Journal of Visualized Experiments

Photogeneration of N-Heterocyclic Carbenes: Application in Photoinduced Ring-Opening Metathesis Polymerization --Manuscript Draft--

Article Type:	Methods Article - JoVE Produced Video	
Manuscript Number:	JoVE58539R2	
Full Title:	Photogeneration of N-Heterocyclic Carbenes: Application in Photoinduced Ring- Opening Metathesis Polymerization	
Keywords:	Polymer; ring-opening; metathesis; ROMP; carbene; NHC; photochemistry; miniemulsion; photolysis; photoreactor; photoreactivity	
Corresponding Author:	Julien Pinaud, Ph.D Institut Charles Gerhardt de Montpellier Montpellier, Occitanie FRANCE	
Corresponding Author's Institution:	Institut Charles Gerhardt de Montpellier	
Corresponding Author E-Mail:	julien.pinaud@umontpellier.fr	
Order of Authors:	Julien Pinaud, Ph.D	
	Emeline Placet	
	Patrick Lacroix-Desmazes	
	Thi Kim Hoang Trinh	
	Jean Pierre Malval	
	Abraham Chemtob	
	Loïc Pichavant	
	Valérie Héroguez	
Additional Information:		
Question	Response	
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)	
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Institut Charles Gerhardt Montpellier UMR 5253 CNRS-UM-ENSCM Université de Montpellier, Place E. Bataillon, Bât 17, cc 1702 34095 Montpellier cedex 5 - France	

TITLE:

- 2 Photogeneration of N-Heterocyclic Carbenes: Application in Photoinduced Ring-Opening
- 3 Metathesis Polymerization

4 5

1

AUTHORS AND AFFILIATIONS:

- Julien Pinaud¹, Emeline Placet¹, Patrick Lacroix-Desmazes¹, Thi Kim Hoang Trinh^{2,3}, Jean Pierre 6
- Malval^{2,3}, Abraham Chemtob^{2,3}, Loïc Pichavant⁴, Valérie Héroguez⁴ 7

8

- 9 ¹Université de Montpellier, Montpellier, France
- 10 ²Université de Haute-Alsace, Mulhouse, France
- ³Université de Strasbourg, Strasbourg, France 11
- 12 ⁴Université de Bordeaux, Pessac, France

13 14

Corresponding Author:

- 15 Julien Pinaud
- 16 julien.pinaud@umontpellier.fr
- 17 Tel: 33 (0)4 67 14 39 99

18

19 **Email Addresses of Co-authors:**

- 20 **Emeline Placet** (emeline.placet@enscm.fr)
- 21 Patrick Lacroix-Desmazes (patrick.lacroix-desmazes@enscm.fr)
- 22 Thi Kim Hoang Trinh (thi-kim-hoang.trinh@uha.fr) 23 Jean Pierre Malval (jean-pierre.malval@uha.fr) 24 Abraham Chemtob (abraham.chemtob@uha.fr)
- 25 Loïc Pichavant (loic.pichavant@enscbp.fr)
- 26 Valérie Héroguez (valerie.heroguez@enscbp.fr)

27 28

KEYWORDS:

29 Polymer, ring-opening, metathesis, ROMP, carbene, NHC, photochemistry, miniemulsion, 30 photolysis, photoreactor, photoreactivity

31 32

33

34

35

36

SUMMARY:

We describe a protocol to photogenerate N-heterocyclic carbenes (NHCs) by UV irradiation of a 2-isopropylthioxanthone/imidazolium tetraphenylborate salt system. Methods to characterize the photoreleased NHC and elucidate the photochemical mechanism are proposed. The protocols for ring-opening metathesis photopolymerization in solution and miniemulsion illustrate the potential of this 2-component NHC photogenerating system.

37 38 39

40

41

42

43

44

45

46

47

ABSTRACT:

We report a method to generate the N-heterocyclic carbene (NHC) 1,3-dimesitylimidazol-2ylidene (IMes) under UV-irradiation at 365 nm to characterize IMes and determine the corresponding photochemical mechanism. Then, we describe a protocol to perform ringopening metathesis polymerization (ROMP) in solution and in miniemulsion using this NHCphotogenerate system. To IMes, a system isopropylthioxanthone (ITX) as the photosensitizer and 1,3-dimesitylimidazolium tetraphenylborate (IMesH⁺BPh₄⁻) as the protected form of NHC is employed. IMesH⁺BPh₄⁻ can be obtained in a single step by anion exchange between 1,3-dimesitylimidazolium chloride and sodium tetraphenylborate. A real-time steady-state photolysis setup is described, which hints that the photochemical reaction proceeds in two consecutive steps: 1) ITX triplet is photoreduced by the borate anion and 2) subsequent proton transfer takes place from the imidazolium cation to produce the expected NHC IMes. Two separate characterization protocols are implemented. Firstly, CS₂ is added to the reaction media to evidence the photogeneration of NHC through formation of the IMes-CS₂ adduct. Secondly, the amount of NHC released *in situ* is quantified using acid-base titration. The use of this NHC photogenerating system for the ROMP of norbornene is also discussed. In solution, a photopolymerization experiment is conducted by mixing ITX, IMesH*BPh₄-, [RuCl₂(p-cymene)]₂ and norbornene in CH₂Cl₂, then irradiating the solution in a UV reactor. In a dispersed medium, a monomer miniemulsion is first formed then irradiated inside an annular reactor to produce a stable poly(norbornene) latex.

INTRODUCTION:

In chemistry, N-heterocyclic carbenes (NHCs) species fulfill the twofold role of ligand and organocatalyst¹. In the former case, the introduction of NHCs has resulted in the design of metal transition catalysts with improved activity and stability². In the latter case, NHCs have proved to be superior catalysts for manifold organic reactions^{3,4}. Despite this versatility, handling bare NHCs is still a significant challenge⁵, and producing these highly reactive compounds so they are released in situ and "on demand" is a very attractive goal. Consequently, several strategies have been developed to release NHC in the reaction media which mostly rely on the use of thermolabile progenitors⁶⁻⁸. Surprisingly, while this could unleash a novel generation of photoinitiated reactions useful for macromolecular synthesis or preparative organic chemistry⁶, generation using light as stimulus has been scarcely explored. Recently, a first photo-generating system able to produce NHC has been unveiled9. It consists of 2 components: 2-isopropylthioxanthone (ITX) as photosensitive species and 1,3dimesitylimidazolium tetraphenylborate (IMesH+BPh4-) as the NHC protected form. Consequently, in the following paragraphs, we report a method to generate the N-heterocyclic carbene (NHC) 1,3-dimesitylimidazol-2-ylidene (IMes) under UV-irradiation at 365 nm, characterize it, and determine the photochemical mechanism. Then, we describe a protocol to perform ring-opening metathesis polymerization (ROMP) in solution and in miniemulsion using this NHC photogenerating system.

In the first portion, we report a synthesis protocol to produce IMesH⁺BPh₄⁻. This protocol is based on anion metathesis between the corresponding imidazolium chloride (IMesH⁺Cl⁻) and sodium tetraphenylborate (NaBPh₄). Then, to demonstrate the *in situ* formation of NHC, two protocols involving the irradiation at 365 nm of a IMesH⁺BPh₄⁻/ITX solution in a photoreactor are described. The first consists of monitoring the deprotonation of the imidazolium cation IMesH⁺ through ¹H NMR spectroscopy. Direct evidence for formation of the desired NHC (IMes) is provided in a second method, where the adduct IMes-CS₂ is successfully isolated, purified, and characterized.

The second section describes two protocols that shed light on the photochemical mechanism involving the NHC two-component photogenerating system IMesH⁺BPh₄-/ITX. Firstly, an original real-time steady state photolysis experiment reveals that electron transfer is induced by photo-excitation of ITX in the presence of tetraphenylborate. Electron donor properties of this borate anion¹⁰ drives a photoreduction of ³ITX* triplet excited-state into ITX⁶- radical

anion through a so-called photo-sensitized reaction. The formation of NHC confirms that ITX*-species may further abstract a proton from IMesH* to produce the desired NHC. Based on acid/base titration using phenol red pH indicator as titrant, a second original protocol is implemented that allows the determination of the yield of released NHC.

In the third section, we describe a protocol in which the above-mentioned photogenerated IMes can be exploited in photopolymerization. Of primary interest is ring-opening metathesis polymerization (ROMP), because this reaction is still at a preliminary stage of development with regard to photoinitiation^{11,12}. Initially limited to ill-defined and highly sensitive tungsten complexes, photoinduced ROMP (photoROMP) has been extended to more stable complexes based on W, Ru, and Os transition metals. Despite the variety of precatalysts, almost all photoROMP processes rely on the direct excitation of a single photoactive precatalyst¹³. By contrast, we use radiation to create the NHC imidazolidene ligand (IMes), which can react subsequently with a non-photoactive Ru precatalyst $[RuCl_2(p\text{-cymene})]_2$ dimer⁹. In this method, the photogeneration of NHC ligand drives the *in situ* formation of a highly active ruthenium-arene NHC complex known as $RuCl_2(p\text{-cymene})$ (IMes) (Noels' catalyst)^{14,15}. Using this indirect methodology, two distinct photoROMP experiments of norbornene (Nb) are performed: 1) in solution (dichloromethane) and 2) in aqueous dispersed system from a monomer miniemulsion¹⁶.

PROTOCOL:

1. NHC Photogenerating System: Synthesis and Reactivity

119 1.1. Synthesis of 1,3-dimesitylimidazolium tetraphenylborate (IMesH+BPh4-)

121 1.1.1. Preparation of the solution of 1,3-dimesitylimidazolium chloride (IMesH⁺Cl⁻) in ethanol.

124 1.1.1.1. Add 1.00 g (2.93 mmol) of 1,3-dimesitylimidazolium chloride to a 50 mL round bottom 125 flask equipped with a stir bar.

127 1.1.1.2. Dissolve the 1,3-dimesitylimidazolium chloride in 30 mL of ethanol.

129 1.1.2. Preparation of the solution of sodium tetraphenylborate (NaBPh₄) in ethanol.

131 1.1.2.1. Add 1.35 g (3.92 mmol) of sodium tetraphenylborate to a 50 mL round bottom flask equipped with a stir bar.

134 1.1.2.2. Dissolve the sodium tetraphenylborate in 30 mL of ethanol.

136 1.1.3. Generation of 1,3-dimesitylimidazolium tetraphenylborate (IMesH+BPh₄-)

138 1.1.3.1. Add (dropwise) the solution of sodium tetraphenylborate into the solution of 1,3-139 dimesitylimidazolium chloride under stirring.

141 1.1.3.2. Stir the reaction mixture for 10 min at room temperature.

142

143 1.1.3.3. Remove the stir bar and filter the white precipitate using a vacuum and fritted glass 144 filter of pore size 3.

145

146 1.1.3.4. Wash the precipitate with 30 mL of ethanol and filter it (fritted glass filter with pore 147 size 3). Wash the precipitate with 30 mL of deionized water and filter it (fritted glass filter 148 with pore size 3).

149

1.1.3.5. Dry the white precipitate at 60 °C for 15 h. Analyze the product by ¹H and ¹³C NMR in 150 DMSO-d₆ according to previously reported procedures⁹. 151

152

153 Photogeneration of NHC 1,3-dimesitylimidazol-2-ylidene, also known as IMes, by UV irradiation of the dimesitylimidazolium tetraphenylborate in the presence of 154 155 isopropylthioxanthone (ITX)

156

157 1.2.1. Add 39 mg (0.062 mmol, 2 equiv.) of 1,3-dimesitylimidazolium tetraphenylborate, 7.8 mg (0.031 mmol, 1 equiv.) of ITX, and 0.5 mL of deuterated THF (previously stored over 3 Å 158 159 molecular sieves) in an NMR tube.

160

1.2.2. Place the NMR tube inside the photochemical reactor equipped with a circular array 161 of 16 fluorescent tubes emitting a monochromatic radiation at 365 nm and irradiate for 10 162 163 <mark>min.</mark>

164

165 Monitoring of deprotonation of IMesH⁺BPh₄⁻ by ¹H NMR spectroscopy 1.3.

166 167

1.3.1. Analyze the deprotonation of IMesH⁺ into IMes by ¹H NMR. 168

169 NOTE: ¹H NMR spectra were recorded at 25 °C on a NMR spectrometer operating at 400 MHz. 170 TMS was used as internal standards for calibrating the chemical shifts in ¹H NMR.

171

1.3.1.1. Calibrate the integration parameters so that in the ¹H NMR spectra the CH₃ singlet 172 173 of 1,3-dimesitylimidazolium tetraphenylborate (δ = 2.0 ppm) corresponds to six.

174 175

176

177

1.3.1.2. Determine the integration value of the N-CH-N signal area (δ = 8.4-9.4 ppm) in order to evaluate the degree of IMesH+ deprotonation. The integration value should vary from 1 (when no deprotonation occurred, before irradiation) to 0 (when complete deprotonation of IMesH⁺ has been performed).

178 179

Formation, isolation, and characterization of the 1,3-dimesitylimidazoliumdithio-180 1.4. carboxylate adduct (IMes-CS₂) 181

182

183 1.4.1. Add 0.02 mL of carbon disulfide in the as-irradiated NMR tube. The reaction media changes in color from orange/brown to dark red, indicating the formation of the IMes-CS₂ 184 185 adduct.

186

187 1.4.2. Let it react for 12 h. A red precipitate forms assigned to the IMes-CS₂ adduct.

188

189 1.4.3. Filter the red precipitate (fritted glass filter with pore size 3) and dry it under air at room temperature for 12 h.

191

192 1.4.4. Solubilize the red solid in 0.5 mL of deuterated DMSO. Confirm the chemical structure by ¹H and ¹³C NMR spectroscopy.

