Journal of Visualized Experiments

Fluorimetric techniques for assessment of sperm membranes --Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video
Manuscript Number:	JoVE58622R2
Full Title:	Fluorimetric techniques for assessment of sperm membranes
Keywords:	sperm / acrosome reaction / mitochondrial membrane potential / plasma membrane / fluorescent probe / flow cytometry / semen evaluation
Corresponding Author:	Alisa Komsky-Elbaz Hebrew University of Jerusalem Rehovot, Israel ISRAEL
Corresponding Author's Institution:	Hebrew University of Jerusalem
Corresponding Author E-Mail:	alisakomsky@yahoo.com;alisa.komsky-elba@mail.huji.ac.il
Order of Authors:	Alisa Komsky-Elbaz
	Zvi Roth
Additional Information:	
Question	Response
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Rehovot, Israel

Fluorimetric techniques for assessment of sperm membranes

The maintenance of sperm viability and fertilization potential depends on multiple factors, including membrane integrity and intracellular functionality. Standard spermiograms describing sperm quality are mostly based on physiological and visual parameters, such as ejaculate volume and concentration, motility and progressive motility, and sperm morphology. However, such an evaluation does not take into account other cellular and functional parameters. Therefore, additional and accurate methods are required to ensure semen quality.

In the current paper we described two feasible methodologies to evaluate sperm quality based on sperm cell membrane integrity and cellular features associated with sperm fertilization competence. The first, is simultaneous quadruple staining with specific fluorescent probes, combined with fluorescence microscopy. The second, is advanced sperm-dedicated flow cytometry. Analysis include evaluation of plasma and acrosome membrane integrity as well as mitochondrial membrane potential. Combination of methods are also presented. For instance, annexin V assay combined with PI fluorochromes are used to assess apoptosis and the proportion of apoptotic sperm (apoptotic index).

In our recent studies, using these techniques, we were able to examine the effects of foodborne toxins on sperm quality. We believe that these methodologies, which based on sperm membrane examination, provide a powerful tool to evaluate semen quality and fertilization competence.

TITLE:

Fluorimetric Techniques for the Assessment of Sperm Membranes

2 3 4

1

AUTHORS AND AFFILIATIONS:

5 Alisa Komsky-Elbaz^{1,2} and Zvi Roth^{1,2}

6 7

- ¹Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment,
- 8 The Hebrew University, Rehovot, Israel
- 9 ²The Research Center for the Study of Sperm in Animals, Department of Animal Sciences, Robert
- 10 H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot, Israel

11

12 Corresponding Author:

- 13 Alisa Komsky-Elbaz
- 14 (alisakomsky@yahoo.com)
- 15 (alisa.komsky-elba@mail.huji.ac.il)

16 17

Email Address of Co-author:

18 Zvi Roth (z.roth@mail.huji.ac.il)

19 20

KEYWORDS:

Sperm, acrosome reaction, mitochondrial membrane potential, plasma membrane, fluorescent probe, flow cytometry, semen evaluation

222324

25

26

27

28

21

SUMMARY:

Here, we present methodologies to evaluate spermatozoan membrane integrity, a cellular feature associated with sperm fertilization competence. We describe three techniques for the fluorimetric assessment of sperm membranes: simultaneous staining with specific fluorescent probes, fluorescence microscopy, and advanced sperm-dedicated flow cytometry. Examples of combining the methodologies are also presented.

293031

32

33

34

35

36

37

38

39

40

41

42

43

44

ABSTRACT:

Standard spermiograms describing sperm quality are mostly based on the physiological and visual parameters, such as ejaculate volume and concentration, motility and progressive motility, and sperm morphology and viability. However, none of these assessments is good enough to predict the semen quality. Given that maintenance of sperm viability and fertilization potential depends on membrane integrity and intracellular functionality, evaluation of these parameters might enable a better prediction of sperm fertilization competence. Here, we describe three feasible methods to evaluate sperm quality using specific fluorescent probes combined with fluorescence microscopy or flow cytometry analyses. Analyses assessed plasma membrane integrity using 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI), acrosomal membrane integrity using fluorescein isothiocyanate-conjugated *Pisum sativum* agglutinin (FITC–PSA) and mitochondrial membrane integrity using 5,5',6,6'-tetra-chloro-1,1',3,3'-tetraethylbenzimidazolyl carbocyanine iodide (JC-1). Combinations of these methods are also presented. For instance, use of annexin V combined with PI fluorochromes enables assessing apoptosis and calculating the proportion of

apoptotic sperm (apoptotic index). We believe that these methodologies, which are based on examining spermatozoon membranes, are very useful for the evaluation of sperm quality.

INTRODUCTION:

Integrity and functionality of sperm membranes are a few of the factors indicating sperm viability and fertilization potential. The plasma membrane acts as a barrier between intracellular and extracellular compartments, thereby maintaining the cellular osmotic equilibrium¹. Any stress that induces damage to the plasma membrane integrity might impair homeostasis, reduce viability and fertilization capacity, and increase cell death. For instance, cryopreservation reduces sperm viability due to damage to its plasma membrane, as a result of temperature changes and osmotic stress². We previously reported that exposing bull sperm to low concentrations of foodborne contaminants such as the pesticide atrazine, its major metabolite diaminochlorotriazine or the mycotoxin aflatoxin B1, reduces sperm viability^{1,3}. This was determined by labeling the double-stranded DNA with DAPI in combination with PI, which binds to the DNA of cells with a damaged plasma membrane.

Fusion of the outer acrosome membrane and the overlying plasma membrane is called acrosome reaction (AR). This is important as it results in the release of acrosomal enzymes^{4, 5}. These are essential events for *zona-pellucida* penetration and further merging of the sperm with the oocyte⁶. Therefore, evaluation of acrosomal membrane integrity constitutes a useful parameter to evaluate the semen quality and male fertility^{7–9}. Several fluorescent techniques are suitable for the verification of acrosome integrity, FITC–PNA or FITC–PSA^{9,11}. In our previous studies, using the patterns of FITC–PSA staining^{5,6}, we provided accurate definitions for (i) intact acrosome, (ii) damaged acrosome membrane and (iii) reacted acrosome. In the current report, we evaluate acrosome status using sperm-dedicated flow cytometry and compare the results to those using fluorescence microscopy.

