Journal of Visualized Experiments ENDOTOXIN ACTIVITY ASSAY FOR THE DETECTION OF WHOLE BLOOD ENDOTOXEMIA IN CRITICALLY ILL PATIENTS

--Manuscript Draft--

Invited Methods Article - JoVE Produced Video		
JoVE58507R2		
ENDOTOXIN ACTIVITY ASSAY FOR THE DETECTION OF WHOLE BLOOD ENDOTOXEMIA IN CRITICALLY ILL PATIENTS		
Endotoxin Activity; Sepsis; Shock; lipopolysaccharide; Chemioluminescence; Neutrophils		
Riccardo Pinciroli, MD Universita degli Studi di Milano Facolta di Medicina e Chirurgia Monza, MB ITALY		
Universita degli Studi di Milano Facolta di Medicina e Chirurgia		
riccardo.pinciroli@unimib.it		
Riccardo Pinciroli, MD		
Simone Checchi		
Maurizio Bottiroli		
Gianpaola Monti		
Giampaolo Casella		
Roberto Fumagalli		
Response		
Standard Access (US\$2,400)		
Servizio di Anestesia e Rianimazione 1, Dipartimento EAS, ASST Grande Ospedale Metropolitano Niguarda. P.zza Ospedale Maggiore, 3. 20162 Milan, Italy.		

TITLE:

Endotoxin Activity Assay for the Detection of Whole Blood Endotoxemia in Critically III Patients

2 3 4

1

AUTHORS AND AFFILIATIONS:

Riccardo Pinciroli, M.D.^{1,2}, Simone Checchi, M.D.², Maurizio Bottiroli, M.D.¹, Gianpaola Monti, 5 6

M.D. ¹, Giampaolo Casella, M.D. ¹, Roberto Fumagalli, M.D. ^{1,2}

7 8

¹Department of Anesthesia and Critical Care, Niguarda Hospital, Milan, Italy

9 ²University of Milan-Bicocca Medical School, Monza, Italy

10

11 **Corresponding Author:**

12 Riccardo Pinciroli, M.D. (riccardo.pinciroli@unimib.it)

13 Tel: +39 02 6444 7235

14 15

Email Addresses of Co-authors:

16 Simone Checchi, M.D. (simone.checchi@gmail.com)

17 Maurizio Bottiroli, M.D. (mbottiroli@ospedaleniguarda.it)

18 Gianpaola Monti, M.D. (gianpaola.monti@ospedaleniguarda.it)

19 Giampaolo Casella, M.D. (giampaolo.casella@ospedaleniguarda.it) 20 Roberto Fumagalli, M.D. (roberto.fumagalli@unimib.it)

21 22

KEYWORDS:

endotoxin activity, sepsis, shock, lipopolysaccharide, chemioluminescence, neutrophils

24 25

26

27

23

SUMMARY:

We hereby present a protocol to measure at the bedside the endotoxin activity of human whole blood samples. The Endotoxin Activity assay is a simple test to perform and may be a useful biomarker in critically ill patients with sepsis.

28 29 30

31

32

33

34

35

36

37

38

39

40

41

42

ABSTRACT:

Lipopolysaccharide, also known as endotoxin, is a fundamental component of gram-negative bacteria and plays a crucial role in the development of sepsis and septic shock. The early identification of an infectious process that is rapidly evolving to a critical illness might prompt a quicker and more intensive treatment, thereby potentially leading to better patient outcomes. The Endotoxin Activity (EA) assay can be used at the bedside as a reliable biomarker of systemic endotoxemia. The detection of elevated endotoxin activity levels has been repeatedly shown to be associated with an increased disease severity in patients with sepsis and septic shock. The assay is quick and easy to perform. Briefly, after sampling, an aliquot of whole blood is mixed with an anti-endotoxin antibody and with added LPS. Endotoxin activity is measured as the relative oxidative burst of primed neutrophils as detected by chemioluminescence. The assay's output is expressed on a scale from 0 (absent) to 1 (maximal) and categorized as "low" (< 0.4 units), "intermediate" (0.4–0.59 units), or "high" (≥ 0.6 units). The detailed methodology and rationale for the implementation of the EA assay are reported in this manuscript.

INTRODUCTION:

The Lipopolysaccharide (LPS), also known as endotoxin, is a key component of the membrane structure of Gram-negative (GN) bacteria. It makes up about 10% of the cell wall, being vital for the outer membrane integrity and homeostasis. Moreover, it is a potent activator of the host innate immune system^{1,2}.