194

195 CAUTION: Carbon disulfide is highly toxic and should be handled with care under a fume hood.

196

197 2. Photochemical Mechanism

198

199 2.1. Real-time photobleaching of IMesH+BPh₄-/ITX

200

2.1.1. Prepare a stock solution of ITX by adding 0.76 mg (3 x 10⁻³ mmol) of ITX to 15 mL of dry acetonitrile (previously stored over 3Å molecular sieves).

203

2.1.2. Transfer 3 mL of ITX solution into a UV quartz cell covered with a rubber stopper containing 1.10 mg of IMesH⁺BPh₄⁻ (1.8 x 10⁻³ mmol) and a stirring micromagnet. The molar ratio ITX:IMesH⁺BPh₄⁻ is 1:3.

207

2.1.3. Degas the solution by bubbling nitrogen for 10 min, then irradiate the solution at 365 nm with a medium-pressure Hg-Xe lamp under continuous stirring (63 mW cm⁻², power of 75 mW).

211

2.1.4. Monitor the change of UV-absorbance at 365 nm during irradiation by using a spectrometer after passing a transmitted actinide beam.

214

2.1.5. Apply the same procedure (steps 2.1.1-2.1.4) for other experiments but replace IMesH⁺BPh₄⁻ with other quenchers: IMesH⁺Cl⁻ (0.61 mg, 1.8 x 10⁻³ mmol) or NaBPh₄ (0.62 mg, 1.8 x 10⁻³ mmol).

218

2.12 2.2. Quantification of photogenerated NHC by spectrophotometric titration

220

221 2.2.1. Add 1.85 mg of dimesitylimidazolium tetraphenylborate (3 x 10⁻⁴ mmol, 3 equiv.) and 0.25 mg of ITX (10⁻⁴ mmol, 1 equiv.) to 10 mL of dry acetonitrile.

223

2.2.2. Transfer 2 mL of this freshly prepared solution into a conventional spectroscopic
 quartz cell capped with a rubber septum.

226

227 2.2.3. Purge the colorless mixture with nitrogen before exposing the cuvette to a 365 nm LED spotlight (power of 65 mW) for 1 min.

229

230 2.2.4. After each irradiation time, add gradually 0.1 mL portions of phenol red (PR) solution (2 x 10⁻⁴ M in dry acetonitrile) into the cuvette. This latter titrating solution was prepared in advance.

233

234 2.2.5. Record a UV-vis spectrum after each 0.1 mL addition of PR solution until reaching 1 mL.

Note: The indicator solution is initially transparent and contains the bis-protonated form H_2PR . After its addition, acid/base reaction with NHC causes the formation of the pink bivalent anion PR^{2-} with a maximum absorption at 580 nm. Plotting the absorbance at 580 nm as a function of the titrant volume gives two intersecting straight lines, indicative of the titration endpoint.

2.2.6 Repeat the same procedure (steps 2.2.1-2.2.5) with the same ITX/IMesH⁺BPh₄⁻ solution irradiated for longer times: 2 min, 5 min, and 10 min. For each time, a new must be prepared.

Note: At the equivalence point in the acid-base titration:

$$[IMes] \times V = 2[PR] \times V_{eq}$$
 (1)

Where [IMes] is the concentration of photogenerated IMes released in the UV cuvette, V is the initial volume of IMesH $^+$ BPh $_4$ $^-$ /ITX solution, [PR] is the concentration of PR, and V $_{eq}$ is the total volume of PR added into the UV cuvette at the titration end-point. Therefore, the yield of IMes released upon irradiation of IMesH $^+$ BPh $_4$ $^-$ /ITX solution is obtained from equation (2):

Yield (%) =
$$\frac{2*[PR] \times V_{eq}}{[IMesH^+BPh_A^-] \times V} \times 100$$
 (2)

Where $[IMesH^+BPh_4^-]$ is the initial concentration of $IMesH^+BPh_4^-$.

The validity of the method is checked by titrating a free IMes solution (1 x 10^{-4} M in acetonitrile) using a similar acetonitrile PR solution as a titrant (2 x 10^{-4} M).

3. Photoinduced Ring-Opening Metathesis Polymerization

3.1. PhotoROMP of Nb in solution

3.1.1. Add 1 g (11 mmol, 540 equiv.) of Nb, 120 mg (0.196 mmol, 10 equiv.) of 1,3-dimesitylimidazolium tetraphenylborate, 12 mg (19.6 mmol, 1 equiv.) of dichloro(paracymene)ruthenium dimer, and 25 mg (0.098 mmol, 5 equiv.) of ITX in a 20 mL test tube equipped with a stir bar.

3.1.2. Dissolve the solids in 10 mL of dichloromethane and cap the tube with a rubber septum.

3.1.3. Purge the mixture by bubbling nitrogen gas through a syringe needle for 15 min.

3.1.4. Place the tube inside the photochemical reactor equipped with a circular array of 16 fluorescent lamps (emitting at 365 nm) and irradiate for 10 min. The solution becomes viscous, indicating that high-molecular weight polyNb is formed.

3.1.5. Precipitate the polymer by pouring the solution into 300 mL of methanol.

- 3.1.6. Filter the polymer (fritted glass filter with pore size 3) and dry it at 60 °C for 8 h.
- 3.1.7. Analyze the polymer by ^{1}H NMR according to reported procedures 9 by dissolving about 10 mg of polymer in 0.5 mL of CD₂Cl₂.
- 3.1.8. Analyze the polymer by size exclusion chromatography according to reported procedures⁹, using THF as eluent and dissolving 10 mg of polymer in 1 mL of THF.
- 290 3.2. PhotoROMP of Nb in miniemulsion

283

286

289

291

296

299

301

305

311

315

318

320

323

325

328

- 292 3.2.1. Preparation of Nb miniemulsion.293
- 294 3.2.1.1. Dissolve 15.0 g of neutral surfactant polyoxyethylene (100) stearyl ether in 150 mL of
 295 milliQ water
- 297 3.2.1.2. Introduce the aqueous phase in the annular LED photoreactor closed with rubber septum and place the reactor under the airtight sonication probe.
- 300 3.2.1.3. Degas the solution by bubbling nitrogen during 1 h.
- 3.2.1.4. Mix 4.94 g of Nb (5.2 x 10⁻² mol; 510 equiv.; 25 w%), 2.85 mL of hexadecane (10 w%), and 6 mL of dichloroethane (32.5 w%) in a 50 mL round bottom flask closed with a rotaflo.

 Degas the solution with a freeze-pump-thaw cycle.
- 3.2.1.5. Add 6 mL of dichloroethane (32.5 w%) in a second 50 mL round-bottom flask closed with a rotaflo. Degas the solution by freeze-pump-thaw. Add 162 mg of 1,3-dimesitylimidazolium tetraphenylborate (2.6 x 10⁻⁴ mol, 5 equiv.), 33 mg of ITX (1.3 10⁻⁴ mol, 309 2.5 equiv.), and 30 mg of dichloro(p-cymene)ruthenium(II) dimer (4.9 x 10⁻⁵ mol, 1 equiv.) under inert atmosphere (glovebox) to the flask.
- 3.2.1.6. Mix the two organic solutions containing the monomer and the catalytic mixture under a nitrogen flux, and introduce 15 g of the final organic solution inside the photoreactor, containing the aqueous phase under stirring.
- 316 3.2.1.7. Stir the two phases during 1 h to form a rough macroemulsion. Sonicate during 10 min (power 50%; pulse on-time: 5 s, off-time: 5 s) to form the miniemulsion.
- 3.2.2. Photopolymerization of NB miniemulsion.
- 321 3.2.2.1. Replace the airtight sonication probe by the LED lamp equipped with a water cooling system and protected by a cladding tube under a nitrogen flux.
- 3.2.2.2. Place the closed reactor inside the photocabinet to prevent exposure to UV radiation.
- 3.2.2.3. Irradiate the monomer miniemulsion for 100 min to obtain polymer latex. During irradiation, particle size and monomer conversion can be determined as explained below.

329 3.2.3. Determination of particle size, conversion and molecular weight.

331 3.2.3.1. Collect 4 mL of miniemulsion sample during irradiation process.

3.2.3.2. Add 20 µL of miniemulsion in a glass cuvette containing 5 mL water to prepare a 250x diluted sample for particle size analysis by dynamic light scattering (DLS).

3.2.3.3. Dissolve 100 μ L of miniemulsion in 500 μ L of THF to measure the Nb conversion by gas chromatography (GC), with hexadecane as internal standard (GC retention times: t^{GC}_{Nb} = 1.77 min; $t^{GC}_{dodecane}$ = 13.25 min).

3.2.3.4. Precipitate the rest of the sample in 20 mL of acetone. Filter the polymer. Dry the polymer under a vacuum and measure the molecular weight by size exclusion chromatography (SEC) [SEC in tetrahydrofuran (THF) (1 mL min⁻¹) with trichlorobenzene as the flow marker, using both refractometric and UV detectors].

CAUTION (Part 1-3): Possibly hazardous sources of light emitting in the UV and visible range are used in the described experiments. These lamps can present a reasonably foreseeable risk of harming the eyes and skin of lab members. Consequently, all measures possible should be put in place by the experimenter to reduce the risks to as low as is reasonably practicable. A list of common measures includes the isolation of the light source inside a protective casing (photocabinet, for example), training of all workers, placing the hazardous sources of light in well-designated laboratories or fume hoods with restricted access, providing suitable safety gears (safety goggles blocking UVA irradiation are sufficient for all described protocols), and displaying appropriate warning and safety signs.

REPRESENTATIVE RESULTS:

Step 1.1 describes the efficient anion metathesis between 1,3-dimesitylimidazolium chloride (IMesH⁺Cl⁻) and sodium tetraphenylborate (NaBPh₄) to yield 1,3-dimesitylimidazolium tetraphenylborate (IMesH⁺BPh₄⁻). The desired photolatent NHC is obtained in excellent yield (98%). **Figure 1** shows ¹H and ¹³C NMR spectra, both testifying that a pure product exhibiting the correct structure is obtained.

Step 1.2 describes how to generate the N-HC IMes by irradiating the mixture IMesH $^+$ BPh $_4$ $^-$ /ITX (2/1 equiv.) in THF-d $_8$ solution.

Step 1.3 shows that it is possible to assess the conversion of IMesH⁺ in IMes by monitoring the deprotonation of IMesH⁺BPh₄⁻ through ¹H NMR spectroscopy. **Figure 2** shows that proton H_a (8.63 ppm, **Figure 2a**) on carbon 2 adjacent to the two nitrogen atoms disappears partially after 10 min irradiation (53%, **Figure 2b**). The reaction was performed by irradiating the mixture IMesH⁺BPh₄⁻/ITX (2/1 equiv.) in THF-d₈ solution.

Step 1.4 shows that it is possible to isolate the formed NHC by reacting the as-irradiated medium (see protocol 1.2) with CS_2 . The red precipitate formed in THF- d_8 is collected, dried, and dissolved in DMSO- d_6 . As can be seen in the ^{13}C NMR spectrum (**Figure 2c**), all the characteristic resonances are consistent with IMes- CS_2 adduct. This result indirectly confirms the *in situ* generation of the targeted IMes NHC.

Step 2.1: Thioxanthone derivatives make up a well-established class of photoinitiators generally employed in combination with a second component referred to as "co-initiators". Their absorption spectra appear with a maximum in the range of 340-420 nm. The nature of the co-initiator determines the mechanism of initiation. Three general initiation mechanisms have been described: 1) triplet-triplet energy transfer (in this case, from 3 ITX* to 3 BPh₄-*); 2) electron transfer from the electron donor BPh₄- to 3 ITX*; and 3) direct H abstraction of IMesH+ by 3 ITX*. Mechanism 1 can be discarded since the triplet energy order E_T(BPh₄-) > E_T(ITX) is established by conventional computational procedure.

Step 2.1 provides evidence as to whether mechanism 2 or 3 is operating. **Figure 3** shows the evolution of absorbance values of characteristic ITX absorption band at 365 nm during irradiation for three different bicomponent mixtures: IMesH+BPh4-/ITX, IMesH+Cl-/ITX, and NaBPh4/ITX. The absence of decay for IMesH+Cl- supports the incapacity for electronically excited ITX to abstract a hydrogen from the imidazolium cation (mechanism 3). In contrast, photobleaching of ITX is visible in the two systems containing the BPh4- anions; although, the decay rates are different in these two cases. This result emphasizes the critical role played by the tetraphenylborate anion. Consequently, the photoreduction of ITX by tetraphenylborate (mechanism 2) is proven to be the primary step in the formation of the NHC. **Figure 4** displays a hypothetical and complete mechanism in which the ITX⁶⁻ radical anion may abstract a proton from IMesH+ to release the free NHC IMes.

Step 2.2 shows evidence in favor of this mechanism. This method reveals the progressive release of NHC during irradiation. It is a method to determine the amount of released NHC based on acid/base titration using phenol red (PR) pH indicator as titrant. A maximum yield of 50% is achieved after 5 min of irradiation (**Figure 5**), and a control experiment with free IMes enables validation of the method.

Step 3.1 describes photoROMP of NB (540 equiv.) in dichloromethane using a photolatent mixture composed of IMesH⁺BPh₄⁻/ITX (10/5 equiv.) (to produce NHC IMes) and the well-known inactive [RuCl₂(p-cymene)]₂ dimer (1 equiv.). It is recognized that the simple reaction of Ru precatalyst with the imidazolidene ligand IMes is a means to generate *in situ* the highly active ruthenium-arene complex RuCl₂(p-cymene)(NHC), also known as Noels' catalyst. Irradiation is performed in a conventional photochemical reactor (λ_{max} = 365 nm) at room temperature. Complete conversion is achieved after only 10 min of irradiation as measured by ¹H NMR spectroscopy (**Figure 6**), suggesting successful formation of the highly active ruthenium-arene complex bearing an NHC ligand. In addition, polyNb [with a number-average molecular weight of 288 kDa and relatively narrow dispersity values (D = 1.5)] is obtained as determined by size exclusion chromatography.

