – LastPage (YEAR).] For more than 6 authors, list only the first author then et al. See the example below:

Bedford, C.D., Harris, R.N., Howd, R.A., Goff, D.A., Koolpe, G.A. Quaternary salts of 2-[(hydroxyimino)methyl]imidazole. Journal of Medicinal Chemistry. 32 (2), 493-503 (1998).

Author's response: We have corrected the reference style.

3. Please revise the table of the essential supplies, reagents, and equipment to include the name, company, and catalog number of all relevant materials (e.g., 3-mm multiport cannula, sterile bag, 50 mL tubes, wide tip pipette, Centrifuge, 20-mL syringes, Luer-Lok connector, nude mice, ethanol, the device used to cut sections, Eosin Y dye, xylene I and II and III, microscope, etc.).

Author's response: We have revised the table of the essential supplies, reagents, and equipment.

4. Please also address specific comments marked in the attached manuscript. Author's response: We have addressed all the specific comments marked in the attached manuscript.

Editorial comments:

Changes to be made by the Author(s) regarding the written manuscript:

1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues.

Author's response: We have proofread the manuscript to ensure that there are no spelling or grammar issues.

2. Please obtain explicit copyright permission to reuse any figures from a previous publication. Explicit permission can be expressed in the form of a letter from the editor or a link to the editorial policy that allows re-prints. Please upload this information as a .doc or .docx file to your Editorial Manager account. The Figure must be cited appropriately in the Figure Legend, i.e. "This figure has been modified from [citation]."

Author's response: Though we present similar results in this article, the figures that we used here is different from the previous publication.

3. Please revise the title to be less wordy and avoid punctuations. Author's response: We have revised out title as you suggested.

4. Please provide an email address for each author in the manuscript.

Author's response: We have provided an email address for each author in the manuscript.

5. Keywords: Please provide at least 6 keywords or phrases.

Author's response: We have provided at least 6 keywords or phrases.

6. Please use SI abbreviations for all units: L, mL, µL, h, min, s, etc.

Author's response: We have used SI abbreviations.

7. Please use centrifugal force (x g) for centrifuge speeds.

Author's response: We have used centrifugal force (x g) for centrifuge speeds.

8. Long Abstract: Please include an overview of the method and a summary of its advantages, limitations, and applications.

Author's response: We have included an overview of the method and a summary of its advantages, limitations, and applications.

9. Please remove the square brackets enclosing the reference numbers.

Author's response: We have remove the square brackets enclosing the reference numbers.

10. JoVE cannot publish manuscripts containing commercial language. This includes trademark symbols (TM), registered symbols (®), and company names before an instrument or reagent. JoVE cannot publish manuscripts containing commercial language. This includes trademark symbols (TM), registered symbols (®), and company names before an instrument or reagent. Please remove all commercial language from your manuscript and use generic terms instead. All commercial products should be sufficiently referenced in the Table of Materials and Reagents. You may use the generic term followed by "(see table of materials)" to draw the readers' attention to specific commercial names. Examples of commercial sounding language in your manuscript are:

Author's response: We have not included any commercial language in this manuscript.

11. Please adjust the numbering of the Protocol to follow the JoVE Instructions for Authors. For example, 1 should be followed by 1.1 and then 1.1.1 and 1.1.2 if necessary. Please refrain from using bullets, dashes, or indentations.

Author's response: We have adjusted the numbering as you suggested.

- 12. Please add more details to your protocol steps. There should be enough detail in each step to supplement the actions seen in the video so that viewers can easily replicate the protocol. Please ensure you answer the "how" question, i.e., how is the step performed? Alternatively, add references to published material specifying how to perform the protocol action. See examples below:
- 13. 1.1: Perform liposuction on what?

Author's response: We perform the liposuction on human.

14. 2.1: What is the container used in this step? Can a sterile bag stand?

Author's response: The sterile bag (blood bag-like) is the container. The sterile bag can be hung up or lean on something to make it stand still. Or you can transfer the lipoaspirates into four 50 mL tubes.

15. 2.2: What is used to collect the fat layer? Is it transferred to a centrifugation tube? Author's response: The fat layer is collected in a 50 mL tube.

16. 2.3: How many tubes are used?