The mitochondria are multifunctional organelles involved in, among other things, ATP synthesis, reactive oxygen species production, calcium signaling and apoptosis. Physiological dysfunctions, including male and female infertility, are associated with altered mitochondrial function¹¹. Sperm mitochondria are arranged in the midpiece and play a crucial role in sperm motility¹². It is well accepted that high mitochondrial membrane potential ($\Delta\Psi$ m) is associated with normal motility and high fertilization capacity¹³. In contrast, low $\Delta\Psi$ m is associated with an elevated level of reactive oxygen species and reduced fertilization rate¹⁴. Nonetheless, various environmental compounds, for instance endocrine disruptors, can induce cellular stress and lead to a transient increase in $\Delta\Psi$ m, hyperpolarization^{1,3,15}, increased production of free radicals and eventually, apoptosis¹⁶. The fluorescent probe 5,5',6,6'-tetra-chloro-1,1',3,3'-tetraethylbenzimidazolyl carbocyanine iodide (JC-1) enables examining for example, the effects of foodborne toxins on sperm $\Delta\Psi$ m^{5,6}.

Standard spermiograms, based on physiological and morphological parameters, are not good enough to predict semen quality. More accurate methods are required to ensure sperm quality. Here, we provide two feasible methods to determine sperm quality based on evaluations of sperm membranes: simultaneous quadruple staining with specific fluorescent probes and

fluorescence microscopy, described in our studies^{1,3} and advanced sperm-dedicated flow cytometry, recently utilized in our laboratory, and already being used by others^{17–19}.

PROTOCOL:

All of the experiments were performed in accordance with the 1994 Israeli guidelines for animal welfare. Bovine sperm was supplied by commercial Israeli company for artificial insemination and breeding. Ejaculates of 11 bulls were evaluated in this study.

1. Sperm sample preparation

Note: The procedure is based on the Roth laboratory's protocol^{5,6}.

1.1 Obtain approximately 1–6 mL of bull semen in a 15 mL tube at room temperature.

1.2 To each 1 mL of semen, add 6 mL of prewarmed (at 37 °C) NKM buffer (110 mM NaCl, 5 mM KCl, 20 mM MOPS [3-N-morphilino propanesulfonic acid; pH 7.4]) and centrifuge for 8 min at 600 x g, 1–2 times until the supernatant is clear.

Note: If sperm concentration or the initial volume are very high, split into two tubes at the first wash.

111 1.3 Immediately remove and discard the clear supernatant and leave approximately 1 cm of the supernatant above the pellet.

1.4 Carefully lean the tubes at a 30° angle to increase the surface area for sperm to swim up and wait 20–30 min to allow spermatozoa to swim up at 37 °C.

Note: Turbidity can be seen.

119 1.5 Using a micropipette carefully, remove the upper 1 mL of the supernatant containing the motile spermatozoa to a new 1.5 mL tube.

122 1.6 Keep the sperm at 37 °C until use.

124 1.7 Estimate the sperm count using a Neubauer hemocytometer.

Note: A different counting chamber can be used instead, but the counting is different.

1.7.1 To prevent spermatozoon movement, dilute 100 μL of the motile spermatozoa with 10
 mL of double distilled water (DDW) (1:100 dilution) in a 15 mL tube and mix gently.

131 1.7.2 Load 10 μ L of the sample into each side of the hemocytometer and coverslip. Make sure to avoid bubble formation inside the chamber as this may result in an inaccurate sperm count.

133134

1.7.3 Observe under a compound microscope with a 20X objective.

135

- Note: The full grid on a hemocytometer contains 9 large squares, each 1 mm², and the coverglass rests 0.1 mm above the floor of the chamber. Thus, the volume over the central counting area is 0.1 mm³ or 0.1 μ L. The central area of the hemocytometer contains 25 medium squares and each
- medium square has 16 smaller squares with single lines.

140

- 141 1.7.4 Count the total number of cells found in 4 medium corner squares and the central square.
- 142 For higher precision, count two chambers (both sides of the Neubauer hemocytometer) and use
- the average to calculate cell concentration.

144145

146

1.7.5 Calculate the sperm count by multiplying the mean number obtained by 5 (to obtain the number of cells per counting area) and by 10,000 (to obtain the number of cells per 1 mL of diluted sample). Then multiply the obtained count by the dilution factor (1:100).

147148149

150

151

152

Note: For example, an average number of sperm counted in 5 of the 25 medium squares within the central counting area of two chambers is 150 ([152+148]/2). Thus, the mean number of sperms per chamber (or per $0.1 \mu L$) is $150 \times 5 = 750$. Multiply 750 by 10,000 to obtain the number of cells per 1 mL of diluted sample (7,500,000) and then multiply by 100 (dilution factor) to obtain 75×10^7 cells per mL of original semen sample.

153154155

2. Technique #1: Simultaneous Assessment of Sperm Membranes Using Multiple Fluorescent Probes

156157158

Note: Sperm membranes (plasma, acrosomal and mitochondrial) were assessed as previously described by Celeghini $et\ al.^{10}$, with some modifications.

159160

161 2.1 Prepare stock solutions.

162

2.1.1 Prepare 0.1 mg/mL DAPI stock solution by dissolving 5 mg of DAPI in 50 mL of phosphate
 buffered saline (PBS). Prepare 50 μL aliquots and store at -20 °C. Before use, dilute the stock
 solution with PBS at 1:10 (working solution; 10 μg/mL).

166 167

2.1.2: Prepare 1 mg/mL FITC-PSA stock solution by dissolving 1 mg of FITC-PSA in 1 mL of PBS. Prepare 50 μ L aliquots and store at -20 °C. Before use, dilute the stock solution with PBS at 1:10 (working solution; 100 μ g/mL).

169170

168

2.1.3 Prepare 1 mg/mL JC-1 stock solution by dissolving 1 mg of JC-1 in 1 mL of dimethyl sulfoxide
 (DMSO). Prepare 10 μL aliquots and store at -20 °C. Before use, dilute the stock solution with
 DMSO at 1:10 (working solution; 0.1 mg/mL).

- 2.1.4 Prepare the PI stock solution by dissolving 10 mg of PI in 400 μL of PBS (giving 2.5 mg/mL).
- Store at +4 °C. Dilute stock 1 with PBS at 1:20 (working solution; 0.125 mg/mL). Store at +4 °C as
- 177 a stock solution.