Step 3.2 describes a miniemulsion photoROMP procedure. High conversions (70-80%) are achieved (**Figure 7**). As can be seen in **Figure 8**, the initial droplet size measured by DLS is 92 nm. The final particles exhibit a size of 102 nm (0.140) close to the initial droplet size. TEM observations show perfectly spherical particles with sizes in agreement with DLS data.

FIGURE LEGENDS:

Figure 1: NMR characterization of IMesH⁺BPh₄⁻. (a) ¹H NMR spectrum in DMSO-d₆ (400 MHz)

of 1,3-dimesitylimidazolium tetraphenylborate (IMesH⁺BPh₄⁻), δ_{ppm} : 2.13 (s, 12H), 2.36 (s. 6H), 6.69 (t, 4H), 7.17 (m, 20H), 8.27 (s, 2H), 9.64 (s, 1H,); (b) ¹³C NMR spectrum of the same compound in DMSO- d_6 (100 MHz), δ_{ppm} : 16.58, 20.23, 121.35, 124.49, 125.02, 129.24, 130.29, 134.00, 135.35, 138.19, 140.06, 162.58. T_m = 212 °C (DSC). This figure has been modified from a previous publication⁹.

Figure 2: NMR monitoring of IMesH⁺BPh₄⁻ deprotonation and subsequent synthesis of IMes-CS₂. ¹H NMR spectra of IMesH⁺BPh₄⁻/ITX (2/1 equiv.) mixture in THF- d_8 (a) before UV exposure and (b) after 10 min irradiation at 365 nm (0.12 mW cm⁻²) in a photochemical reactor; shown are (c) ¹³C NMR spectra in DMSO- d_6 of the precipitate recovered after addition of CS₂. This figure has been modified from a previous publication⁹.

Figure 3: Evidence for photolysis mechanism. Real-time photobleaching experiments in acetonitrile (irradiation: 365 nm, 63 mW cm⁻²): ITX, and ITX with three different quenchers: IMesH $^+$ Cl $^-$, NaBPh $_4$, and IMesH $^+$ BPh $_4$ $^-$. ITX: quencher molar ratio is 1:3. ([ITX] = 2.0 x 10⁻⁴ M).

Figure 4: Photomechanism pathway to IMes. Photolysis mechanism of the IMesH⁺BPh₄⁻/ITX tandem system.

Figure 5: Quantification of IMes amount released. (a) Change of UV-Vis spectra of an acetonitrile solution of IMesH $^+$ BPh $_4$ $^-$ (3.0 x 10 $^{-4}$ M) and ITX (1 x 10 $^{-4}$ M) irradiated for 2 min (LED, 365 nm, 65 mW cm $^{-2}$) upon gradual addition of PR (2 x 10 $^{-4}$ M); (b) titration plot showing the absorbance at 580 nm for the same solution irradiated at 1, 2, or 5 min as a function of PR (titrant) volume. The insert gives the yield of photogenerated NHCs deduced from the spectrophotometric titration curve. This figure has been modified from a previous publication 9 .

Figure 6: PhotoROMP in solution. ¹H NMR spectrum in CD₂Cl₂ (400 MHz) of the photopolymerization reaction medium (a) before irradiation and (b) after 10 min irradiation at 365 nm.

Figure 7: Evolution of photoROMP in miniemulsion with time. Nb conversion as a function of irradiation time in miniemulsion photoROMP.

Figure 8: Characterization of polyNb particles. Shown are DLS data (top) of Nb miniemulsion and polyNb latex obtained after photopolymerization. TEM micrograph of final latex.

DISCUSSION:

Reported here is an easy and versatile protocol for the in-situ generation of NHC upon UV-irradiation at 365 nm. The anion exchange reaction between 1,3-dimesitylimidazolium chloride and sodium tetraphenylborate provides straightforward access to the NHC protected from IMesH⁺BPh₄⁻ in quantitative yield. Nevertheless, if using another starting imidazolium salt, the solvent employed to perform the metathesis reaction should be chosen with care so that it allows the solubilization of both starting salts (imidazolium salts and sodium tetraphenylborate) and the precipitation of the imidazolium tetraphenylborate product. As such, ethanol is often the most appropriate solvent to perform this reaction.

The photogeneration of the NHC IMes by irradiation at 365 nm of the 2 components system 470 471 IMesH⁺BPh₄-/ITX can produce NHC yields up to 50%, but lower yields can be obtained 472 depending on the experimental conditions employed. In particular, the use of solvents 473 containing water or protic species favors secondary reactions such as the deprotonation of 474 these protic species by BPh₄⁻ and/or the reprotonation of IMes, decreasing the overall yield 475 of released IMes. Indeed, NHC are known to be sensitive to water and other impurity traces, 476 so it is recommended to use dried solvents when attempting to photogenerate the NHC IMes. 477 Despite their water/protic sensitivity, NHCs are much more reactive towards metallic 478 substrates such as [RuCl₂(p-cymene)]₂, which allows for the ROMP of Nb to be performed in 479 miniemulsion. It has been noticed that the presence of dioxygen can also alter the course of 480 the reaction. Indeed, dioxygen is known to react with ITX triplet, preventing the release of 481 IMes. Because an electron transfer is involved during the generation of NHC, the reaction is 482 also assumed to be highly dependent on solvent polarity. Finally, when attempting to 483 photogenerate IMes from ITX/IMesH⁺BPH₄⁻ in a reaction media, the latter should be chosen 484 to provide good solubilization of the IMesH⁺BPh₄⁻ salt and no absorption of UV light up to 350 485 nm.

As opposed to other methods that rely on temperature, dilution, or pH changes to generate *in situ* NHC, this approach involves radiation as the external stimulus, with a distinctive advantage being spatial/temporal control of the reaction. Thanks to manifold polymerization reactions catalyzed/initiated by NHC, we envision that a photolatent NHC can foster new photopolymerization reactions such as photoROMP as detailed in this study. In addition, because NHCs are well-established stabilizing ligands, we believe that the photochemical preparation of organometallic complexes may benefit from this photogenerating NHC system. Finally, because NHCs are employed as reactants or catalysts in many organic chemistry reactions, their photogeneration should be of interest to chemists who wish to involve NHCs in cascade reactions at specific times.

498 **ACKNOWLEDGMENTS**:

486 487

488

489

490

491

492

493

494

495

496

497

499

500

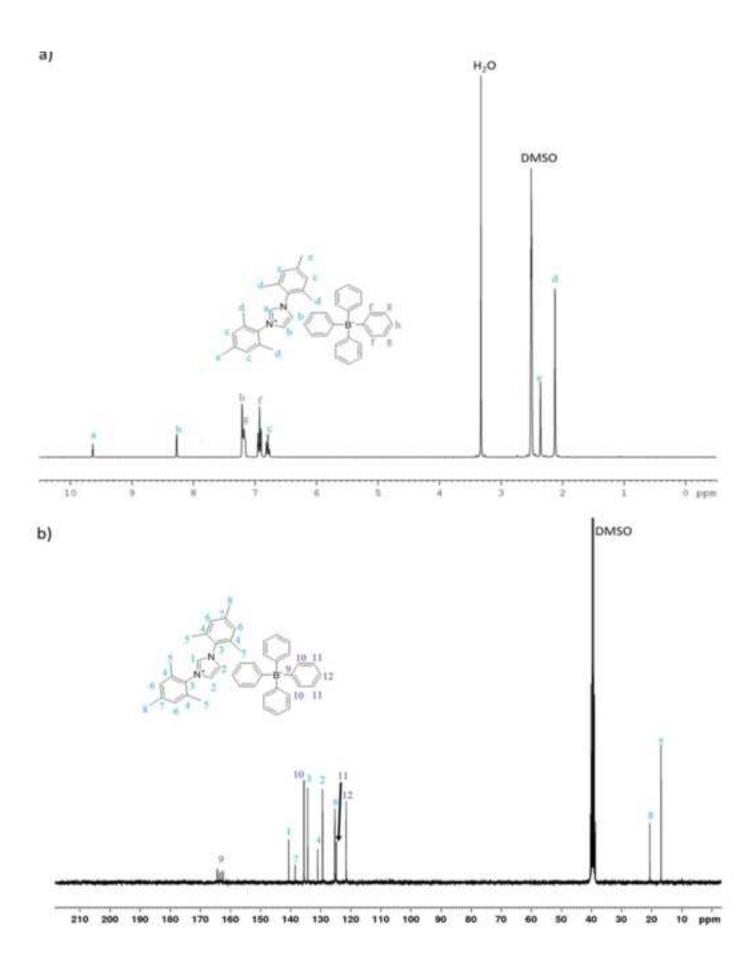
501

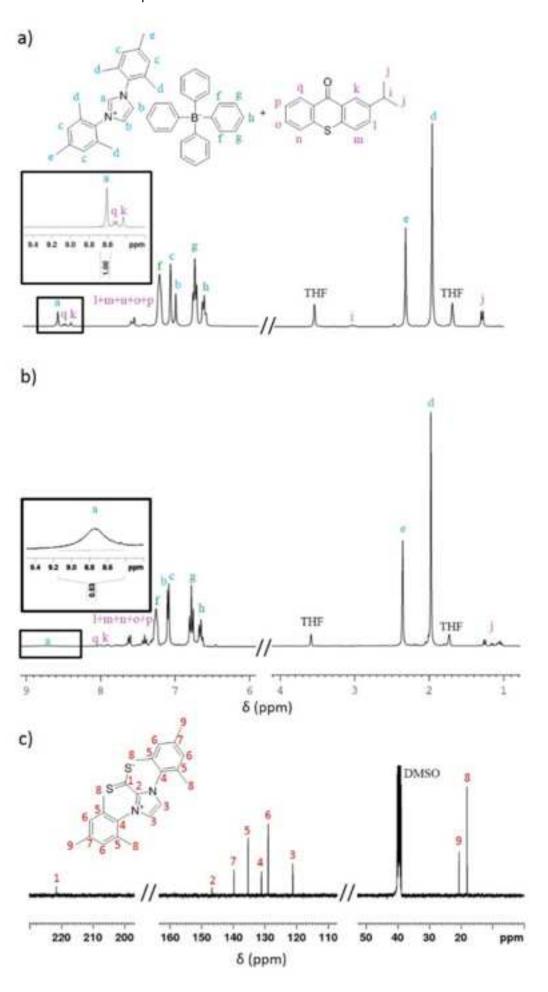
502503

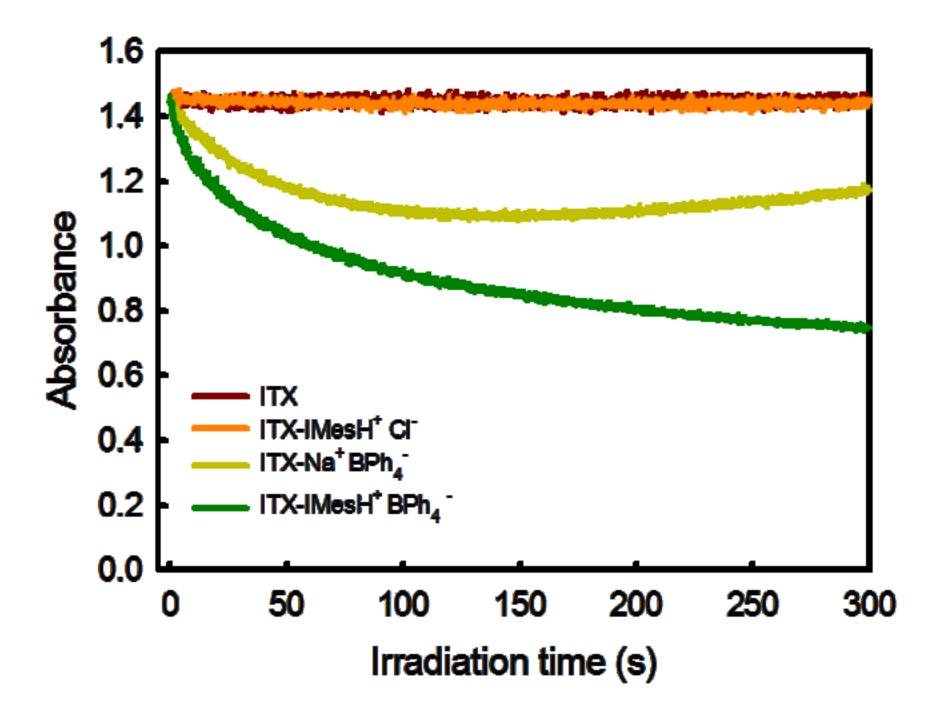
504

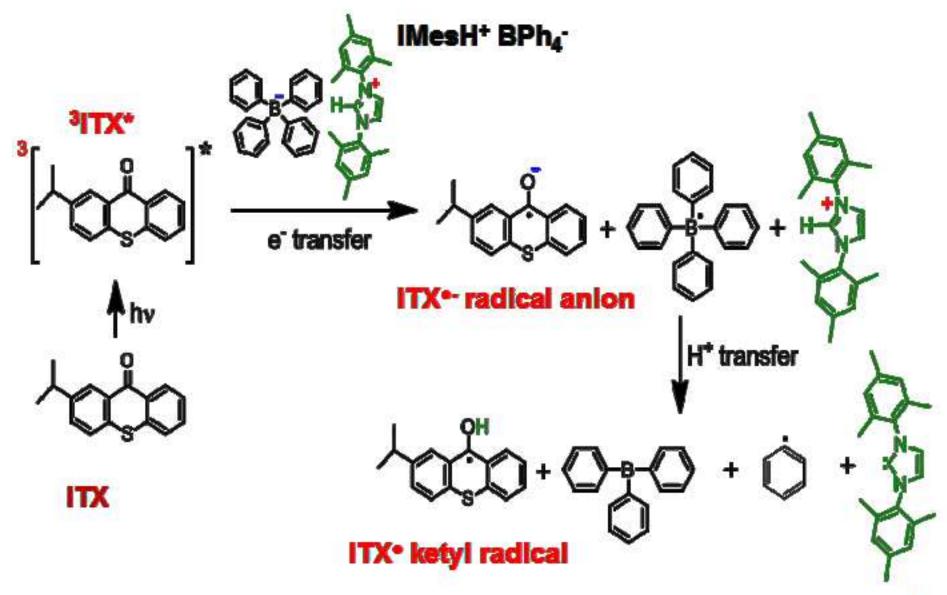
505 506 Financial support by the French National Research Agency (ANR program: DS0304 2016, contract number: ANR-16-CE07-0016) and the French Ministry of Research (doctoral grant of Emeline Placet) are gratefully acknowledged.