In vitro exposure of innate immune system cells to LPS leads to changes in the expression of multiple genes³. Administration of very small quantities of LPS in healthy human volunteers triggers the cascade of acute systemic inflammation, whereas sepsis and septic shock may arise with higher endotoxin concentrations^{4,5}.

Sepsis is a life-threatening condition which, if not promptly recognized, can lead to multi-organ failure and death. Septic patients must be treated in a timely manner, with aggressive resuscitation, adequate antibiotic therapy, optimal source control, and prompt organ support strategies. The diagnosis of the etiology of sepsis is primarily based on clinical recognition and culture-based pathogen detection⁶. However, results of microbial cultures may take up to 48 h and are inconclusive in up to 30% of cases⁷. Early identification and intervention may lead to better patient outcomes. In patients in whom sepsis is suspected, decisions are often made on the basis of physiological and biochemical parameters, without a clear sign of endotoxemia.

The measurement of the Endotoxin Activity (EA) can be obtained by means of a commercial assay (see **Table of Materials**) in whole blood. It can be used as a biomarker of systemic endotoxemia for the early stratification of disease severity, particularly in patients at risk for developing septic shock⁸. The assay was used to guide Polymyxin B hemoperfusion therapy in a recently published double-blind randomized-controlled clinical trial in patients with septic shock⁹. In critically ill patients, the MEDIC study showed increased EA levels to be associated with multiple organ dysfunction, intensive care unit (ICU) length of stay, and mortality¹⁰.

Different assays have been developed to detect endotoxin. The Limulus Amoebocyte Lysate (LAL) assay, either as a gel-clot, turbidimetric, or chromogenic test, has been so far the most frequently adopted for the estimation of serum endotoxin. It is based on the ability of endotoxin to induce coagulation of the hemolymph of the horseshoe crab, *Limulus polyphemus*. However, this assay has some limitations in terms of specificity. In particular, it can also be activated by microbial products other than endotoxin, such as components of the fungal cell wall, and it can be inhibited by various human plasma proteins¹¹.

During the last decade the measurement of EA has been developed and validated as a biomarker of circulating endotoxemia. Compared to the LAL test, EA is quicker and easier to implement in the clinical setting. Moreover, it has been shown to be more accurate than LAL in whole blood, with increased sensitivity and specificity, both in vitro and in vivo¹².

Despite its initial implementation as an early diagnostic tool for the rapid identification of GN bacteria as sepsis causative agents, the EA level has also been studied as a biomarker of disease severity. In this context, it has been shown to be particularly useful to assess the hypoperfusion

state due to ongoing critical illness, such as septic shock or post-cardiac arrest syndrome¹³. More recently, since the development of hemopurification systems, a positive EA result has also been proposed as a screening tool to accurately identify potential candidates for such therapy¹⁴. We recently conducted an observational retrospective study on the prevalence and clinical significance of early high levels of EA in 107 patients with septic shock. In line with other recent results, we found that EA is a promising marker of disease severity in patients with septic shock.¹⁵.

The aim of the present manuscript is to describe the method to perform the EA assay, either at the bedside or in the laboratory, and to describe its potential use in a representative scenario of septic shock. This technique can detect LPS activity by measuring the enhanced oxidative burst in neutrophils following their priming by complexes of an anti-endotoxin antibody and LPS. The increased respiratory burst is detected by a chemiluminometer and the amount of light emitted is considered proportional to the amount of endotoxin in the blood sample. The assay requires few reagents, takes about 30 min to perform and uses as little as 40 µL of whole blood 12.

PROTOCOL:

The protocol is conducted according to institutional guidelines relating to the handling of human biospecimens and following the current standard operative procedures of our clinical laboratory. The use of EA data and clinical information of patients being tested follows the guidelines of our institution's human research ethics committee.

1. Laboratory equipment and assay kit contents

- 1.1. Store the EA kit at 2–8 °C when not in use.
- 1.2. Each EA test consists of 5 different kinds of tubes; use each one for a different portion of the test (see section 2).
- 1.2.1. Use tube #1 (the "Control" tube) to measure the basal activity of the non-specific oxidative burst of patient's neutrophils in the absence of a specific antibody.
- 1.2.2. Use tube #2 (the "Sample" tube) to measure the oxidative burst in response to the LPSantibody complex.
- 1.2.3. Use tube #3 (the "Max" tube) to measure the maximal oxidative burst of patient's neutrophils in response to an excess of endotoxin.
- 127 1.2.4. Use tube #4 (the "LPS" tube) as a source of exogenous endotoxin.
- 129 1.2.5. Use tube #5 ("Aliquot" tube) for blood storage.