178

179 Caution: PI is a potential mutagen and should be handled with care. The dye must be disposed of 180 safely and in accordance with applicable local regulations.

181

182 2.2 Transfer 133 μ L of the motile spermatozoa (step 1.5) to a new 1.5 mL tube (25 x 10^6 183 sperm/mL).

184 185

186

187

Note: If the sample concentration is higher, dilute it in NKM buffer to achieve the required concentration; if the sample concentration of the swim up sample is lower, concentrate the sample as follows: centrifuge the obtained supernatant after swimming up at 1000 x g for 5 min, remove 0.5 mL of the supernatant and count the sperm again.

188 189

190 2.3 Add 17 μL of DAPI (working solution) and incubate for 10 min at 37 °C.

191 192

2.4 Centrifuge at 1000 x g for 5 min and discard the supernatant.

193

194 2.5 To the pellet, add 100 μL of NKM buffer.

195

2.6 Add 50 μL of FITC–PSA, 2 μL of JC-1 and 3 μL of PI (working solutions) and incubate for 10 min at 37 °C.

198

199 2.7 Centrifuge at 1,000 x g for 5 min and remove the supernatant.

200

201 2.8 To the pellet, add 40 μL of NKM buffer and resuspend by pipetting.

202

203 2.9 Transfer 10 μL of the sample to a glass slide, smear and coverslip.

204

2.10 Visualize immediately by epifluorescence microscopy (use 40X objective) with a triple filter, equipped with a digital camera and capture an image separately for each filter.

207208

Note: There is no significance to the order of filters visualized.

209

2.10.1 Visualize under DAPI channel with excitation at 358 nm and emission at 461 nm.

211

212 2.10.2 Visualize under FITC channel for green monomers with excitation at 450–490 nm and emission at 515–565 nm.

214

2.10.3 Visualize under PI channel for red aggregates with excitation at 488 nm and emission at 216 590 nm.

2.10.4 Visualize under JC-1 red aggregates with excitation at 559 nm, and emission in the range of 574–627 nm; JC-1 green monomers with excitation at 488 nm and emission in the range of 500–535 nm.

221

222 2.11 Merge the three images received from the filters in JPG/JPEG format, using the "merge" option of the camera software.

224

225 2.12 Open the merged image with "Paint" tool and use the brush option to mark counted spermatozoa.

227

2.13 Classify spermatozoa based on the fluorescence emitted from each probe:

228229

230 2.13.1 In general evaluate at least 200 spermatozoa per slide—all cells appear blue (DAPI).

231

232 2.13.2 Evaluate the viability by counting dead cells, which appear purple (PI [red] + DAPI [blue])
and calculate the percentage of dead cells (dead cells/total counted cells x 100).

234235

2.13.3 Evaluate acrosome status using the patterns of fluorescent staining (FITC-PSA). Calculate the percentages of the different patterns (intact, damaged or reacted acrosome cells/total counted cells x 100).

237238239

236

Note: Damaged acrosomal membrane appears as a fully stained, green acrosome cap; reacted acrosomal membrane shows residual green equatorial or upper staining; cells containing intact acrosomal membrane will not exhibit any green staining of the acrosomal region.

241242243

240

2.13.4 Evaluate $\Delta\Psi m$ by distinguishing spermatozoa with high $\Delta\Psi m$, which exhibit a red-stained midpiece, and spermatozoa with low $\Delta\Psi m$ which exhibit a green-stained midpiece. Count red and green midpieces separately and calculate their ratio (red/green).

245246247

244

3. Technique #2: Assessment of Sperm Membranes with Ready-To-Use Kits and Flow Cytometry

248249250

251

252

Note: Assessment of plasma membrane integrity, mitochondrial membrane potential and acrosomal membrane integrity was performed with ready-to-use flow cytometry kits containing lyophilized fluorochromes in each well. The procedure was performed according to the manufacturers with some modifications.

253254

3.1. Plasma membrane integrity evaluation

255256257

3.1.1 Take the desired number of wells from the package of viability and concentration kit (PI and SYbr14), transfer them to the working base and cover with a flexible lid (protect from light).

258259

3.1.2 Add 199 μL of buffered solution for cytometry per well.

- 3.1.3 Add 1 µL of homogeneous semen at 57 x 10⁶/mL (57,000 cells per well) and homogenize 262 263 by pipetting. 264 265 3.1.4 Cover the plate with the black lid. 266 267 3.1.5 Incubate for 10 min at 37 °C protected from light. 268 3.1.6 Run the sample through the flow cytometer with the setting 'viability'. 269 270 271 3.2. Mitochondrial membrane potential 272 3.2.1 Take the desired number of wells from the package of mitochondrial activity kit (JC-1), 273 transfer them to the working base and cover with a flexible lid (protect from light). 274 275 276 3.2.2 Add 10 µL of absolute ethanol per well and pipette to resuspend the powder present 277 within the well. 278 279 3.2.3 Add 190 µL of PBS per well and homogenize by pipetting. 280 3.2.4 Add 0.75 µL of homogeneous semen at 57 x 10⁶/mL (50,000 cells per well) and 281 282 homogenize by pipetting. 283 284 3.2.5 Cover the plate with the black lid. 285 286 3.2.6 Incubate for 30 min at 37 °C protected from light. 287 288 3.2.7 Run the sample through the flow cytometer with the setting 'mitochondrial activity'. 289 290 3.3. Acrosomal membrane integrity 291 292 Note: FITC-PSA staining (see Technique #1) enables the evaluation of 3 acrosome categories 293 (intact acrosome, reacted acrosome and damaged acrosome). Using the flow cytometer and 294 viability & acrosome integrity kit (PI and FITC-PNA), the spermatozoa are separated into these 3 295 categories. 296 297 3.3.1 Take the desired number of wells from the package of viability & acrosome integrity kit, 298 transfer them to the working base and cover with a flexible lid (protect from light). 299 300 3.3.2 Add 200 µL of buffered solution for cytometry per well. 301 302 3.3.3 Add 0.7 µL of homogeneous semen at 57 x 10⁶/mL (40,000 cells per well) and homogenize
- 305 3.3.4 Cover the plate with the black lid.

by pipetting.