DISCLOSURES:

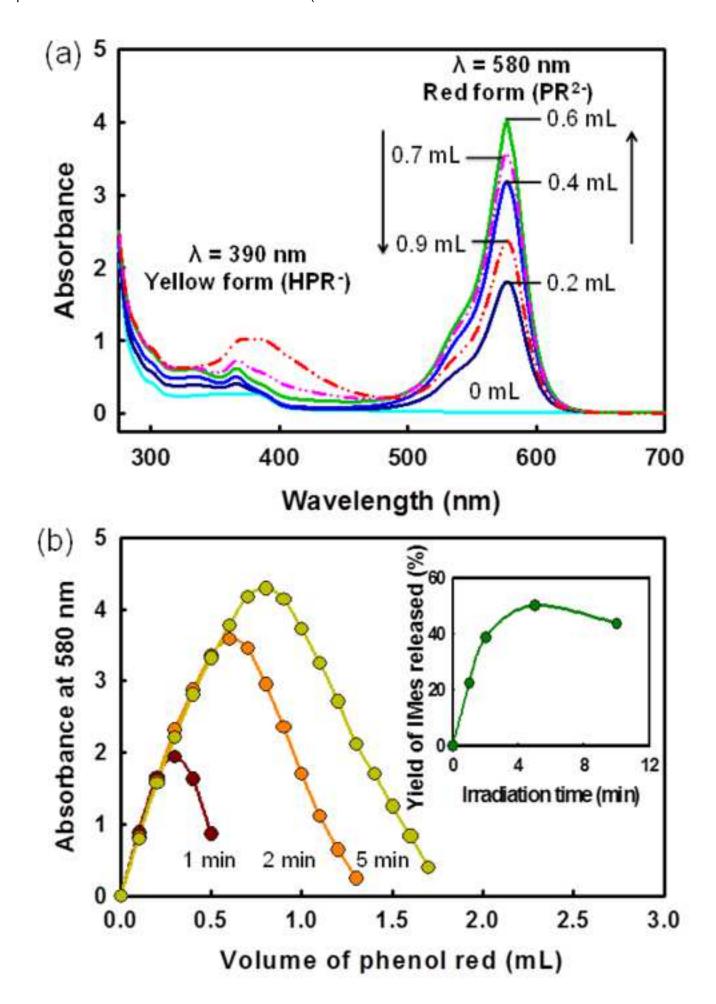

The authors have nothing to disclose.

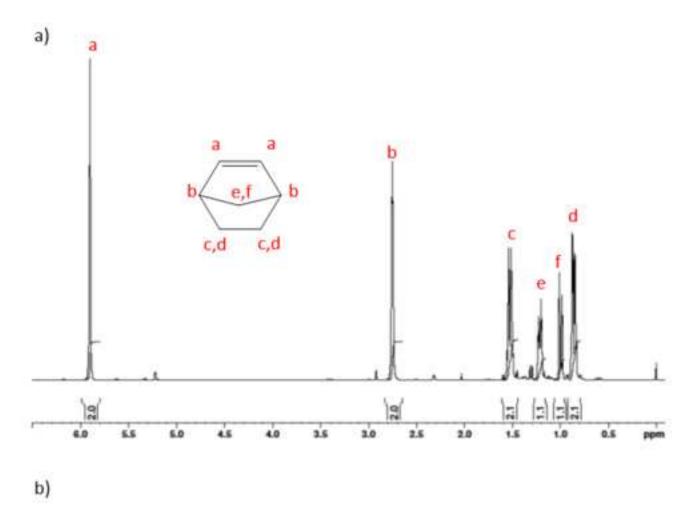

REFERENCES:

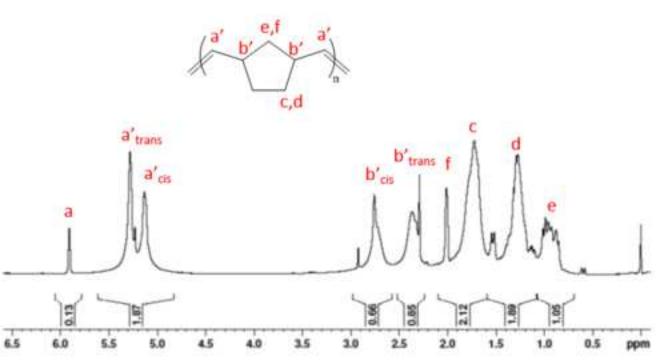

- 1. N-Heterocyclic carbenes: from laboratory curiosities to efficient synthetic tools. *Royal Society of Chemistry*. Cambridge. (2017).
- 509 2. Díez-González, S., Marion, N., Nolan, S.P. N-Heterocyclic Carbenes in Late Transition Metal Catalysis. *Chemical Reviews*. **109** (8), 3612–3676 (2009).
- 3. Fevre, M., Pinaud, J., Gnanou, Y., Vignolle, J., Taton, D. N-Heterocyclic carbenes (NHCs) as
- organocatalysts and structural components in metal-free polymer synthesis. *Chemical Society*
- 513 *Review.* **42** (5), 2142–2172 (2013).
- 4. Naumann, S., Dove, A.P. N-Heterocyclic carbenes as organocatalysts for polymerizations:
- trends and frontiers. *Polymer Chemistry*. **6** (17), 3185–3200 (2015).
- 516 5. Naumann, S., Buchmeiser, M.R. Liberation of N-heterocyclic carbenes (NHCs) from

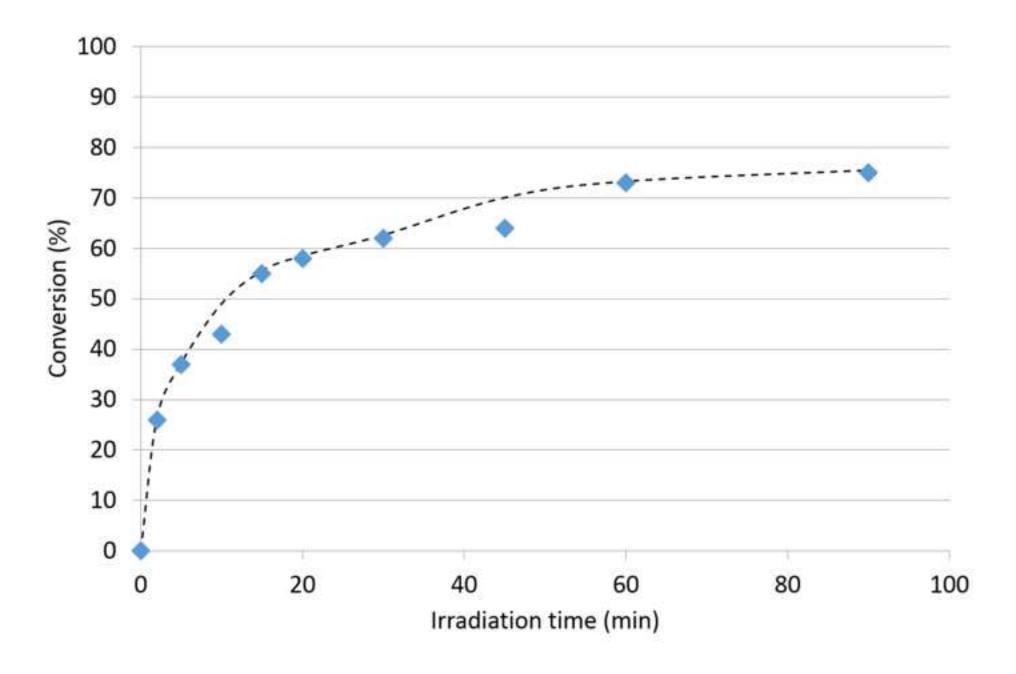

- 517 thermally labile progenitors: protected NHCs as versatile tools in organo- and polymerization
- 518 catalysis. *Catalysis Science Technology*. **4** (8), 2466–2479 (2014).
- 519 6. Naumann, S., Buchmeiser, M.R. Latent and Delayed Action Polymerization Systems.
- 520 *Macromolecular Rapid Communication.* **35** (7), 682–701 (2014).
- 521 7. Neilson, B.M., Bielawski, C.W. Photoswitchable NHC-promoted ring-opening
- 522 polymerizations. *Chemical Communication*. **49** (48), 5453–5455 (2013).
- 8. Teator, A.J., Tian, Y., Chen, M., Lee, J.K., Bielawski, C.W. An Isolable, Photoswitchable N-
- 524 Heterocyclic Carbene: On-Demand Reversible Ammonia Activation. *Angewandt Chemie*
- 525 International Edition. **54** (39), 11559–11563 (2015).
- 9. Pinaud, J., et al. In Situ Generated Ruthenium-Arene Catalyst for Photoactivated Ring-
- 527 Opening Metathesis Polymerization through Photolatent N-Heterocyclic Carbene Ligand.
- 528 *Chemistry A European Journal.* **24** (2), 337–341, doi: 10.1002/chem.201705145 (2018).
- 529 10. Konishi, T., Sasaki, Y., Fujitsuka, M., Toba, Y., Moriyama, H., Ito, O. Persistent C60
- anion-radical formation via photoinduced electron transfer from tetraphenylborate and
- 531 triphenylbutylborate. *Journal of the Chemical Society, Perkin Transactions 2*. (3), 551–556
- 532 (1999).
- 533 11. Ogawa, K.A., Goetz, A.E., Boydston, A.J. Developments in Externally Regulated Ring-
- Opening Metathesis Polymerization. Synletter. 27 (2), 203–214 (2016).
- 535 12. Eivgia, O., Lemcoff, N.G. Turning the Light On: Recent Developments in Photoinduced
- 536 Olefin Metathesis. *Synthesis*. **50** (1), 49-63 (2018).
- 537 13. Monsaert, S., Vila, A.L., Drozdzak, R., Van Der Voort, P., Verpoort, F. Latent olefin
- metathesis catalysts. Chemical Society Review. 38 (12), 3360–3372 (2009).
- 539 14. Delaude, L., Demonceau, A., Noels, A.F. Synthesis and Application of New N-
- 540 Heterocyclic Carbene Ruthenium Complexes in Catalysis: A Case Study. *Current Organic*
- 541 *Chemistry.* **10** (2), 203–215 (2006).
- 542 15. Delaude, L., Demonceau, A. Retracing the evolution of monometallic ruthenium-arene
- catalysts for C-C bond formation. *Dalton Transaction*. **41** (31), 9257–9268 (2012).
- 544 16. Asua, J.M. Miniemulsion polymerization. Progress in Polymer Science. 27 (7), 1283-
- 545 1346 (2002).