- NOTE: Duplicates of tubes #1, #2 and #3 are provided for a total of 8 tubes to be used for each
- blood sample being tested (the EA reagent bottle and quality control test can be used for all the
- tests contained in a pouch).

134

1.3. Collect patient blood samples in sterile tubes containing EDTA anticoagulant. Store blood samples at room temperature before running the EA test.

137

1.4. Before starting the test, turn on the chemiluminometer and incubator shaker. Warm the incubator to the temperature of 37 °C.

140

141 1.5. Ideally, start processing the sample within 30 min from blood collection.

142

2. Endotoxin Activity Assay

144

2.1. Prepare the EA test tubes for each patient's blood sample you need to test. Put the tubes intube racks. Then remove the caps.

147

2.2. Using a combipipette, pipette a 1 mL volume of the EA reagent from the bottle into tubes #1
 (Control tube), #2 (Sample tube) and #3 (Max tube), each one in duplicate.

150

NOTE: Pipette down the side of the tube to avoid solution splashing back up.

152

2.3. Mix the patient blood sample by gently inverting the blood collection tube for 20 times. Then, pipette 0.5 mL of patient blood into tube #4 (LPS max tube) and tube #5 (Aliquot tube). Vortex tube #4 for 10 s.

156

2.4. Put the tube racks with all the EA test tubes in the incubator shaker. Close the lid and incubate for 10 min at the temperature of 37°C.

159

2.5. Open the lid and remove the tube racks from the incubator shaker. Vortex tube #5 (Aliquot
 tube). Using a sterile tip, pipette 40 μL of blood into tubes #1 and #2, in duplicate.

162

2.6. Vortex tube #4 (LPS tube). Using the same pipette tip, pipette 40 μL of blood from tube #4
 into tube #3 (Max tube), in duplicate.

165

2.7. Vortex the six final test tubes (#1, #2, #3, and respective duplicates), then place them back into their racks.

168

NOTE: Ensure that all the tubes are vortexed for the same amount of time.

170

2.8. Put the tube racks back into the incubating shaker and close the lid. Set the incubating shaker
at 100 rpm, then start the motion for 14 min.

173

174 2.9. Insert the EA labeled chipcard in the chemiluminometer and press start. After the 14-min

incubation, follow the instructions displayed on the chemiluminometer to read the EA tubes in the correct order.

177

2.10. Gently vortex each tube for 10 s before placing it onto the sample holder of the chemiluminometer. Open the sample drawer and place tube #1 in the sample holder. Then, close the sample drawer and wait for the Relative Light Unit (RLU) reading.

181

182 2.11. Repeat step 2.10 for tube 2 and tube 3.

183

2.12. Repeat step 2.10 for duplicate tubes 1, 2, and 3.

185

186 NOTE: Try to vortex all tubes for the same amount of time during steps 2.10–2.12.

187

2.13. After all the tubes have been processed, note that the EA results will be calculated and printed automatically. Levels are expressed as EA units and represent the mean of duplicate determinations from the same samples.

191

2.14. Repeat steps 2.2 to 2.13 for every blood sample that needs to be tested.

193

2.15. Once the assay has been completed, store the remaining test tubes and EA reagents at 2–8
°C for up to 30 days.

196 197

198

199 200

201

REPRESENTATIVE RESULTS:

A 72-year-old man was admitted to the Emergency Department (ED) of an academic urban hospital. A few days earlier he had presented to his primary care physician complaining of burning on urination. A short-course therapy with oral phosphomycin was recommended. His medical history included hypertension, uncomplicated type-2 diabetes and benign prostatic hyperplasia. His medications included enalapril, atorvastatin, tamsulosin and metformin.

202203204

205

206

207

In the ED, he was lethargic, confused when awakened. His temperature was 39.1 °C, heart rate was 125 beats per minute, blood pressure was 80/40 mmHg, respiratory rate was 20/min, and SpO_2 was 94% in room air, raising to 99% with 4 L/min oxygen through a nasal cannula. Abdominal exam was normal, except for poorly-localized mild suprapubic tenderness. With difficulty, a Foley catheter was placed. A low amount of dark-colored purulent urine was drained.