303

307 3.3.5 Incubate for 45 min at 37 °C protected from light. 308 3.3.6 Run the sample through the flow cytometer with the setting 'InCyte'. 309 310 311 3.3.7 Analyze the resultant histogram by gating three marker areas according to fluorescence 312 intensity, representing negligible, low-fluorescing cells with intact, unstained acrosome (R1), low-313 fluorescing cells with residual stained part of the acrosome (R2) and highly fluorescing cells with 314 disrupted acrosome (R3). 315 316 Note: Use the "analyzing files acquired using other modules" section in the instrument user guide 317 in order to create the three regions (R1, R2, R3). 318 319 4. Technique #3: Assessment of Sperm Membranes Using Fluorescent Probes and Flow 320 Cytometry 321 322 Note: Use of annexin V combined with PI fluorochromes enables assessing apoptosis and 323 calculating the proportion of apoptotic sperm (apoptotic index). 324 325 4.1 Prepare 1x annexin V binding buffer from 20x stock solution (dilute 500 μL of annexin V 326 binding buffer 20x stock solution with 9.5 mL of sterile distilled water). 327 328 4.2 Estimate the sperm count using a Neubauer hemocytometer as described in section 1.7. 329 Wash 10⁶ spermatozoa in 1 mL of 1x annexin V binding buffer and centrifuge at 300 x g 330 4.3 331 for 10 min. 332 333 Aspirate the supernatant completely. 4.4 334 335 Resuspend the pellet in 100 µL of 1x annexin V binding buffer. 4.5 336 337 4.6 Add 10 µL of annexin V conjugated to FITC. 338 339 4.7 Mix well and incubate for 15 min in the dark at room temperature. 340 341 4.8 Wash spermatozoa by adding 1 mL of 1x annexin V binding buffer per 10⁶ cells and 342 centrifuge at 300 x g for 10 min. 343 344 Aspirate the supernatant completely. 4.9 345 346 Resuspend the cell pellet in 500 μL of 1x annexin V binding buffer per 10⁶ total cells. 4.10

Add 1 µg/mL PI immediately prior to analysis with a flow cytometer.

306

347348

349

4.11

4.12 Run the sample through the flow cytometer set on 'InCyte'.

REPRESENTATIVE RESULTS:

Figure 1 shows simultaneous fluorimetric assessment of sperm membranes (plasma, acrosomal and mitochondrial) using PI, DAPI, FITC–PSA and JC-1. Assessment of sperm membranes using simultaneous staining with four fluorescent probes allows, for example, evaluating the proportion of sperm in each category—live vs. dead; high vs. low $\Delta\Psi m$; intact vs. damaged acrosome—simultaneously for each spermatozoon.

Figure 2 presents results of sperm membrane evaluation using fluorimetric probes. Only semen that contained at least 80% motile spermatozoa were used in the experiment. At least 200 cells were examined per bull. It was possible to evaluate the differences in sperm sample quality in terms of membrane integrity. For example, the ejaculate of bull no. 7 had a relatively low percentage of dead cells, a low proportion of sperm with pseudo reacted acrosome and higher mitochondrial membrane potential, as compared to the ejaculate of bull no. 1.

Figure 3 shows representative samples evaluated for viability (**Figures 3A–3C**) and mitochondrial activity (**Figures 3D–3F**). Fluorescence intensities of the samples were evaluated by a dedicated microcapillary sperm flow cytometer, with dedicated software. This flow cytometer contains one solid-phase blue laser (448 nm) and two photodiodes: forward scatter and side scatter. It specifically measures sperm emission properties with three photomultiplier tubes (green: 525/30 nm, yellow: 583/26 nm; red: 655/50 nm) and accommodates optical filters and splitters¹⁷. It enables evaluation of 5000 spermatozoa per analysis.

The viability evaluation kit contains a probe with differential permeability to viable (intact plasma membrane) and dead (damaged plasma membrane) spermatozoa (**Figure 3C**). Sperm $\Delta\Psi$ m was assessed using a kit that distinguishes between polarized mitochondrial membrane (fluorescence appearing in orange) and depolarized mitochondrial membrane (fluorescence appearing in green) (**Figure 3F**).

Figure 4 presents an evaluation of acrosome integrity performed with the ready-to-use kit, read with the flow cytometry (**Figures 4A–4C**), dividing the resultant histogram of gated spermatozoa into three marker areas, representing negligible low-fluorescing cells with intact, unstained acrosome (R1), low-fluorescing cells with residual stained part of the acrosome (R2), and highly fluorescing cells with disrupted acrosome (R3).

Table 1 presents a comparison of the two fluorimetric techniques for assessment of sperm membranes. The same sperm samples from three different bulls were evaluated for viability, mitochondrial membrane potential ($\Delta\Psi m$) and acrosome integrity using simultaneous quadruple staining as well as flow cytometry. This comparison is highly important, as it shows the matching results using each of the two techniques. Data were analyzed by an analysis and Student's t-test. No statistically significant differences were observed.

Figure 5 shows a representative sample evaluated for apoptosis using annexin V (AV) and propidium iodide (PI) fluorochromes. Use of these two probes enables distinguishing among four patterns indicating viable cells (AV-, PI-), early apoptotic cells (AV+, PI-), apoptotic cells (AV+, PI+) and necrotic cells (AV-, PI+).

FIGURE AND TABLE LEGENDS:

 Figure 1: Epifluorescence photomicrography of spermatozoa stained simultaneously with several fluorescent probes. (A) Simultaneous staining with four probes PI, DAPI, FITC-PSA and JC-1) (B) Live spermatozoon with DAPI staining of nucleus and high mitochondrial membrane potential ($\Delta\Psi$ m), stained with JC-1 probe. (C) Dead spermatozoon with damaged plasma membrane stained with PI probe, damaged acrosome stained with FITC-PSA probe and low $\Delta\Psi$ m. (D) Live, acrosome-reacted spermatozoon with residual equatorial staining and low $\Delta\Psi$ m. (E) Live, acrosome-reacted spermatozoon with residual upper staining and high $\Delta\Psi$ m. Scale bars = 10 μm.