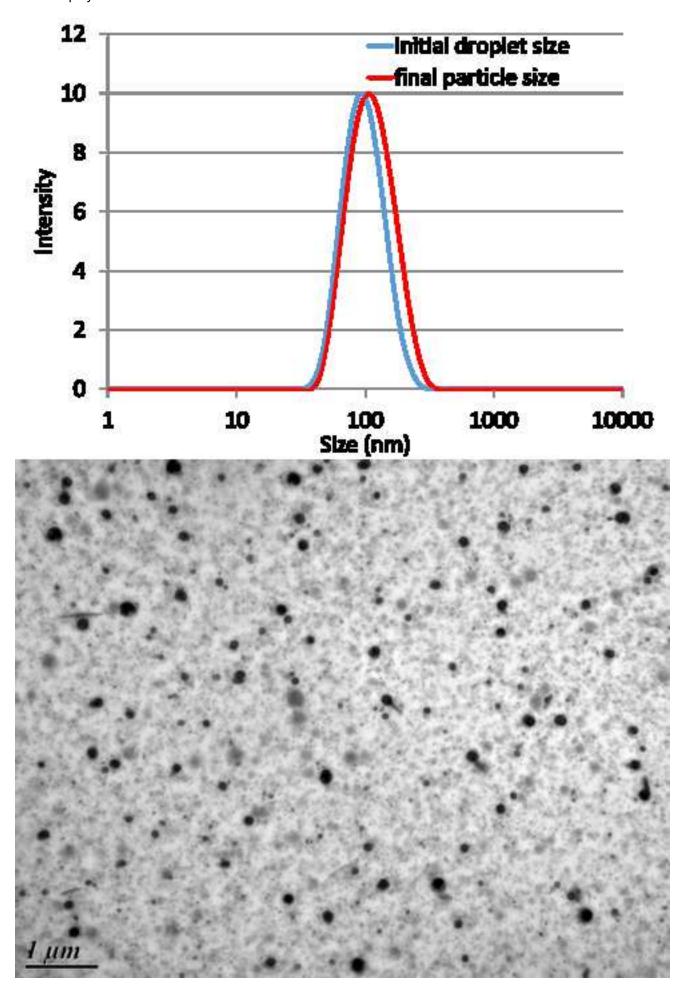
546










Free IMes

Name of Material/ Equipment	Company	Catalog Number Comments/Description
Material		
Dimesitylimidazolium chloride, 97%	ABCR	AB130859
Sodium tetraphenylborate, 99%	ABCR	AB118843
Dichloro(p-cymene) ruthenium dimer, 98%	ABCR	AB113524
Norbornene, 99%	ABCR	AB171849
Isopropythioxanthone, 97%	Sigma Aldrich	406317
Carbon disulfide, 99.9%	Sigma Aldrich	335266
Dichloromethane	Sigma Aldrich	270997
Ethanol	VWR	20821.31
Deuterated DMSO	Eurisotop	D010FE
Deuterated THF	Eurisotop	D149CB
1,2-Dichloroethane	Sigma Aldrich	284505
Brij S 100	Sigma Aldrich	466387
Hexadecane	Sigma Aldrich	H6703
Phenol red, 98%	Sigma Aldrich	P4633
Acetonitrile	VWR	83639.290
1,3-Bis(mesityl)imidazol-2-ylidene, 97%	Sigma Aldrich	696188
Equipment		
Rayonet photochemical reactor	Southern New England Ultraviolet Company	RPR-200
UV lamps for photochemical reactor	Southern New England Ultraviolet Company	RPR-3500A
¹ H and ¹³ C NMR spectrometer	Bruker	Avance III HD spectrometer
Sonication probe	BioBlock	Vibra-cell
Gas chromatography	Varian	GC3900
		novaLIGHT
LED Lamp and Photo-cabinet	Peschl ultraviolet	TLED100-365
Dynamic Light Scattering	Malvern	zetasizer Nano ZS

365 nm UV-LED light source coupled with a

flexible light-guide Hamamastu LC-L1V3
UV/vis spectrometer Perkin Elmer Lambda 35
Hg- Xe lamp with filter centred at 365 nm Hamamastu LC-9588/01A
Radiometer Ocean Optics USB4000

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Photogeneration of N-Heterocyclic Corbennes: Application in
Author(s):	Photogeneration of N-Heterocyclic Corbenes: Application in Photogeneration of N-Heterocyclic Corbenes: Application in Photogeneration of N-Heterocyclic Corbenes: Application in Sulien Pinaud, Emeline Placet, Potrick Lacroise-Desmoses, Thi Kim Hoong Trink, Jeon Pierre Molval, Abraham chemtot, Loic Pichonget, Volerie Herogen
	Author elects to have the Materials be made available (as described at e.com/publish) via:
Standard	d Access Open Access
Item 2: Please se	elect one of the following items:
The Auth	nor is NOT a United States government employee.
	hor is a United States government employee and the Materials were prepared in the f his or her duties as a United States government employee.
	nor is a United States government employee but the Materials were NOT prepared in the f his or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-

nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement. dramatization, fictionalization, motion picture version, sound recording, art reproduction, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion

of the Article, and in which the Author may or may not appear.

- 2. **Background.** The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and(c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. **Retention of Rights in Article.** Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. **Protection of the Work.** The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. **Likeness, Privacy, Personality.** The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

ARTICLE AND VIDEO LICENSE AGREEMENT

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify 12. JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to

the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 13. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 14. **Transfer, Governing Law.** This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDING AUTHOR

Name:	Julien PINAUD	=	
Department:	ICGM UMRS263		
Institution:	Université de Montpellier		
Title:	Associati-professor.		5
Signature:		Date:	29/05/2018

Please submit a signed and dated copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

Answer to Editorial comments

Please find below answers to editorial comments. Our answers are highlighted in yellow for better reading.

EDITORIAL COMMENTS:

The manuscript has been modified and the updated manuscript, **58539_R1.docx**, is attached and located in your Editorial Manager account. **Please use the updated version to make your revisions.**

1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues.

The manuscript has been thoroughly proofread and some mistakes that were present in the text have been corrected. The corrections can be tracked in the highlighted (green) version of the manuscript.

2. For in-text referencing, please place the reference number before a period or comma.

As requested, all reference numbers inside the text have been placed before a period or a coma.

3. Please make Scheme 1 as a figure and renumber all figure in the order of their appearances in the manuscript.

Scheme 1 has been replaced as a figure and corresponds to Figure 4. Accordingly, all figures appearing after Figure 4 in the manuscript have seen their number implemented by 1.

4. Please do not highlight a step without highlighting any of the sub-steps.

This has been taken into account and all sub-steps that need to be highlighted have been highlighted.

5. Please highlight complete sentences (not parts of sentences) for filming.

Full sentences are now highlighted.

6. Step1.1.3.2: At room temperature?

Yes, this detail has been added to the text.

7. 1.1.3.3: How to filter the white precipitate? Regular filter or vacuum filter?

Vacuum and fritted glass filter of pore size 3 are employed. This detail has been added to the text.

8. Line 351-357: Please do not use lists.

The list items have been removed and replaced by a complete sentence.

9. For each figure, please provide a title and a short description in the Figure Legends.

A title has been added to each Figure legend.

10. The highlighted protocol steps are over the 2.75 page limit.

Some protocol steps have been removed in order to respect the 2.75 page limit. Only the most visual and important protocols have been kept.

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS

May 31, 2018

This Agreement between Dr. Julien Pinaud ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center.

4359230721045 License Number

License date May 31, 2018

Licensed Content Publisher John Wiley and Sons

Licensed Content Publication Chemistry - A European Journal

Licensed Content Title In Situ Generated Ruthenium-Arene Catalyst for Photoactivated

Ring-Opening Metathesis Polymerization through Photolatent

N-Heterocyclic Carbene Ligand

Licensed Content Author Julien Pinaud, Thi Kim Hoang Trinh, David Sauvanier, et al

Licensed Content Date Dec 12, 2017

Licensed Content Volume 24 Licensed Content Issue 2 **Licensed Content Pages**

Type of use Journal/Magazine

Requestor type Author of this Wiley article

Is the reuse sponsored by or no

associated with a

pharmaceutical or medical

products company?

Format Print and electronic

Portion Figure/table

Number of figures/tables 2

Original Wiley figure/table

number(s)

Figure 2, Figure S6

Will you be translating? No Circulation 100

Title of new article Photogeneration of N-Heterocyclic Carbenes: Application in

Photoinduced Ring-Opening Metathesis Polymerization

Publication the new article is JoVE Video Journal

Publisher of new article **JoVE**

Author of new article Julien Pinaud, Emeline Placet, Patrick Lacroix-Desmazes, Thi Kim

Hoang Trinh, Jean Pierre Malval, Abraham Chemtob, Loïc Pichavant,

Expected publication date of Nov 2019

new article

31/05/2018 à 09:53 1 sur 6

Estimated size of new article 16 (pages)

Requestor Location Dr. Julien Pinaud

ICGM UMR 5253- Université de Montpellier

Place Eugène Bataillon

Bat 17 - 3ème étage -CC1702

Montpellier, 34095

France

Attn: Dr. Julien Pinaud

Publisher Tax ID EU826007151
Total 0.00 EUR

Terms and Conditions

TERMS AND CONDITIONS

This copyrighted material is owned by or exclusively licensed to John Wiley & Sons, Inc. or one of its group companies (each a"Wiley Company") or handled on behalf of a society with which a Wiley Company has exclusive publishing rights in relation to a particular work (collectively "WILEY"). By clicking "accept" in connection with completing this licensing transaction, you agree that the following terms and conditions apply to this transaction (along with the billing and payment terms and conditions established by the Copyright Clearance Center Inc., ("CCC's Billing and Payment terms and conditions"), at the time that you opened your RightsLink account (these are available at any time at http://myaccount.copyright.com).

Terms and Conditions

- The materials you have requested permission to reproduce or reuse (the "Wiley Materials") are protected by copyright.
- You are hereby granted a personal, non-exclusive, non-sub licensable (on a standalone basis), non-transferable, worldwide, limited license to reproduce the Wiley Materials for the purpose specified in the licensing process. This license, and any CONTENT (PDF or image file) purchased as part of your order, is for a one-time use only and limited to any maximum distribution number specified in the license. The first instance of republication or reuse granted by this license must be completed within two years of the date of the grant of this license (although copies prepared before the end date may be distributed thereafter). The Wiley Materials shall not be used in any other manner or for any other purpose, beyond what is granted in the license. Permission is granted subject to an appropriate acknowledgement given to the author, title of the material/book/journal and the publisher. You shall also duplicate the copyright notice that appears in the Wiley publication in your use of the Wiley Material. Permission is also granted on the understanding that nowhere in the text is a previously published source acknowledged for all or part of this Wiley Material. Any third party content is expressly excluded from this permission.
- With respect to the Wiley Materials, all rights are reserved. Except as expressly
 granted by the terms of the license, no part of the Wiley Materials may be copied,
 modified, adapted (except for minor reformatting required by the new Publication),
 translated, reproduced, transferred or distributed, in any form or by any means, and no

derivative works may be made based on the Wiley Materials without the prior permission of the respective copyright owner. For STM Signatory Publishers clearing permission under the terms of the STM Permissions Guidelines only, the terms of the license are extended to include subsequent editions and for editions in other languages, provided such editions are for the work as a whole in situ and does not involve the separate exploitation of the permitted figures or extracts, You may not alter, remove or suppress in any manner any copyright, trademark or other notices displayed by the Wiley Materials. You may not license, rent, sell, loan, lease, pledge, offer as security, transfer or assign the Wiley Materials on a stand-alone basis, or any of the rights granted to you hereunder to any other person.

- The Wiley Materials and all of the intellectual property rights therein shall at all times remain the exclusive property of John Wiley & Sons Inc, the Wiley Companies, or their respective licensors, and your interest therein is only that of having possession of and the right to reproduce the Wiley Materials pursuant to Section 2 herein during the continuance of this Agreement. You agree that you own no right, title or interest in or to the Wiley Materials or any of the intellectual property rights therein. You shall have no rights hereunder other than the license as provided for above in Section 2. No right, license or interest to any trademark, trade name, service mark or other branding ("Marks") of WILEY or its licensors is granted hereunder, and you agree that you shall not assert any such right, license or interest with respect thereto
- NEITHER WILEY NOR ITS LICENSORS MAKES ANY WARRANTY OR REPRESENTATION OF ANY KIND TO YOU OR ANY THIRD PARTY, EXPRESS, IMPLIED OR STATUTORY, WITH RESPECT TO THE MATERIALS OR THE ACCURACY OF ANY INFORMATION CONTAINED IN THE MATERIALS, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTY OF MERCHANTABILITY, ACCURACY, SATISFACTORY QUALITY, FITNESS FOR A PARTICULAR PURPOSE, USABILITY, INTEGRATION OR NON-INFRINGEMENT AND ALL SUCH WARRANTIES ARE HEREBY EXCLUDED BY WILEY AND ITS LICENSORS AND WAIVED BY YOU.
- WILEY shall have the right to terminate this Agreement immediately upon breach of this Agreement by you.
- You shall indemnify, defend and hold harmless WILEY, its Licensors and their respective directors, officers, agents and employees, from and against any actual or threatened claims, demands, causes of action or proceedings arising from any breach of this Agreement by you.
- IN NO EVENT SHALL WILEY OR ITS LICENSORS BE LIABLE TO YOU OR ANY OTHER PARTY OR ANY OTHER PERSON OR ENTITY FOR ANY SPECIAL, CONSEQUENTIAL, INCIDENTAL, INDIRECT, EXEMPLARY OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING OUT OF OR IN CONNECTION WITH THE DOWNLOADING, PROVISIONING, VIEWING OR USE OF THE MATERIALS REGARDLESS OF THE FORM OF ACTION,

WHETHER FOR BREACH OF CONTRACT, BREACH OF WARRANTY, TORT, NEGLIGENCE, INFRINGEMENT OR OTHERWISE (INCLUDING, WITHOUT LIMITATION, DAMAGES BASED ON LOSS OF PROFITS, DATA, FILES, USE, BUSINESS OPPORTUNITY OR CLAIMS OF THIRD PARTIES), AND WHETHER OR NOT THE PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION SHALL APPLY NOTWITHSTANDING ANY FAILURE OF ESSENTIAL PURPOSE OF ANY LIMITED REMEDY PROVIDED HEREIN.

- Should any provision of this Agreement be held by a court of competent jurisdiction to be illegal, invalid, or unenforceable, that provision shall be deemed amended to achieve as nearly as possible the same economic effect as the original provision, and the legality, validity and enforceability of the remaining provisions of this Agreement shall not be affected or impaired thereby.
- The failure of either party to enforce any term or condition of this Agreement shall not constitute a waiver of either party's right to enforce each and every term and condition of this Agreement. No breach under this agreement shall be deemed waived or excused by either party unless such waiver or consent is in writing signed by the party granting such waiver or consent. The waiver by or consent of a party to a breach of any provision of this Agreement shall not operate or be construed as a waiver of or consent to any other or subsequent breach by such other party.
- This Agreement may not be assigned (including by operation of law or otherwise) by you without WILEY's prior written consent.
- Any fee required for this permission shall be non-refundable after thirty (30) days from receipt by the CCC.
- These terms and conditions together with CCC's Billing and Payment terms and conditions (which are incorporated herein) form the entire agreement between you and WILEY concerning this licensing transaction and (in the absence of fraud) supersedes all prior agreements and representations of the parties, oral or written. This Agreement may not be amended except in writing signed by both parties. This Agreement shall be binding upon and inure to the benefit of the parties' successors, legal representatives, and authorized assigns.
- In the event of any conflict between your obligations established by these terms and conditions and those established by CCC's Billing and Payment terms and conditions, these terms and conditions shall prevail.
- WILEY expressly reserves all rights not specifically granted in the combination of (i) the license details provided by you and accepted in the course of this licensing transaction, (ii) these terms and conditions and (iii) CCC's Billing and Payment terms and conditions.
- This Agreement will be void if the Type of Use, Format, Circulation, or Requestor

Type was misrepresented during the licensing process.