208209

A complete blood count revealed a white cell count of 18.5 x 10³. Creatinine was 2.7 mg/dL, glucose was 250 mg/dL, and the lactic acid level was 4.5 mmol/L. Arterial blood gas analysis revealed mixed acidosis, with pH 7.23, pCO2 48 mmHg, pO2 88 mmHg, and HCO3⁻ 15 mmol/L.

- A central venous catheter was placed, with ultrasound guidance, into the right internal jugular vein. A blood gas analysis was obtained upon the catheter placement, revealing a 63% ScVO₂
- value. Aggressive fluid resuscitation was promptly started with a 30 mL/kg crystalloid bolus
- 217 infusion over 30 min. Norephinephrine infusion was also initiated. The patient was transferred to
- 218 the ICU with a diagnosis of septic shock, likely originating from a urinary tract infection.

In the ICU, amid microbial cultures collection and empiric antibiotic therapy administration, a whole blood sample was obtained for EA testing. The assay was rapidly performed according to the protocol presented herein.

In order to compute EA results, the chemiluminometer records: the basal luminescence of neutrophils (L1); luminescence of neutrophils activity in response to the LPS in the blood sample (L2); the maximal neutrophils activity in response to massive exposure to LPS (L3). Results are expressed as: Endotoxin Activity (EA) = (L2-L1)/(L3-L1). Therefore, the resulting EA value reflects the degree of patient's neutrophils oxidative burst due to the presence of circulating endotoxin (L2), normalized by the highest level of luminescence which can be measured in the same blood sample in response to a supra-maximal concentration of LPS (L3). Both values are controlled for the basal luminescence of the sample (L1).

After approximately 30 minutes, the clinician acknowledged 0.75 EA units to be the endotoxin activity level of the patient.

An EA value less than 0.40 EA units indicates a low endotoxin activity level, equal to a low circulating LPS concentration, which represents a low risk of progression to a severe disease state. Results between 0.40 EA and 0.59 EA units indicates an intermediate endotoxin activity level, which represents an elevated risk for the development of severe sepsis and septic shock. Results equal or greater than 0.60 EA units indicates a high endotoxin activity level, which represents a high risk for septic shock and poor patient outcomes (**Table 1**).

The diagnosis of septic shock, likely due to GN bacteria, was therefore confirmed. The patient was also categorized as being at extremely high risk, in line with the evidence of concomitant organ failures and lactate level. He was furthermore treated with aggressive volume resuscitation and vasoactive support. Polymixin-B hemopurification therapy was considered, yet not implemented, due to the convincing early response of the patient to fluids and vasopressors. On day 2, *Escherichia Coli* was confirmed as the causative agent through positive blood cultures. With the appropriate antibiotic therapy, the patient recovered, being discharged from the ICU on day 7. A second EA test was performed before ICU discharge. A result of 0.2 EA units indicated complete resolution of the biochemical cascade triggered by septic shock.

Figure 1 shows the distribution of EA values measured within 24 h in a sample population of septic shock patients.

FIGURE AND TABLE LEGENDS:

Figure 1. Distribution of Endotoxin Activity (EA) levels measured within 24 h from septic shock onset in a population of critically ill patients (n = 107). Adapted from Bottiroli, et al. with permission¹⁵.

Table 1. Categories of Endotoxin Activity levels. EA = Endotoxin Activity.

DISCUSSION:

Septic shock is still nowadays associated with a mortality as high as 40%, although this rate varies according to the considered reports¹⁶. The need for novel and better biomarkers is advocated by most experts in the fields in order to aid clinicians in early diagnosis, better management, and prognostication of patients with septic shock⁶.

Performing an EA test does not require previous technical knowledge or sophisticated laboratory equipment, and any healthcare provider can easily and quickly learn how to run it. The prompt identification of a high circulating EA might help in stratifying patient's risk, triggering an earlier and more aggressive therapeutic approach. Conversely, an EA result of less than 0.40 EA units might indicate a low risk of progression to multi-organ failure¹⁷. The use of patient's samples as their own control is simple, makes this test more sensitive and a more accurate representation of the true blood level of endotoxemia.