Figure 2: Evaluation of bull sperm membranes using fluorimetric probes. A. Sperm viability was determined with fluorescent probes 4',6-diamidino-2-phenylindole (DAPI) and propidium iodide (PI). B. Acrosome status was determined according to FITC—PSA staining patterns. Presented are the proportion of spermatozoa with reacted acrosome. C. Mitochondrial membrane potential ($\Delta\Psi$ m) was evaluated using with JC-1 fluorescent probe and presented as the ratio between mean proportion of red-stained (high potential) and green-stained (low potential) sperm. Data are presented as percent of cells out of total evaluated cells. At least 200 spermatozoa were analyzed per bull.

Figure 3: Viability (A–C) and mitochondrial activity (D–F) fluorescence assessment of representative samples measured by EasyCyte flow cytometer. Histograms represent ungated spermatozoa and debris (A, D), gated spermatozoa (B, E), distribution of spermatozoa to viable (green) and dead (red) cells (C), and distribution of spermatozoa to polarized (yellow) and depolarized (green) mitochondrial membrane (F). Scale bars = $10 \, \mu m$.

Figure 4: Fluorescence assessment of acrosome integrity of representative samples measured by EasyCyte flow cytometer. A. Histogram of ungated spermatozoa and debris. B, C. Histograms of gated spermatozoa with evaluation of acrosome integrity performed with ready-to-use kit, read with adapted setting 'InCyte', dividing the resultant histogram of gated spermatozoa into three marker areas, representing negligible, low-fluorescing cells with intact, unstained acrosome (R1), low-fluorescing cells with residual stained part of the acrosome (R2) and highly fluorescing cells with disrupted acrosome (R3). Scale bars = $10 \mu m$.

Table 1: Comparison of the two fluorimetric techniques for assessment of sperm membranes. The same sperm samples were evaluated for viability, mitochondrial membrane potential and acrosome integrity using simultaneous quadruple staining and flow cytometry. Data are presented as mean proportion ± SD of the examined cells, calculated for 3 replicates.

Figure 5: Annexin V and PI fluorescence of a representative sample measured by a flow

cytometer. Histograms represent **A.** ungated spermatozoa and debris and **B.** distribution of the gated spermatozoa to early apoptotic (AV+, PI-), apoptotic (AV+, PI+), viable (AV-, PI-) and necrotic (AV-, PI+) cells.

DISCUSSION:

Sperm fertilization potential depends on multiple factors reflecting its quality. A high concentration of spermatozoa and a high proportion of highly progressively motile spermatozoa might be considered high-quality semen. Nevertheless, such an evaluation does not take into account other cellular and functional parameters. The use of 'bench-top' microcapillary flow cytometer can be easily adapted to evaluation of various sperm structures using fluorescent probes, as previously shown by others¹⁸ and demonstrated herein (Technique #3). For example, sperm acrosome integrity is highly important for the occurrence of successful natural fertilization and therefore, precise evaluation of acrosomal status is warranted. Such an evaluation can be easily performed by classification of acrosome status using the patterns of fluorescent staining (FITC-PSA, FITC-PNA, i.e., Technique #1, as previously described)^{5,6}. In particular, it is highly important to determine the proportion of sperm with intact acrosome (i.e., exhibits an unstained acrosome) relative to those with damaged acrosome. With respect to the latter, sperm with damaged acrosome can exhibit (i) a fully stained acrosomal cap, which indicates that the membrane is damaged, enabling the dye to flow through the membrane into the acrosome vesicle; (ii) acrosome-reacted sperm that exhibit only residual acrosome content, indicating that the AR has already occurred (i.e., pseudo AR). It should be noted that such an evaluation can also be performed with the dedicated flow cytometer.

The ready-to-use viability & acrosome integrity kit defines both sperm viability (viable or dead) and acrosomal integrity (intact or disrupted). Here, we suggest using the dedicated flow cytometer to define the three aforementioned acrosomal statuses (*i.e.*, intact, damaged, reacted). We adapted the microcapillary flow cytometer platform for more accurate evaluation, which identifies the acrosome-reacted sperm (*i.e.*, low fluorescence) while excluding them from those with disrupted acrosome (high fluorescence), rather than including them with those having an intact acrosome. This gives an accurate proportion of sperm with functional or nonfunctional acrosome. Sperm with reacted acrosome as well as disrupted acrosomal membrane have lost their ability to fertilize the oocyte. Furthermore, accurate analysis might shed light on the mechanism underlying acrosome alteration, *i.e.*, damaged acrosome membrane vs. pseudo acrosome activation.

We compared the results obtained with Technique #1 and Technique #2, and found great compatibility between them, in particular in the evaluation of viability and $\Delta\Psi$ m (**Table 1**). One of the main advantages of using the the dedicated flow cytometer is the large number of evaluated spermatozoa relative to the small number of spermatozoa that are evaluated in practice by fluorescence microscopy and probes (thousands *vs.* hundreds, respectively). Moreover, the latter procedure is time-consuming and subjective, even when performed by an experienced observer. As flow cytometry only detects particle-associated fluorescence, there is no need to wash the unbound probe from the solution, which is a time-consuming step¹⁸. On the other hand, the fluorimetric assessment of sperm membranes described in Technique #1 enables

simultaneous assessment of multiple membranes. We were able to use as many as four fluorescent probes together^{5,6}.

483 484

485 486 Finally, it should be noted that the dedicated flow cytometer was developed as an open assay module, providing all of the basic tools for sample acquisition and data analysis. The acquisition function enables collecting various types of information from a cell sample and therefore allows adaptation for more accurate evaluation, as shown here for acrosome status and apoptotic index.

487 488 489

490

In conclusion, the methodologies described in this paper are very useful for the evaluation of semen quality. Examining spermatozoon membranes is highly important for determining sperm fertilization competence.