• This Agreement shall be governed by and construed in accordance with the laws of the State of New York, USA, without regards to such state's conflict of law rules. Any legal action, suit or proceeding arising out of or relating to these Terms and Conditions or the breach thereof shall be instituted in a court of competent jurisdiction in New York County in the State of New York in the United States of America and each party hereby consents and submits to the personal jurisdiction of such court, waives any objection to venue in such court and consents to service of process by registered or certified mail, return receipt requested, at the last known address of such party.

WILEY OPEN ACCESS TERMS AND CONDITIONS

Wiley Publishes Open Access Articles in fully Open Access Journals and in Subscription journals offering Online Open. Although most of the fully Open Access journals publish open access articles under the terms of the Creative Commons Attribution (CC BY) License only, the subscription journals and a few of the Open Access Journals offer a choice of Creative Commons Licenses. The license type is clearly identified on the article.

The Creative Commons Attribution License

The <u>Creative Commons Attribution License (CC-BY)</u> allows users to copy, distribute and transmit an article, adapt the article and make commercial use of the article. The CC-BY license permits commercial and non-

Creative Commons Attribution Non-Commercial License

The <u>Creative Commons Attribution Non-Commercial (CC-BY-NC)License</u> permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.(see below)

Creative Commons Attribution-Non-Commercial-NoDerivs License

The <u>Creative Commons Attribution Non-Commercial-NoDerivs License</u> (CC-BY-NC-ND) permits use, distribution and reproduction in any medium, provided the original work is properly cited, is not used for commercial purposes and no modifications or adaptations are made. (see below)

Use by commercial "for-profit" organizations

Use of Wiley Open Access articles for commercial, promotional, or marketing purposes requires further explicit permission from Wiley and will be subject to a fee. Further details can be found on Wiley Online Library http://olabout.wiley.com/WileyCDA/Section/id-410895.html

Other Terms and Conditions:

v1.10 Last updated September 2015

Questions? customercare@copyright.com or +1-855-239-3415 (toll free in the US) or +1-978-646-2777.

TITLE:

- 2 Photogeneration of N-Heterocyclic Carbenes: Application in Photoinduced Ring-Opening
- 3 Metathesis Polymerization

4

1

- 5 **AUTHORS AND AFFILIATIONS:** Julien Pinaud,*1 Emeline Placet,1 Patrick Lacroix-Desmazes,1
- 6 Thi Kim Hoang Trinh,^{2,3} Jean Pierre Malval,^{2,3} Abraham Chemtob,^{2,3} Loïc Pichavant,⁴ Valérie
- 7 Héroguez⁴
- 8 ¹ Université de Montpellier, CNRS, ICGM UMR5253 ENSCM, F-34095 Montpellier, France
- 9 ² Université de Haute-Alsace, CNRS, IS2M UMR7361, F-68100 Mulhouse, France
- 10 ³ Université de Strasbourg, France
- ⁴ Université de Bordeaux, CNRS, LCPO UMR5629 ENSCBP, F-33607 Pessac, France

12

- 13 Corresponding Author:
- 14 Julien Pinaud
- 15 julien.pinaud@umontpellier.fr
- 16 Tel: 33 (0)4 67 14 39 99

17

- 18 Email Addresses of Co-authors:
- 19 Emeline Placet emeline.placet@enscm.fr
- 20 Patrick Lacroix-Desmazes patrick.lacroix-desmazes@enscm.fr
- Thi Kim Hoang Trinh thi-kim-hoang.trinh@uha.fr
 Jean Pierre Malval jean-pierre.malval@uha.fr
- 23 Abraham Chemtob abraham.chemtob@uha.fr
- 24 Loïc Pichavant loic.pichavant@enscbp.fr
- 25 Valérie Héroguez valerie.heroguez@enscbp.fr

26 27

KEYWORDS:

polymer, ring-opening, metathesis, ROMP, carbene, NHC, photochemistry, miniemulsion, photolysis, photoreactor, photoreactivity

30 31

32

33

34

35

SUMMARY:

We describe a protocol to photogenerate N-heterocyclic carbenes (NHCs) by UV irradiation of a 2-isopropylthioxanthone/imidazolium tetraphenylborate salt system. Methods to characterize the photoreleased NHC and elucidate the photochemical mechanism are proposed. Protocols for ring-opening metathesis photopolymerization in solution and miniemulsion illustrate the potential of this 2-component NHC photogenerating system.

363738

39

40 41

42

43

44

45

46

47

ABSTRACT:

We report a method to generate the N-heterocyclic carbene (NHC) 1,3-dimesitylimidazol-2-ylidene (IMes) under UV-irradiation at 365 nm, to characterize it and to determine the corresponding photochemical mechanism. Then we describe protocols to perform ring-opening metathesis polymerization (ROMP) in solution and in miniemulsion using this NHC-photogenerating system. To photogenerate the NHC IMes, a system comprising 2-isopropylthioxanthone (ITX) as photosensitizer and 1,3-dimesitylimidazolium tetraphenylborate (IMesH+BPh4-) as NHC protected form is employed. IMesH+BPh4-can be obtained in a single step by anion exchange between 1,3-dimesitylimidazolium chloride and sodium tetraphenylborate. A real-time steady-state photolysis set up is described, which hints

that the photochemical reaction proceeds in two consecutive steps: ITX triplet is photoreduced by the borate anion, subsequent proton transfer takes place from the imidazolium cation to produce the expected NHC IMes. Two separate characterization protocols are implemented: firstly, CS₂ is added to the reaction media to evidence the photogeneration of NHC through the formation of the IMes-CS₂ adduct, and secondly, amount of NHC released *in situ* is quantified using acid-base titration. The use of this NHC photogenerating system for the ROMP of norbornene is also commented on. In solution, a photopolymerization experiment is conducted by mixing ITX, IMesH⁺BPh₄⁻, [RuCl₂(p-cymene)]₂ and norbornene in CH₂Cl₂ and by irradiating the solution in a UV reactor. In dispersed medium, a monomer miniemulsion is first formed, then irradiated inside an annular reactor to produce a stable poly(norbornene) latex.

INTRODUCTION:

In chemistry, N-Heterocyclic Carbenes (NHCs) species fulfill the twofold role of ligand and organocatalyst. In the former case, the introduction of NHCs has resulted in the design of metal transition catalysts with improved activity and stability. In the latter case, NHCs have proved to be superior catalysts for manifold organic reactions^{3, 4}. Despite this versatility, handling of bare NHCs is still a significant challenge⁵ and producing these highly reactive compounds in a way that they could be released in situ and "on demand" is a very attractive goal. Consequently, several strategies have been developed to release NHC in the reaction media, which mostly rely on the use of thermolabile progenitors 6-8. Surprisingly, while it would unleash a novel generation of photoinitiated reactions useful for macromolecular synthesis or preparative organic chemistry, their generation using light as stimulus has been scarcely explored. Only very recently, a first photogenerating system able to produce NHC has been unveiled. It consists of 2 components: 2-isopropylthioxanthone (ITX) as photosensitive species and 1,3-dimesitylimidazolium tetraphenylborate (IMesH+BPh4-) acting as NHC protected form. Consequently, in the following paragraphs, we report a method to generate the N-heterocyclic carbene (NHC) 1,3-dimesitylimidazol-2-ylidene (IMes) under UVirradiation at 365 nm, to characterize it and to determine the photochemical mechanism associated with. Then we describe protocols to perform ring-opening metathesis polymerization (ROMP) in solution and in miniemulsion using this NHC photogenerating system.

In a first part, we report herein a synthesis protocol to produce IMesH⁺BPh₄⁻. This protocol is based on anion metathesis between the corresponding imidazolium chloride (IMesH⁺Cl⁻) and sodium tetraphenylborate (NaBPh₄). Then, to demonstrate the *in situ* formation of NHC, two protocols have been developed involving the irradiation at 365 nm of a IMesH⁺BPh₄⁻/ITX solution in a photoreactor. The first one consists in monitoring the deprotonation of the imidazolium cation IMesH⁺ through ¹H NMR spectroscopy. Direct evidence for the formation of the desired NHC (IMes) is provided in a second experiment where the adduct IMes-CS₂ is successfully isolated, purified and characterized.

The second section describes two protocols to shed light onto the photochemical mechanism involving the NHC two-component photogenerating system: IMesH⁺BPh₄-/ITX. Firstly, an original real-time steady state photolysis experiment reveals that electron transfer is induced by photo-excitation of ITX in the presence of tetraphenylborate. Electron donor properties of this borate anion¹⁰ drives a photoreduction of ³ITX* triplet excited state into ITX⁶- radical

anion in a so-called photo-sensitized reaction. The formation of NHC confirms that ITX*-species may further abstract a proton from IMesH* to produce the desired NHC. Based on acid/base titration using phenol red pH indicator as titrant, a second original protocol is implemented which allows the determination of the yield of released NHC.

In the third section, we describe protocols where the above-mentioned photogenerated IMes can be exploited in photopolymerization. Of primary interest is ring-opening metathesis polymerization (ROMP) because this reaction is still at a very preliminary stage of development with regard to photoinitiation ^{11, 12}. Initially limited to ill-defined and highly sensitive tungsten complexes, photoinduced ROMP (photoROMP) has been extended to more stable complexes based on W, Ru and Os transition metals. Despite the variety of precatalysts, almost all photoROMP processes rely on the direct excitation of a single photoactive precatalyst ¹³. By contrast, we use radiation to create the NHC imidazolidene ligand (IMes), which can react subsequently with a non-photoactive Ru precatalyst [RuCl₂(*p*-cymene)]₂ dimer ⁹. In our process, the photogeneration of NHC ligand drives the *in situ* formation of a highly active ruthenium-arene NHC complex: RuCl₂(*p*-cymene)(IMes) (Noels' catalyst) ^{14, 15}. Using this indirect methodology, two distinct photoROMP experiments of norbornene (Nb) are performed: in solution (dichloromethane) and in aqueous dispersed system from a monomer miniemulsion ¹⁶.

PROTOCOL:

1. NHC PHOTOGENERATING SYSTEM: SYNTHESIS AND REACTIVITY

1.1 Synthesis of 1,3-dimesitylimidazolium tetraphenylborate (IMesH*BPh4-)

121 1.1.1 Preparation of the solution of 1,3-dimesitylimidazolium chloride (IMesH⁺Cl⁻) in ethanol.

1.1.1.1 Add 1.00 g (2.93 mmol) of 1,3-dimesitylimidazolium chloride to a 50 mL round bottom
 flask equipped with a stir bar.

1.1.1.2 Dissolve the 1,3-dimesitylimidazolium chloride in 30 mL of ethanol.

129 1.1.2 Preparation of the solution of sodium tetraphenylborate (NaBPh₄) in ethanol.

1.1.2.1 Add 1.35 g (3.92 mmol) of sodium tetraphenylborate to a 50 mL round bottom flask equipped with a stir bar.

1.1.2.2 Dissolve the sodium tetraphenylborate in 30 ml of ethanol.

136 1.1.3 Generation of 1,3-dimesitylimidazolium tetraphenylborate (IMesH+BPh₄-)

138 1.1.3.1 Add dropwise the solution of sodium tetraphenylborate into the solution of 1,3-139 dimesitylimidazolium chloride under stirring.

1.1.3.2 Stir the reaction mixture for 10 min at room temperature.

142	
143	1.1.3.3 Remove the stir bar and filter the white precipitate using vacuum and a fritted glass
144	filter of pore size 3.
145	
146	1.1.3.4 Wash the precipitate with 30 mL of ethanol and filter it (fritted glass filter pore size 3).
147	
148	1.1.3.5 Wash the precipitate with 30 mL of deionized water and filter it (fritted glass filter
149	pore size 3).
150	
151	1.1.3.6 Dry the white precipitate at 60 °C for 15 h.
152	
153	1.1.3.7 Analyze the product by ¹ H and ¹³ C NMR in DMSO-d ₆ according to reported procedure ⁹ .
154	, , , , , , , , , , , , , , , , , , , ,
155	1.2 Photogeneration of NHC 1,3-dimesitylimidazol-2-ylidene, also known as IMes, by UV
156	irradiation of the dimesitylimidazolium tetraphenylborate in the presence of
157	isopropylthioxanthone (ITX)
158	- Copi op y tamona (1724)
159	1.2.1 Add 39 mg (0.062 mmol, 2 equiv.) of 1,3-dimesitylimidazolium tetraphenylborate, 7.8
160	mg (0.031 mmol, 1 equiv.) of ITX and 0.5 mL of deuterated THF (previously stored over 3Å
161	molecular sieves) in an NMR tube.
162	morecular sieves, in an invitate.
163	1.2.2 Place the NMR tube inside the photochemical reactor equipped with a circular array
164	of 16 fluorescent tubes emitting a monochromatic radiation at 365 nm and irradiate for 10
165	min.
166	
167	1.3 Monitoring of deprotonation of IMesH ⁺ BPh ₄ - by ¹ H NMR spectroscopy.
168	2.5 Montoring of deprotonation of infesti Bring by Tritim spectroscopy.
169	1.3.1 Analyze the deprotonation of IMesH ⁺ into IMes by ¹ H NMR.
170	2.5.12 Timely 22 the depretendition of infestion into infestion, in the infestion of infestion o
171	NOTE: ¹ H NMR spectra were recorded at 25 °C on a NMR spectrometer operating at 400 MHz.
172	TMS was used as internal standards for calibrating the chemical shifts in ¹ H NMR.
173	This was ased as internal standards for saintrating the shermon similar in 111111111
174	1.3.1.1 Calibrate the integration parameters so that in the ¹ H NMR spectra the CH ₃ singlet of
175	1,3-dimesitylimidazolium tetraphenylborate (δ = 2.0 ppm) corresponds to six.
176	1,5 diffesity infinduzonam tetruphenyiborate (o – 2.0 ppm) corresponds to six.
177	1.2.3.2 Determine the integration value of the N-CH-N signal area ($\delta = 8.4 - 9.4$ ppm) in order
178	to evaluate the degree of IMesH ⁺ deprotonation. The integration value should vary from 1
179	when no deprotonation occurred (before irradiation) to 0 when complete deprotonation of
180	IMesH ⁺ has been performed.
181	ilviesii ilas beeli periorineu.
182	1.4 Formation, isolation and characterization of the 1,3-
183	dimesitylimidazoliumdithiocarboxylate adduct (IMes-CS ₂)
184	annesityininaazonamaitinocarboxyiate adduct (nvies-cs2)
185	1.4.1 Add 0.02 mL of carbon disulfide in the as-irradiated NMR tube. The reaction media
186	changes color from orange/brown to dark red indicating the formation of the IMes-CS ₂
187	adduct.
188	adducti.