The use of LPS-antibody complexes and the patient's own neutrophils protects the EA test from being possibly inhibited by other factors (e.g. plasma proteins). The same cannot be said for other test, like the LAL test, which requires the activation of a coagulation cascade. The LAL test performs well when the endotoxin is not bound by a specific receptor, but in plasma and whole blood different proteins bind LPS, interfering with the assay. Moreover, fungal products may trigger the limulus coagulation cascade, making the test less specific for GN bacteria. For these reason, the EA is superior to the still commonly adopted LAL test for the evaluation of endotoxemia¹⁸.

However, for the EA test to be reliable, it is crucial to meticulously follow the aforementioned steps. The endotoxin level of the specimen being tested is calculated by computing chemiluminescence over time, measuring basal (tube #1) and maximal (tube #3) responses for the same blood sample as reference values. Therefore, it is imperative to carefully place the three tubes in the correct order into the chemiluminometer.

The use of EA levels in clinical practice should not replace standard tests (e.g. laboratory tests and blood cultures) in the workup of a potential infectious disease. Although LPS might clearly be associated with the release of GN bacteria membrane products, elevated levels of endotoxemia have also been reported in case of infections due to other agents¹⁹. It is very well known that endotoxemia might be due to translocation of bacteria through the gut mucosa, particularly whenever tissue hypoperfusion and increased gut barrier permeability are likely to occur^{20,21}. Under such conditions, it is possible to expect circulating LPS to be a consequence, rather than the cause, of sepsis and shock. In this scenario, the EA could provide information about the severity of the ongoing tissue injury, regardless of the bacterial etiology¹⁵. Supporting this principle, in a recent study Grimaldi et al. found the elevation of EA levels to be associated with the severity and duration of shock following out-of-hospital cardiac arrest¹³.

Interestingly, Virzí et al. also highlighted the potential role of endotoxin (and its monitoring) in patients with type 5 cardiorenal syndrome, a condition characterized by concomitant cardiac and renal dysfunction in the setting of different systemic disorders, such as sepsis²³. Endotoxin is

known to induce impairment of cardiac myocytes, although the exact pathophysiological mechanism is largely unclear. On the other hand, endotoxemia has been shown to induce renal dysfunction due to several pathways of local and systemic injury, causing impairments of renal blood flow, glomerular filtration rate, and tubular function²².

However, a few limitations of the EA must be highlighted. The influence of an ongoing antibiotic therapy on the EA result is currently not well established 24 . Moreover, evidence suggests that in critical ill patients a single-point early EA measurement, while useful, does not reliably predict septic shock mortality, even when greater than 0.6 units 15 . Serial repeated assessments might be needed, although their number and timing are currently unclear. Other authors focused on fluctuations in endotoxemia, hypothesizing that an increased daily variability might be associated with a higher degree of multi-organ dysfunction 25 . Lastly, an additional technical limitation to be considered is the relative scale along which the endotoxin activity is measured (0 to 1 units, with 0.01 minimum detectable increments). This makes extremely high results inevitably plateau around the maximum level, thereby making differentiations in this subgroup of patients (EA > 0.9 units) harder to investigate.

In conclusion, while further studies are needed to evaluate the potential impact of monitoring endotoxin levels on clinical outcome, the EA is currently available as a quick, simple and sensitive test, which might facilitate the decision-making process of ICU clinicians in critical ill septic patients.

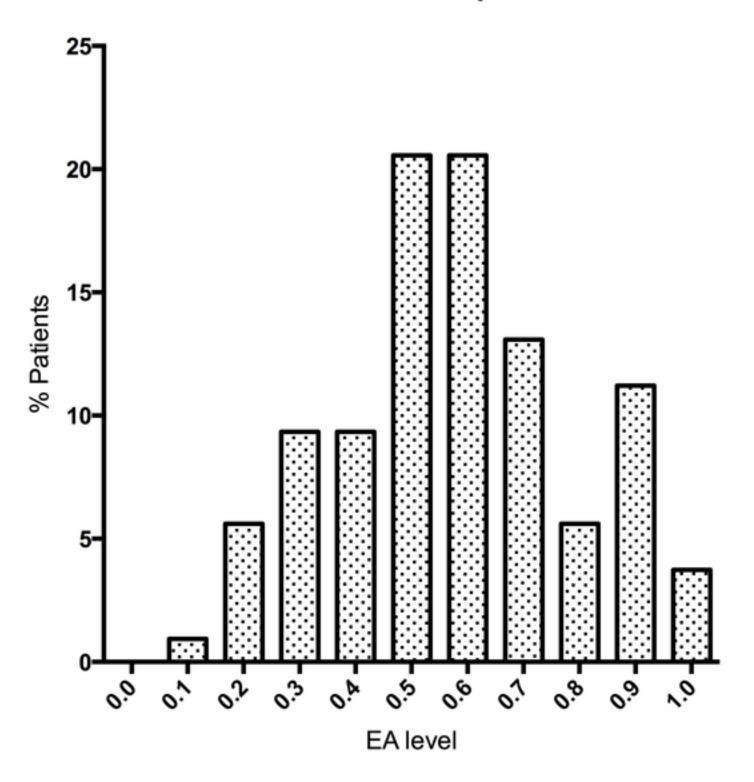
ACKNOWLEDGMENTS:

We thank Paolo Braganò and Lisa Mathiasen, Ph.D. for their review of the assay protocol methodology. Dario Winterton, MD provided substantial help reviewing the manuscript for English language proficiency.

DISCLOSURES:

Estor SpA covered the cost of the journal's publication and video production fee. The authors have no conflicts of interest to disclose.

REFERENCES:


- Akira, S., Takeda, K. Toll-like receptor signalling. *Nature Reviews Immunology*. **4** (7), 499-511, doi:10.1038/nri1391 (2004).
- Takeda, K. Evolution and integration of innate immune recognition systems: the Toll-like receptors. *Journal of Endotoxin Research.* **11** (1), 51-55, doi:10.1179/096805105225006687 (2005).
- 345 3 Ulevitch, R. J., Tobias, P. S. Recognition of gram-negative bacteria and endotoxin by the innate immune system. *Current Opinion in Immunology.* **11** (1), 19-22 (1999).
- Natanson, C. et al. Endotoxin and tumor necrosis factor challenges in dogs simulate the cardiovascular profile of human septic shock. *The Journal of Experimental Medicine*. **169** (3), 823-832 (1989).
- Suffredini, A. F. et al. The cardiovascular response of normal humans to the administration

- of endotoxin. *The New England Journal of Medicine*. **321** (5), 280-287, doi:10.1056/NEJM198908033210503 (1989).
- Singer, M. et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). *JAMA: The Journal of the American Medical Association*. **315** (8), 801-810, doi:10.1001/jama.2016.0287 (2016).
- 356 7 Gupta, S. et al. Culture-Negative Severe Sepsis: Nationwide Trends and Outcomes. *Chest.* 357 **150** (6), 1251-1259, doi:10.1016/j.chest.2016.08.1460 (2016).
- 358 8 Ikeda, T., Ikeda, K., Suda, S., Ueno, T. Usefulness of the endotoxin activity assay as a 359 biomarker to assess the severity of endotoxemia in critically ill patients. *Innate Immunity*. 360 **20** (8), 881-887, doi:10.1177/1753425913516885 (2014).
- Dellinger, R. P. et al. Effect of Targeted Polymyxin B Hemoperfusion on 28-Day Mortality in Patients With Septic Shock and Elevated Endotoxin Level: The EUPHRATES Randomized Clinical Trial. *JAMA: The Journal of the American Medical Association.* **320** (14), 1455-1463, doi:10.1001/jama.2018.14618 (2018).
- Marshall, J. C. et al. Diagnostic and prognostic implications of endotoxemia in critical illness: results of the MEDIC study. *The Journal of Infectious Diseases.* **190** (3), 527-534, doi:10.1086/422254 (2004).
- Levin, J., Bang, F. B. Clottable protein in Limulus; its localization and kinetics of its coagulation by endotoxin. *Thrombosis et Diathesis Haemorrhagica*. **19** (1), 186-197 (1968).
- Marshall, J. C. et al. Measurement of endotoxin activity in critically ill patients using whole blood neutrophil dependent chemiluminescence. *Critical Care (London, England)*. **6** (4), 342-348 (2002).
- 374 Grimaldi, D. et al. High Level of Endotoxemia Following Out-of-Hospital Cardiac Arrest Is 375 Associated With Severity and Duration of Postcardiac Arrest Shock. *Critical Care Medicine*. 376 **43** (12), 2597-2604, doi:10.1097/CCM.00000000001303 (2015).
- Klein, D. J. et al. The EUPHRATES trial (Evaluating the Use of Polymyxin B Hemoperfusion in a Randomized controlled trial of Adults Treated for Endotoxemia and Septic shock): study protocol for a randomized controlled trial. *Trials.* **15** 218, doi:10.1186/1745-6215-15-218 (2014).
- Bottiroli, M. et al. Prevalence and clinical significance of early high Endotoxin Activity in septic shock: An observational study. *Journal of Critical Care.* **41** 124-129, doi:10.1016/j.jcrc.2017.04.030 (2017).
- Kaukonen, K. M., Bailey, M., Suzuki, S., Pilcher, D., Bellomo, R. Mortality related to severe sepsis and septic shock among critically ill patients in Australia and New Zealand, 2000-2012. *JAMA: The Journal of the American Medical Association.* **311** (13), 1308-1316, doi:10.1001/jama.2014.2637 (2014).
- Biagioni, E. et al. Endotoxin activity levels as a prediction tool for risk of deterioration in patients with sepsis not admitted to the intensive care unit: a pilot observational study.