491 492 493

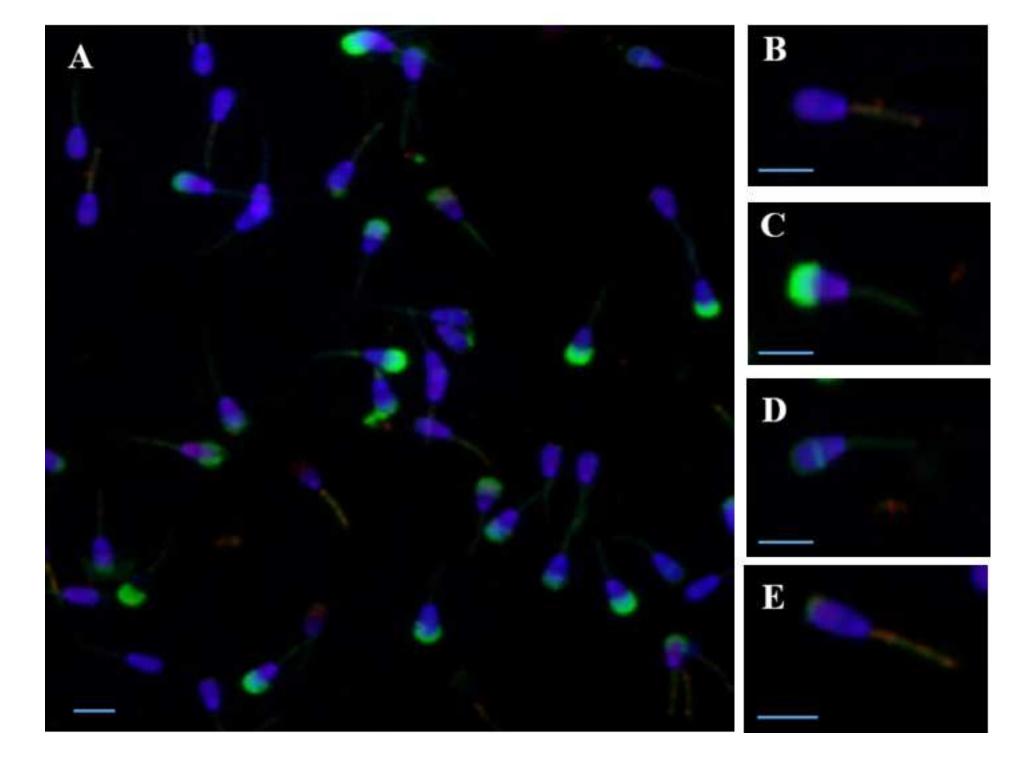
ACKNOWLEDGMENTS:

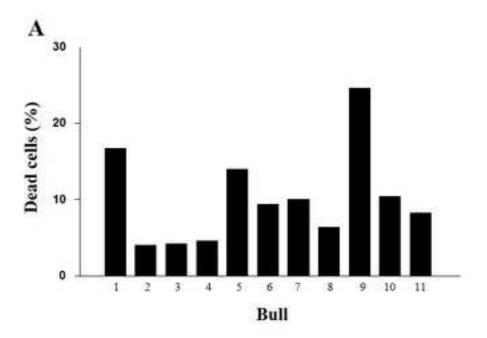
The authors would like to thank "SION" Israeli company for artificial insemination and breeding (Hafetz-Haim, Israel) for their help and cooperation, and Ms. Li Na (IMV Technologies, L'Aigle, France) for assistance with the instrument setup and training.

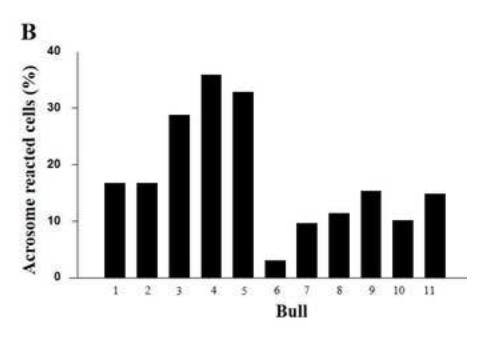
497 498

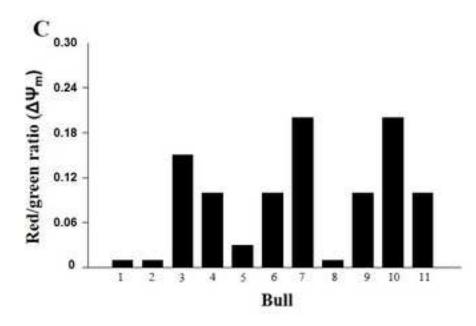
DISCLOSURES:

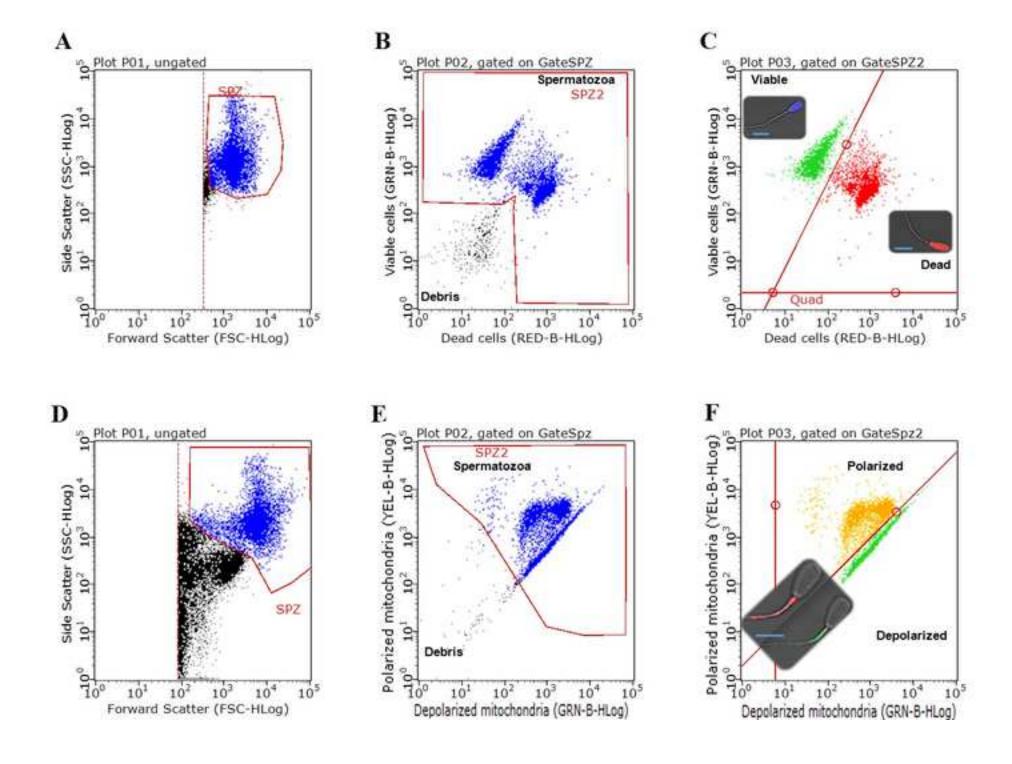
The authors declare that there are no conflicts of interest.