- 189 1.4.2 Let react for 12 h. A red precipitate forms assigned to the IMes-CS₂ adduct.
- 190
- 191 1.4.3 Filter the red precipitate (fritted glass filter of pore size 3) and dry it under air at room temperature for 12 h.
- 193
- 194 1.4.4 Solubilize the red solid in 0.5 mL of deuterated DMSO. Confirm the chemical structure
- 195 by ¹H and ¹³C NMR spectroscopy.

196

197 CAUTION: Carbon disulfide is highly toxic and should be handled with care under a fume hood.

198

199 2. PHOTOCHEMICAL MECHANISM

200

201 2.1 Real-time photobleaching of IMesH+BPh₄-/ITX

202

2.1.1 Prepare a stock solution of ITX by adding 0.76 mg (3 x 10⁻³ mmol) of ITX to 15 mL of dry acetonitrile (previously stored over 3Å molecular sieves).

205

2.1.2 Transfer 3 mL of ITX solution into a UV quartz cell covered with a rubber stopper containing 1.10 mg of IMesH⁺BPh₄⁻ (1.8 x 10⁻³ mmol) and a stirring micromagnet. The molar ratio ITX:IMesH⁺BPh₄⁻ is 1:3.

209

2.1.3 Degas the solution by bubbling nitrogen for 10 min, then irradiate the solution at 365 nm with a medium-pressure Hg-Xe lamp under continuous stirring (63 mW cm⁻², power 75 mW).

213

2.1.4 Monitor the change of UV-absorbance at 365 nm during irradiation by using a spectrometer after passing a transmitted actinide beam.

216

2.1.5 Apply the same procedure (steps 2.1.1 to 2.1.4) for other experiments replacing IMesH⁺BPh₄⁻ by other quenchers: IMesH⁺Cl⁻ (0.61 mg, 1.8 x 10⁻³ mmol) or NaBPh₄ (0.62 mg, 1.8 x 10⁻³ mmol).

220

221 2.2 Quantification of photogenerated NHC by spectrophotometric titration

222

223 2.2.1 Add 1.85 mg of dimesitylimidazolium tetraphenylborate (3 x 10⁻⁴ mmol, 3 equiv.) and 0.25 mg of ITX (10⁻⁴ mmol, 1 equiv.) to 10 mL of dry acetonitrile.

225

226 2.2.2 Transfer 2 mL of this freshly prepared solution into a conventional spectroscopic quartz cell capped with a rubber septum.

228

229 2.2.3 Purge the colorless mixture with nitrogen before exposing the cuvette to a 365 nm 230 LED spotlight (power 65 mW) for 1 min.

231

- 2.2.4 After each irradiation time, add gradually 0.1 mL portions of phenol red (PR) solution
- 233 $(2 \times 10^{-4} \text{ M in dry acetonitrile})$ into the cuvette. This latter titrating solution was prepared in advance.
- 234235

2.2.5 Record a UV-vis spectrum after each 0.1 mL addition of PR solution until 1 mL.

The indicator solution is initially transparent and contains the bis-protonated form H₂PR. After its addition, acid/base reaction with NHC causes the formation of the pink bivalent anion PR²-with a maximum absorption at 580 nm. Plotting the absorbance at 580 nm as a function of the titrant volume gives two intersecting straight lines, indicative of the titration end-point.

2.2.6 Repeat the same operations (steps 2.2.1 to 2.2.5) with the same ITX/IMesH⁺BPh₄-solution irradiated for longer times: 2 min, 5 min and 10 min. For each time, a new must be prepared.

At the equivalence point in the acid-base titration:

$$[IMes] \times V = 2[PR] \times V_{eq}$$
 (1)

where [IMes] is the concentration of photogenerated IMes released in the UV cuvette, V is the initial volume of IMesH $^+$ BPh $_4$ $^-$ / ITX solution, [PR] is the concentration of PR and V $_{eq}$ is the total volume of PR added into the UV cuvette at the titration end-point. Therefore, the yield of IMes released upon irradiation of IMesH $^+$ BPh $_4$ $^-$ /ITX solution was obtained from equation (2):

Yield (%) =
$$\frac{2*[PR]\times V_{eq}}{[IMesH^+BPh_4^-]\times V} \times 100$$
 (2)

where $[IMesH^+BPh_4^-]$ is the initial concentration of $IMesH^+BPh_4^-$.

The validity of the method is checked by titrating a free IMes solution (1 \times 10⁻⁴ M in acetonitrile) using a similar acetonitrile PR solution as titrant (2 \times 10⁻⁴ M).

3. PHOTOINDUCED RING-OPENING METATHESIS POLYMERIZATION

3.1 PhotoROMP of Nb in solution

3.1.1 Add 1 g (11 mmol, 540 equiv.) of Nb, 120 mg (0.196 mmol, 10 equiv.) of 1,3-dimesitylimidazolium tetraphenylborate, 12 mg (19.6 mmol, 1 equiv.) of dichloro(paracymene)ruthenium dimer and 25 mg (0.098 mmol, 5 equiv.) of ITX in a 20 mL test tube equipped with a stir bar.

3.1.2 Dissolve the solids in 10 mL dichloromethane and cap the tube with a rubber septum.

3.1.3 Purge the mixture by bubbling nitrogen gas through a syringe needle for 15 min.

3.1.4 Place the tube inside the photochemical reactor equipped with a circular array of 16 fluorescent lamps (emitting at 365 nm) and irradiate for 10 min. The solution becomes viscous indicating that high-molecular weight polyNb is formed.

3.1.5 Precipitate the polymer by pouring the solution into 300 ml of methanol.

282 283 3.1.6 Filter the polymer (fritted glass filter pore size 3) and dry it at 60°C for 8h. 284 3.1.7 Analyze the polymer by ¹H NMR according to reported procedure⁹ by dissolving about 285 10 mg of polymer in 0.5 ml of CD₂Cl₂. 286 287 3.1.8 Analyze the polymer by size exclusion chromatography according to reported 288 procedure using THF as eluent and by dissolving 10 mg of polymer in 1 mL of THF. 289 290 3.2. PhotoROMP of Nb in miniemulsion 291 292 293 3.2.1 Preparation of Nb miniemulsion: 294 295 3.2.1.1 Dissolve 15.0 g of neutral surfactant Polyoxyethylene (100) stearyl ether in 150 mL of 296 milliQ water 297 298 3.2.1.2 Introduce the aqueous phase in the annular LED photoreactor closed with rubber 299 septum and place the reactor under the airtight sonication probe. 300 301 3.2.1.3 Degas the solution by bubbling nitrogen during 1 h. 302 3.2.1.4 Mix 4.94 g of Nb (5.2 10⁻² mol; 510 equiv.; 25 w-%), 2.85 mL of hexadecane (10 w-%) 303 304 and 6 mL of dichloroethane (32.5 w-%) in a 50 mL round bottom flask closed with a rotaflo 305 and degas the solution with freeze-pump-thaw cycle. 306 3.2.1.5 Add 6 mL of dichloroethane (32.5 w-%) in a second 50 mL round-bottom flask closed 307 with a rotaflo. Degas the solution by Freeze-pump-thaw. Add 162 mg of 1,3-308 309 dimesitylimidazolium tetraphenylborate (2.6 10⁻⁴ mol, 5 equiv.), 33 mg of ITX (1.3 10⁻⁴ mol, 2.5 equiv.) and 30 mg of dichloro(p-cymene)ruthenium(II) dimer (4.9 10⁻⁵ mol, 1 equiv.) under 310 inert atmosphere (glovebox) to the flask. 311 312 313 3.2.1.6 Mix the two organic solutions containing the monomer and the catalytic mixture 314 under a nitrogen flux and introduce 15 g of the final organic solution inside the photoreactor 315 containing the aqueous phase under stirring. 316 317 3.2.1.7. Stir the two phases during 1 h to form a rough macroemulsion.

318

319 3.2.1.8. Sonicate during 10 min (Power 50%; pulse-on time: 5 s, off-time: 5 s) to form the miniemulsion.

3.2.2. Photopolymerization of NB miniemulsion

321 322

323

326327

328

324 3.2.2.1 Replace the airtight sonication probe by the LED lamp equipped with a water cooling system and protected by a cladding tube under a nitrogen flux.

3.2.2.2 Place the closed reactor inside the photocabinet to prevent exposure to UV radiation.

3.2.2.3 Irradiate the monomer miniemulsion for 100 min in order to obtain polymer latex.

During irradiation, particle size and monomer conversion can be determined as explained below.

3.2.3 Determination of particle size, conversion and molecular weight

3.2.3.1 Collect 4 mL of miniemulsion sample during irradiation process.

3.2.3.2 Add 20 μ L of miniemulsion in a glass cuvette containing 5 mL water to prepare a 250 times diluted sample for particle size analysis by dynamic light scattering (DLS).

3.2.3.3 Dissolve 100 μ L of miniemulsion in 500 μ L of THF to measure the Nb conversion by gas chromatography (GC) with hexadecane as internal standard (GC retention times: $t^{GC}_{Nb} = 1.77$ min; $t^{GC}_{dodecane} = 13.25$ min).

3.2.3.4 Precipitate the rest of the sample in 20 mL of acetone. Filter the polymer. Dry the polymer under vacuum and measure the molecular weight by size exclusion chromatography (SEC) (SEC in tetrahydrofuran (THF) (1 mL min⁻¹) with trichlorobenzene as the flow marker, using both refractometric and UV detectors).

CAUTION (Part 1-3): Possibly hazardous sources of light emitting in the UV and visible range are used in the described experiments. These lamps can present a reasonably foreseeable risk of harming the eyes and skin of workers. Consequently, all measures possible should be put in place by the experimenter to reduce the risks to as low as is reasonably practicable. A list of common measures includes isolation of the light source inside a protective casing (photocabinet for example), training of all workers, placing the hazardous sources of light in well designated laboratories or fume hood with restricted access, providing suitable safety gears: safety goggles blocking UVA irradiation are sufficient for all described protocols and displaying appropriate warning and safety signs.

REPRESENTATIVE RESULTS:

Protocol 1.1 describes the efficient anion metathesis between 1,3-dimesitylimidazolium chloride (IMesH⁺Cl⁻) and sodium tetraphenylborate (NaBPh₄) to yield 1,3-dimesitylimidazolium tetraphenylborate (IMesH⁺BPh₄⁻). The desired photolatent NHC is obtained in excellent yield (98 %). Figure 1 shows a ¹H and ¹³C NMR spectra, both testifying that a pure product exhibiting the correct structure is obtained.

Protocol 1.2 describes how to generate the N-HC IMes by irradiating the mixture IMesH $^+$ BPh $_4$ $^-$ / ITX (2/1 equiv.) in THF-d $_8$ solution.

Protocol 1.3 shows that it is possible to assess the conversion of IMesH⁺ in IMes by monitoring the deprotonation of IMesH⁺BPh₄⁻ through ¹H NMR spectroscopy. Figure 2 shows that proton H_a (8.63 ppm, Figure 2a) on carbon 2 adjacent to the two nitrogen atoms disappears partially after 10 min irradiation (53 %, Figure 2b). The reaction was performed by irradiating the mixture IMesH⁺BPh₄⁻ / ITX (2/1 equiv.) in THF-d₈ solution.

Protocol 1.4 shows that it is possible to isolate the formed NHC by reacting the as-irradiated

medium (see protocol 1.2) with CS_2 . The red precipitate formed in THF- d_8 is collected, dried and dissolved in DMSO- d_6 . As it can be seen in the ^{13}C NMR spectrum (Figure 2c), all the characteristic resonances are consistent with IMes- CS_2 adduct. This result confirms indirectly the *in situ* generation of the targeted IMes NHC.