Author's response: It depends on how much fat you can obtain. In most cases, after discarding the liquid portion, 100mL fat tissue can be obtained and two 50mL tubes are needed.

17. 2.4: Technically, the upper layer should be collected before discarding the bottom portion, correct? What is used to collect the upper layer?

Author's response: A wide tip pipette is used to collect the upper layer. After collecting the fat, the liquid portion at the bottom was discarded.

- 18. 2.5, 2.6: What is used to transfer the upper 2/3 or lower 1/3 of Coleman fat? Author's response: A wide tip pipette is used to transfer the upper 2/3 or lower 1/3 of Coleman fat.
- 19. 3.4: What is used to collect the oil portion? How is it stored? Technically, the fluid at the bottom layer can be only discarded after the middle layers is removed, correct? Author's response: The oil portion was collected in a 10 ml tube by using a wide tip pipette at room temperature.
- 20. 3.5: What is used to collect the middle layer? Author's response: A wide tip pipette is used to collect the middle layer.
- 21. 4.1: Is the oil used in this step from step 3.5 (i.e., the sticky substance in the middle layer)? Please specify. How to mix oil with the high density fat? Author's response: The oil was collected from the step 1.3.4 and mixing the oil and high density fat can be achieved by inter-syringe shifting in the next step.
- 22. 3.5 and 4.5: The products from both steps are referred to as ECM/SVF-gel. Should they be distinguished as one is from low density fat and the other is from high density fat? Are the products from both steps mixed?

Author's response: The products from both steps are mixed

23. Line 144: Please specify the age, gender and type of mice. Please mention how proper anesthetization is confirmed. Do you apply eye ointment? Do you perform the injection in a sterile environment?

Author's response: The nude mice (8-week old, female) were anesthetized with isoflurane (1-3%) inhalation anesthesia in an animal operation room. Eye ointment is not applied.

24. Line 145: Please specify ECM/SVF-gel from which step is used here. Anything visible by naked eye after injection or after the days when the sacrifice is performed? What is the control injection?

Author's response: ECM/SVF-gel was transferred into a 1 mL syringe before injection. The transferred ECM/SVF-gel can be visualized by naked eyes on their back beneath the skin.

25. Line 152: Please describe how this is done. Please specify all surgical instruments used.

Author's response: Mice dorsal skin was cut open alone the midline with surgical scissors. SVF/ECM gel grafts' were dissected and harvested beneath the mice skin.

26. Line 153: What container is used?

Author's response: The anesthesia induction was conducted by putting single mice in a 1L transparent drop jar for 1 minute.

27. Line 157-159: Please describe how these steps are actually done. For instance, how to embed tissues into paraffin blocks, what tool is used, and what is used to cut sections?

Author's response: Tissue dehydration were conducted with Leika Biosystem Tissue Processor automatically by soaking in the following liquids: 70% ethanol, two changes, 1 hour each; 80% ethanol, one change, 1 hour; 95% ethanol, one change, 1 hour; 100% ethanol, three changes, 1.5 hour each; xylene, three changes, 1.5 hour each; Paraffin wax (58-60°C), two changes, 2 hours each.

28. Lines 163 and 179: What is departifinized and how?

Author's response: Paraffin was removed by deparaffinazation process: the paraffin slides were soaking in xylene solution for 10 min, and for three changes (Xylene I and II and III).

Line 174: This step is unclear. Please clarify.

Author's response: 2-3 drops of Eosin Y dye were added onto the slides directly by pipette. Let the dye set for 10 minutes.

30. Line 175: What is mounted and what is the composition of the mounting media? Author's response: We mount the coverslips to the slides with a xylene based mounting media Mount-quick (Newcomer supply, WI, US)

Line 183: What slides? They have never been mentioned in the previous steps. When and how and what did you make a slide?

Author's response: Same paraffin slides were prepared in the tissue harvest part under the subtitle "Tissue Harvesting on 3, 15 and 90 Days after ECM/SVF-gel Injection."

- 32. Line 184: What container? How many slides are placed in one container? Author's response: The slides were loaded onto a specialized slide basket, which contains 30 slides and soaked into the compatible soaking boxes sequentially.
- 33. Line 186: What does it mean by arranging the container? Author's response: Manuscript was edited as following: Let the container cool in room temperature for 20 min.
- 34. Line 196: What is used to wipe off the water? Author's response: The excess water was wipe off with clean tissue paper.
- 35. Line 198: Is the slide observed using a microscope? Author's response: Manuscript was edited as following.