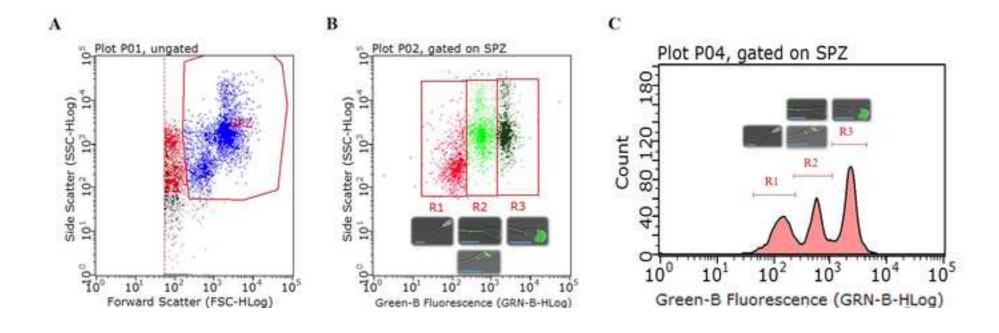

499 500 501

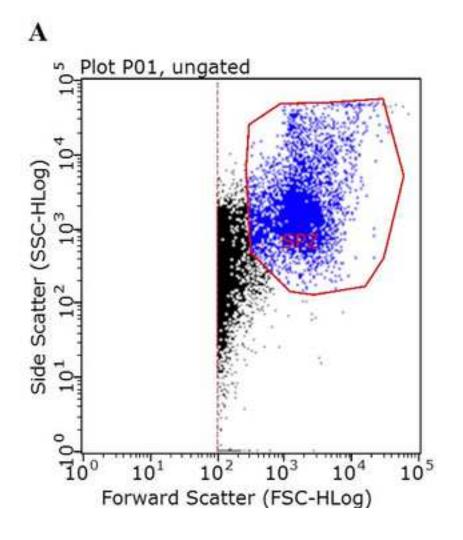

REFERENCES:

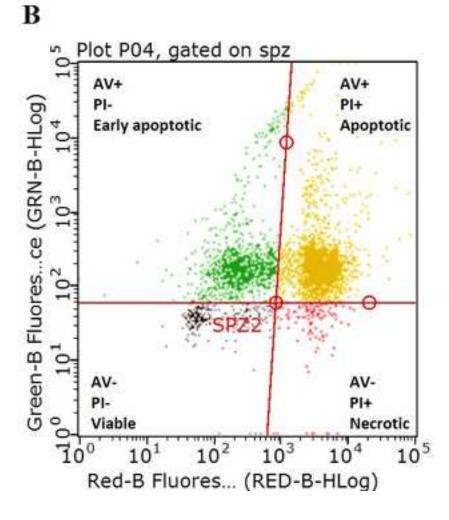

- 1. Komsky-Elbaz, A., Roth, Z. Effect of the herbicide atrazine and its metabolite DACT on bovine sperm quality. *Reproductive Toxicology*. **67**, 15–25 (2016).
- 504 2. Gürler, H. *et al.* Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. *Theriogenology*. **86** (2), 562–71 (2016).
- 506 3. Komsky-Elbaz, A., Saktsier, M., Roth, Z. Aflatoxin B1 impairs sperm quality and fertilization competence. *Toxicology.* **393** (2018).
- 508 4. Beltrán, C. *et al.* Role of Ion Channels in the Sperm Acrosome Reaction. *Advances in Anatomy, Embryology and Cell Biology.* **220**, 35–69 (2016).
- 5. Breitbart, H. Signaling pathways in sperm capacitation and acrosome reaction. *Molecular and Cellular Biology (Noisy-le-grand)*. **49** (3), 321–7 (2003).
- 512 6. Almadaly, E. *et al.* Methodological factors affecting the results of staining frozen-thawed fertile and subfertile Japanese Black bull spermatozoa for acrosomal status. *Animal Reproduction Science.* **136** (1–2), 23–32 (2012).
- 7. Jankovicová, J., Simon, M., Antalíková, J., Horovská, L. Acrosomal and viability status of bovine spermatozoa evaluated by two staining methods. *Acta Veterinaria Hungarica*. **56** (1), 133–8 (2008).
- 518 8. Lybaert, P., Danguy, A., Leleux, F., Meuris, S., Lebrun, P. Improved methodology for the detection and quantification of the acrosome reaction in mouse spermatozoa. *Histology and histopathology*. **24** (8), 999–1007 (2009).
- 9. Whitfield, C.H., Parkinson, T.J. Relationship between fertility of bovine semen and in vitro induction of acrosome reactions by heparin. *Theriogenology*. **38** (1), 11–20 (1992).
- 523 10. Celeghini, E.C.C., de Arruda, R.P., de Andrade, a F.C., Nascimento, J., Raphael, C.F.
- 524 Practical techniques for bovine sperm simultaneous fluorimetric assessment of plasma,