Protocol 2.1 Thioxanthone derivatives are a well-established class of photoinitiators generally employed in combination with a second component referred to as "co-initiator". Their absorption spectra appear with a maximum in the range 340-420 nm. The nature of the co-initiator determines the mechanism of initiation. Three general initiation mechanisms have been described: 1 Triplet-triplet energy transfer (in the present case from ${}^3\text{ITX}^*$ to ${}^3\text{BPh}_4^{-*}$); 2 electron transfer from the electron donor ${}^3\text{EPh}_4^{-*}$ to ${}^3\text{EPh}_4^{-*}$); 2 electron transfer from the electron donor ${}^3\text{EPh}_4^{-*}$ to ${}^3\text{EPh}_4^{-*}$) > ${}^3\text{EP}_4^{-*}$ (in the present case from ${}^3\text{EP}_4^{-*}$) direct H abstraction of IMesH+ by ${}^3\text{ITX}^*$. Mechanism 1 can be discarded since the following triplet energy order, ${}^3\text{EP}_4^{-*}$) > ${}^3\text{EP}_4^{-*}$) > ${}^3\text{EP}_4^{-*}$) > ${}^3\text{EP}_4^{-*}$ 0 or 3 is operating. Figure 3 shows the evolution of absorbance values of characteristic ITX absorption band at 365 pm

3 shows the evolution of absorbance values of characteristic ITX absorption band at 365 nm during irradiation for three different bicomponent mixtures: IMesH+BPh₄-/ITX, IMesH+Cl-/ITX and NaBPh₄/ITX. The absence of decay for IMesH+Cl- supports the incapacity for electronically excited ITX to abstract a hydrogen from the imidazolium cation (mechanism 3). In contrast, photobleaching of ITX is visible in the two systems containing the BPh₄- anions although the decay rates are different in these two cases. This result emphasizes the critical role played by the tetraphenylborate anion. Consequently, the photoreduction of ITX by tetraphenylborate (mechanism 2) is proved as the primary step in the formation of the NHC. Figure 4 displays a hypothetical and complete mechanism where the ITX⁶- radical anion may abstract a proton from IMesH+ to release the free NHC IMes.

Protocol 2.2 shows evidence in favor of this mechanism. This method reveals the progressive release of NHC during irradiation. It is a method to determine the amount of released NHC based on acid/base titration using phenol red (PR) pH indicator as titrant. A maximum yield of 50 % is achieved after 5 min of irradiation (**Figure 5**) and control experiment with free IMes enables to validate the method.

Protocol 3.1 describes photoROMP of NB (540 equiv.) in dichloromethane using a photolatent mixture composed of IMesH⁺BPh₄⁻ /ITX (10/5 equiv.) (to produce NHC IMes) and the well-known inactive [RuCl₂(p-cymene)]₂ dimer (1 equiv.). It is recognized that the simple reaction of Ru precatalyst with the imidazolidene ligand IMes is a means to generate *in situ* the highly active ruthenium-arene complex RuCl₂(p-cymene)(NHC), also known as Noels' catalyst. Irradiation is performed in a conventional photochemical reactor (λ_{max} = 365 nm) at room temperature. Complete conversion is achieved after only 10 min of irradiation as measured by ¹H NMR spectroscopy (**Figure 6**), suggesting the successful formation of the highly active ruthenium-arene complex bearing an NHC ligand. In addition, polyNb with a number-average molecular weight of 288 kDa and a relatively narrow dispersity values (θ = 1.5) is obtained as determined by size exclusion chromatography.

Protocol 3.2 describes a miniemulsion photoROMP procedure. High conversions (70-80 %) are achieved (**Figure 7**). As can be seen in **Figure 8**, the initial droplet size measured by DLS is 92 nm. The final particles exhibit a size of 102 nm (0.140) closed to the initial droplet size. TEM observations show perfectly spherical particles with sizes in agreement with DLS data.

FIGURE LEGENDS:

Figure 1. NMR characterization of IMesH⁺BPh₄. (a) ¹H NMR spectrum in DMSO- d_6 (400 MHz) of 1,3-dimesitylimidazolium tetraphenylborate (IMesH⁺BPh₄.), δ_{ppm} : 2.13 (s, 12H), 2.36 (s. 6H), 6.69 (t, 4H), 7.17 (m, 20H), 8.27 (s, 2H), 9.64 (s, 1H,); (b) ¹³C NMR spectrum of the same compound in DMSO- d_6 (100 MHz), δ_{ppm} :16.58, 20.23, 121.35, 124.49, 125.02, 129.24, 130.29, 134.00, 135.35, 138.19, 140.06, 162.58. T_m = 212 °C (DSC). This figure has been modified from reference⁹.

Figure 2. NMR monitoring of IMesH⁺BPh₄⁻ deprotonation and subsequent synthesis of IMes-CS₂. ¹H NMR spectra of IMesH⁺BPh₄⁻ /ITX (2/1 equiv.) mixture in THF- d_8 : (a) before UV exposure, (b) after 10 min irradiation at 365 nm (0.12 mW cm⁻²) in a photochemical reactor; (c) ¹³C NMR spectra in DMSO- d_6 of the precipitate recovered after addition of CS₂. This figure has been modified from reference⁹.

Figure 3. Evidence for photolysis mechanism. Real-time photobleaching experiments in acetonitrile (irradiation: 365 nm, 63 mW cm⁻²): ITX, and ITX with three different quenchers: IMesH⁺Cl⁻, NaBPh₄ and IMesH⁺BPh₄⁻. ITX: quencher molar ratio is 1:3. ([ITX] = $2.0 \ 10^{-4} \ M$).

Figure 4. Photomechanism pathway to IMes. Photolysis mechanism of the IMesH⁺BPh₄⁻ /ITX tandem system.

Figure 5. Quantification of IMes amount released. (a) Change of UV-Vis spectra of an acetonitrile solution of IMesH $^+$ BPh $_4^-$ (3.0 × 10 $^{-4}$ M) and ITX (1 × 10 $^{-4}$ M) irradiated during 2 min (LED, 365 nm, 65 mW cm $^{-2}$) upon gradual addition of PR (2 × 10 $^{-4}$ M), (b) Titration plot showing the absorbance at 580 nm for the same solution irradiated at 1, 2 or 5 min as a function of PR (titrant) volume. The insert gives the yield of photogenerated NHCs deduced from the spectrophotometric titration curve. This figure has been modified from reference⁹.

Figure 6. PhotoROMP in solution. ¹H NMR spectrum in CD₂Cl₂ (400 MHz) of the photopolymerization reaction medium before irradiation (a) and after 10 min irradiation at 365 nm (b).

Figure 7. Evolution of photoROMP in miniemulsion with time. No conversion as a function of irradiation time in miniemulsion photoROMP.

Figure 8. Characterization of polyNb particles. DLS data (top) of Nb miniemulsion and polyNb latex obtained after photopolymerization. TEM micrograph of final latex.

DISCUSSION:

We have reported an easy and versatile protocol for the in-situ generation of NHC upon UV-irradiation at 365 nm. The anion exchange reaction between 1,3-dimesitylimidazolium chloride and sodium tetraphenylborate provides a straightforward access to the NHC protected form IMesH⁺BPh₄⁻ in quantitative yield. Nevertheless, if employing another starting imidazolium salt, the solvent employed to perform the metathesis reaction should be chosen with care so that it allows the solubilization of both starting salts (imidazolium salts and sodium tetraphenylborate) and the precipitation of the imidazolium tetraphenylborate

product. As such, ethanol is most often the appropriate solvent to perform this reaction.

470 471 472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

The photogeneration of the NHC IMes by irradiation at 365 nm of the 2 components system IMesH⁺BPh₄⁻/ITX can produce NHC yields up to 50 % but lower yields can be obtained depending on the experimental conditions employed. In particular, the use of solvents containing water or protic species favors secondary reactions such as the deprotonation of these protic species by BPh₄ and/or the reprotonation of IMes, thus decreasing the overall yield of released IMes. Indeed, NHC are known to be sensitive to water and other impurity traces, we thus recommend using dried solvents when attempting to photogenerate the NHC IMes. Despite their water/protic sensitivity, NHCs are much more reactive towards metallic substrates such as [RuCl₂(p-cymene)]₂, which allows for the ROMP of Nb to be performed in miniemulsion. It has been noticed that the presence of dioxygen can also alter the course of the reaction. Indeed, dioxygen is known to react with ITX triplet, preventing the release of IMes. Because an electron transfer is involved for the generation of NHC, the reaction is also assumed to be highly dependent on solvent polarity. Finally, when attempting at photogenerating IMes from ITX/IMesH⁺BPH₄⁻ in a reaction media, the latter should be chosen so that it provides a good solubilization of the IMesH⁺BPh₄⁻ salt and does not absorb UV light up to 350 nm.

487 488 489

490

491

492

493

494

495

496

497

As opposed to other methods that rely on temperature, dilution or change of pH to generate *in situ* NHC, our approach involves radiation as external stimulus with the distinctive advantage of spatial/temporal control of the reaction. Thanks to manifold polymerization reactions catalyzed/initiated by NHC, we envision that a photolatent NHC can foster new photopolymerization reactions such as photoROMP as detailed in this study. In addition, because NHCs are well established stabilizing ligands, we believe that the photochemical preparation of organometallic complexes may benefit from this photogenerating NHC system. Finally, NHCs are employed as reactants or catalysts in many reactions of organic chemistry, their photogeneration should be of interest to chemists who would like to involve NHCs in cascade reactions at the desired time.

498 499 500

501

502

ACKNOWLEDGMENTS:

Financial support by the French National Research Agency (ANR program: DS0304 2016, contract number: ANR-16-CE07-0016) and the French Ministry of Research (doctoral grant of Emeline Placet) are gratefully acknowledged.

503504505

DISCLOSURES:

The authors have nothing to disclose.

506 507 508

REFERENCES:

- 1. *N-Heterocyclic carbenes: from laboratory curiosities to efficient synthetic tools*. Royal Society of Chemistry. Cambridge. (2017).
- 2. Díez-González, S., Marion, N., Nolan, S.P. N-Heterocyclic Carbenes in Late Transition Metal Catalysis. *Chemical Reviews*. **109** (8), 3612–3676, doi: 10.1021/cr900074m (2009).
- 3. Fevre, M., Pinaud, J., Gnanou, Y., Vignolle, J., Taton, D. N-Heterocyclic carbenes (NHCs) as
- organocatalysts and structural components in metal-free polymer synthesis. *Chemical Society*
- 515 Review **42** (5), 2142–2172, doi: 10.1039/c2cs35383k (2013).
- 4. Naumann, S., Dove, A.P. N-Heterocyclic carbenes as organocatalysts for polymerizations:

- trends and frontiers. *Polymer Chemistry*. **6** (17), 3185–3200, doi: 10.1039/C5PY00145E (2015).
- 5. Naumann, S., Buchmeiser, M.R. Liberation of N-heterocyclic carbenes (NHCs) from
- thermally labile progenitors: protected NHCs as versatile tools in organo- and polymerization
- 520 catalysis. *Catalysis Science Technology* **4** (8), 2466–2479, doi: 10.1039/c4cy00344f (2014).
- 521 6. Naumann, S., Buchmeiser, M.R. Latent and Delayed Action Polymerization Systems.
- 522 *Macromolecular Rapid Communication* **35** (7), 682–701, doi: 10.1002/marc.201300898
- 523 (2014).
- 524 7. Neilson, B.M., Bielawski, C.W. Photoswitchable NHC-promoted ring-opening
- polymerizations. *Chemical Communication* **49** (48), 5453–5455, doi: 10.1039/c3cc42424c
- 526 (2013).
- 8. Teator, A.J., Tian, Y., Chen, M., Lee, J.K., Bielawski, C.W. An Isolable, Photoswitchable N-
- 528 Heterocyclic Carbene: On-Demand Reversible Ammonia Activation. *Angewandt Chemie*
- 529 International Edition **54** (39), 11559–11563, doi: 10.1002/anie.201506269 (2015).
- 9. Pinaud, J. et al. In Situ Generated Ruthenium-Arene Catalyst for Photoactivated Ring-
- 531 Opening Metathesis Polymerization through Photolatent N-Heterocyclic Carbene Ligand.
- 532 *Chemistry A European Journal.* **24** (2), 337–341, doi: 10.1002/chem.201705145 (2018).
- 533 10. Konishi, T., Sasaki, Y., Fujitsuka, M., Toba, Y., Moriyama, H., Ito, O. Persistent C60
- anion-radical formation via photoinduced electron transfer from tetraphenylborate and
- triphenylbutylborate. *Journal of the Chemical Society, Perkin Transactions 2*. (3), 551–556,
- 536 doi: 10.1039/a808120d (1999).
- 537 11. Ogawa, K.A., Goetz, A.E., Boydston, A.J. Developments in Externally Regulated Ring-
- Opening Metathesis Polymerization. *Synletter* **27** (2), 203–214, doi: 10.1055/s-0035-1560213
- 539 (2016).
- 540 12. Eivgia, O., Lemcoff, N.G. Turning the Light On: Recent Developments in Photoinduced
- Olefin Metathesis. *Synthesis* **50** (1), 49-63, DOI: 10.1055/s-0036-1589113 (2018).
- 542 13. Monsaert, S., Vila, A.L., Drozdzak, R., Van Der Voort, P., Verpoort, F. Latent olefin
- 543 metathesis catalysts. *Chemical Society Review* **38** (12), 3360–3372, doi: 10.1039/b902345n
- 544 (2009).

553

- 545 14. Delaude, L., Demonceau, A., Noels, A.F. Synthesis and Application of New N-
- 546 Heterocyclic Carbene Ruthenium Complexes in Catalysis: A Case Study. *Current Organic*
- 547 *Chemistry* **10** (2), 203–215, doi: 10.2174/138527206775192924 (2006).
- 548 15. Delaude, L., Demonceau, A. Retracing the evolution of monometallic ruthenium-arene
- 549 catalysts for C-C bond formation. Dalton Transaction 41 (31), 9257–9268, doi:
- 550 10.1039/c2dt30293d (2012).
- 551 16. Asua, J.M. Miniemulsion polymerization. *Progress in Polymer Science*. **27** (7), 1283–
- 552 1346, doi: 10.1016/S0079-6700(02)00010-2 (2002).