Line 201: Mount the coverslips and let dry in dark. Slides were then observed with a fluorescent microscope.

36. Lines 142-198: Please continue numbering (therefore it should be 5. Nude Mouse...).

Author's response: We have make the numbering system more understandable.

37. Please combine some of the shorter Protocol steps so that individual steps contain 2-3 actions and maximum of 4 sentences per step.

Author's response: We have made according changes.

- 38. Please include single-line spaces between all paragraphs, headings, steps, etc. Author's response: We have made according changes.
- 39. After you have made all the recommended changes to your protocol (listed above), please highlight 2.75 pages or less of the Protocol (including headings and spacing) that identifies the essential steps of the protocol for the video, i.e., the steps that should be visualized to tell the most cohesive story of the Protocol.

Author's response: We have highlighted the essential steps of the protocol with yellow highlight color.

- 40. Please highlight complete sentences (not parts of sentences). Please ensure that the highlighted part of the step includes at least one action that is written in imperative tense. Please do not highlight any steps describing anesthetization and euthanasia. Author's response: We have highlighted the essential steps as you requested.
- 41. Please include all relevant details that are required to perform the step in the highlighting. For example: If step 2.5 is highlighted for filming and the details of how to perform the step are given in steps 2.5.1 and 2.5.2, then the sub-steps where the details are provided must be highlighted.

Author's response: We have highlighted the essential steps as you requested.

- 42. Discussion: As we are a methods journal, please also discuss any modifications and troubleshooting of the technique, and any limitations of the technique. Author's response: We have added modifications, limitations and troubleshooting of the technique in the discussion part.
- 43. Please ensure that the references appear as the following: [Lastname, F.I., LastName, F.I., LastName, F.I. Article Title. Source. Volume (Issue), FirstPage LastPage (YEAR).] For more than 6 authors, list only the first author then et al. See the example below:

Bedford, C.D., Harris, R.N., Howd, R.A., Goff, D.A., Koolpe, G.A. Quaternary salts of 2-[(hydroxyimino)methyl]imidazole. Journal of Medicinal Chemistry. 32 (2), 493-503 (1998).

Author's response: We have revised the reference style as you suggested.

44. References: Please do not abbreviate journal titles.

Author's response: We have revised journal title as you suggested.

45. Please revise the table of the essential supplies, reagents, and equipment to include the name, company, and catalog number of all relevant materials in separate columns in an xls/xlsx file.

Author's response: We have made the revision as you suggested.

Reviewers' comments:

Reviewer #3:

Manuscript Summary:

The authors describe their method of producing ECM/SVF-gel in detail and show that it results in high graft retention with histologically normal-appearing adipose tissue.

Major Concerns:

None

Minor Concerns:

The authors should make it clear that the experimental component of this study is not new. The authors have previously described these findings in more details in previous publications. However, this detailed description is of value because it will help other scientists to replicate these methods and perform additional experiments with ECM/SVF-gel, especially if the authors include a video showing the production steps.

Author's response: This article mainly focuses on the introduction of the method to produce the ECM/SVF-gel. A video showing the production steps will be produced with the journal's help.

Reviewer #4:

Manuscript Summary:

The manuscript describes the major steps in an appropriate manner. Some concerns need to be answered and revised.

Major Concerns:

-line 60: ASCs = adipose-derived mesenchymal stromal/stem cells. PLEASE REVISE Author's response: We have made revisions as you suggested.

-Introduction: You should describe the cells within the SVF...there are not only ASCs/preadipocytes.....

Author's response: As you implied, stromal vascular fraction (SVF) of adipose tissue contains ASCs, endothelial progenitor cell, pericytes, and immune cells. We have added this background into the Introduction.

-Fig. 2: Please provide better figures of the histology (higher resolution). Please mark preadipocytes by arrows !!!

Author's response: We have made revisions as you suggested.

Minor Concerns:

- -line 58: delete comma after e.g
- -line 63: ...abundant resources. Please clarify and describe in an appropriate manner Author's response: We have made revisions as you suggested.