- acrosomal and mitochondrial membranes. Reproduction in Domestic Animals. 42 (5), 479–88
- 526 (2007).
- 527 11. Ramalho-Santos, J., Varum, S., Amaral, S., Mota, P.C., Sousa, A.P., Amaral, A.
- 528 Mitochondrial functionality in reproduction: from gonads and gametes to embryos and
- embryonic stem cells. *Human Reproduction Update*. **15** (5), 553–72 (2009).
- 530 12. Eddy, E.M., O'Brien, A. The spermatozoon. at https://books.google.com/books?id=6j-
- moacnnPuc&pgis=1>. Knobil and Neill's Physiology of Reproduction; Volume 1, Raven Press.
- 532 New York, USA. (1994).
- 533 13. Gallon, F., Marchetti, C., Jouy, N., Marchetti, P. The functionality of mitochondria
- differentiates human spermatozoa with high and low fertilizing capability. Fertility and Sterility.
- 535 **86** (5), 1526–30 (2006).
- 536 14. Espinoza, J. a, Paasch, U., Villegas, J. V Mitochondrial membrane potential disruption
- pattern in human sperm. *Human Reproduction*. **24** (9), 2079–85 (2009).
- 538 15. Kadenbach, B., Arnold, S., Lee, I., Hüttemann, M. The possible role of cytochrome c
- oxidase in stress-induced apoptosis and degenerative diseases. *Biochimica et Biophysica Acta*.
- **1655**, 400–408 (2004).
- 541 16. Hüttemann, M. et al. Regulation of oxidative phosphorylation, the mitochondrial
- 542 membrane potential, and their role in human disease. Journal of Bioenergetics and
- 543 *Biomembranes.* **40** (5), 445–56 (2008).
- 544 17. Sellem, E. et al. Use of combinations of in vitro quality assessments to predict fertility of
- 545 bovine semen. *Theriogenology*. **84** (9), 1447–1454.e5 (2015).
- 546 18. Odhiambo, J.F., Sutovsky, M., DeJarnette, J.M., Marshall, C., Sutovsky, P. Adaptation of
- 547 ubiquitin-PNA based sperm quality assay for semen evaluation by a conventional flow cytometer
- and a dedicated platform for flow cytometric semen analysis. *Theriogenology*. **76** (6), 1168–1176
- 549 (2011).


- 550 19. Barrier Battut, I. et al. Development of a new fertility prediction model for stallion semen,
- including flow cytometry. *Theriogenology*. **86** (4), 1111–1131 (2016).







	Average No of Cells	Vialbility		Mitochondrial Membrane potential		
		Viable	Dead	Depolarized	Polarized	Red/Green Ratio
Quadruple Staining	253	32.7 ± 1.53%	67.3 ± 1.53%	65.7 ± 2.25%	34.3 ± 2.52%	0.5 ± 0.06
Flow Cytomtery	5000	32.3 ± 2.08%	67.7 ± 2.08%	65.0 ± 1.00%	35.0 ± 1.00%	0.5 ± 0.02

	Ad	crosome Integ	grity
Ī	Intact	Reacted	Disrupted
	Acrosome	Acrosome	Acrosome
	37.3 ± 7.2%	38.0 ± 5.7%	24.3 ± 3.0%
	39.5 ± 5.7%	39.5 ± 6.5%	21.0 ± 8.0%

Name of Material/ Equipment	Company	Catalog Number	Comments/Description
NaCl	Sigma	S5886	
KCI	Sigma	P5405	
MOPS [3-N-morphilino propanesulfonic	Sigma	M1254	
acid]			
PBS	Sigma	P5493	
DMSO	Sigma	D2438	
Ethanol absolute	Sigma	64-17-5	
Hemacytometer	Neubauer Germany		hemocytometer
DAPI (4',6-diamidino-2-phenylindole)	Sigma	D9542	fluorescent probe
PI (propidium iodide)	Sigma	P4170	fluorescent probe
FITC-PSA (fluorescein isothiocyanate-	Sigma	L0770	fluorescent probe
conjugated Pisum sativum agglutinin)			
JC-1 (5,5',6,6'-tetra-chloro-1,1',3,3'-	ENZOBiochem, New York, NY, USA	ENZ52304	fluorescent probe
tetraethylbenzimidazolyl carbocyanine			
iodide)			
Annexin V conjugated to FITC	MACS, Miltenyi Biotec	130-093-060	fluorescent probe
Annexin V binding buffer 20X stock			
solution	MACS, Miltenyi Biotec	130-092-820	buffer
Nikon Eclipse, TE-2000-u	Nikon, Tokyo, Japan		inverted fluorescence microscope
Nis Elements	Nikon, Tokyo, Japan		software
Nikon DXM1200F	Nikon, Tokyo, Japan		digital camera
Guava EasyCyte Plus	IMV Technologies, L'Aigle, France		microcapillary sperm flow cytometer
CytoSoft			software
	Guava Technologies Inc., Hayward, CA,		
	USA; distributed by IMV Technologies		
Buffered solution for cytometry	IMV Technologies, L'Aigle, France	023862	buffer
Viability and concentration kit	IMV Technologies, L'Aigle, France	024708	kit for viability assessment
Mitochondrial activity kit	IMV Technologies, L'Aigle, France	024864	kit for mitochondrial activity assessme
Viability & acrosome integrity kit	IMV Technologies, L'Aigle, France	025293	kit for acrosome integrity assessment

ytometry

ARTICLE AND VIDEO LICENSE AGREEMENT

	comparison between two fluorimetric techniques for accessing			
Title of Article:	comparison between two fluorimetric techniques for accesson			
Author(s):	Alisa Komsky-Elbaz and Zvi Roth			
Item 1 (check one	box): The Author elects to have the Materials be made available (as described at			
	jove.com/author) via: Standard Access Open Access			
Item 2 (check one bo	x):			
The Autl	nor is NOT a United States government employee.			
The Author is a United States government employee and the Materials were prepared in the course of his or her duties as a United States government employee.				
	hor is a United States government employee but the Materials were NOT prepared in the or her duties as a United States government employee.			

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's

expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law.</u> This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDING	AUTHOR:	
Name:	Alisa Komsky-Elbaz	
Department:	Department of Animal Sciences, Robert H. Swith faculty of	~ . , , ,
Institution:	INC HEBYEW UNIVERSITY OF SETUCIONEM	Environment.
Article Title:	of sperm membranes: simultaneous open driple staining and flow	cyto metry.
Signature:	Date: 13, 6, 18	To considerate the second seco
	140	

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- 2) Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

;

JoVE58622R1

The authors would like to thank the editor for his comments.

Please find below our answers to the comments.

Editorial comments:

1. The editor has formatted the manuscript as per the journal's style. Please retain the same.

It was retained.

2. Please address all the specific comments in the manuscript.

All the specific comments were addressed in the manuscript.

3. Please do not use commercial terms and use generic term instead.

Commercial terms were removed from the manuscript.

4. Please change lines 76-78 as it matches with the previously published literature.

These lines were changed.

- 5. After all the formatting, Please ensure that the highlight is no more than 2.75 pages including heading and spacings.
- 2.75 pages were highlighted.
- 6. Please include reprint permission for the previously published figures and upload it on the editorial manager account as .doc file. Also please include a sentence in the legend stating this this figure is modified from... especially Figure 1

There are no previously published or modified figures in the manuscript.