 Journal of Critical Care. 28 (5), 612-617, doi:10.1016/j.jcrc.2013.02.005 (2013).
- 391 18 Roth, R. I., Levin, F. C., Levin, J. Optimization of detection of bacterial endotoxin in plasma 392 with the Limulus test. *The Journal of Laboratory and Clinical Medicine*. **116** (2), 153-161 393 (1990).
- 394 19 Yaguchi, A., Yuzawa, J., Klein, D. J., Takeda, M., Harada, T. Combining intermediate levels

- of the Endotoxin Activity Assay (EA) with other biomarkers in the assessment of patients with sepsis: results of an observational study. *Critical Care (London, England).* **16** (3), doi:10.1186/cc11350 (2012).
- 398 20 Earley, Z. M. et al. Burn Injury Alters the Intestinal Microbiome and Increases Gut 399 Permeability and Bacterial Translocation. *PLoS One.* **10** (7), 400 doi:10.1371/journal.pone.0129996 (2015).
- 401 21 Munster, A. M., Smith-Meek, M., Dickerson, C., Winchurch, R. A. Translocation. Incidental phenomenon or true pathology? *Annals of Surgery.* **218** (3), 321 (1993).
- Clementi, A., Virzì, G. M., Brocca, A., Ronco, C. The Role of Endotoxin in the Setting of Cardiorenal Syndrome Type 5. *Cardiorenal Medicine*. **7** (4), 276-283, doi:10.1159/000475846 (2017).
- Virzì, G. M. et al. Cardiorenal Syndrome Type 5 in Sepsis: Role of Endotoxin in Cell Death Pathways and Inflammation. *Kidney and Blood Pressure Research.* **41** (6), 1008-1015, doi:10.1159/000452602 (2016).
- 409 24 Mignon, F., Piagnerelli, M., Van Nuffelen, M., Vincent, J. L. Effect of empiric antibiotic 410 treatment on plasma endotoxin activity in septic patients. *Infection.* **42** (3), 521-528, 411 doi:10.1007/s15010-014-0586-4 (2014).
- Klein, D. J. et al. Daily variation in endotoxin levels is associated with increased organ failure in critically ill patients. *Shock.* **28** (5), 524-529, doi:10.1097/shk.0b013e31805363c6 (2007).

EA Prevalence in Septic Shock

EA units	Endotoxin activity level
< 0.40	Low
0.40 - 0.59	Intermediate
≥ 0.60	High

Name of Material/ Equipment	Company	Catalog Number	Comments/Description
EAA kit	Spectral Medical Inc.	EAAST-20	Package with 20 tests + 1 quality control
Smart Line TL	Berthold	EAASL	Luminometer
Incubator shaker	GRANT	ES-20	Mini-incubator shaker
Vortexer	VWR	444-2790	Vortex instrument

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:

ENDOTOXIN ACTIVITY ASSAY FOR THE DETECTION OF WHOLE BLOOD ENDOTOXEMIA IN CRITICALLY ILL PATIENTS

Author(s):

Riccardo Pinciroli, M.D., Simone Checchi, M.D., Maurizio Bottiroli, M.D., Gianpaola Monti, M.D., Gianpaola Casella, M.D., Roberto Fumagalli, M.D.

Item 1: The Author elects to have the Materials be made available (as described at http://www.jove.com/publish) via:

Standard Access

Open Access

Item 2: Please select one of the following items:

The Author is NOT a United States government employee.

The Author is a United States government employee and the Materials were prepared in the course of his or her duties as a United States government employee.

The Author is a United States government employee but the Materials were NOT prepared in the

ARTICLE AND VIDEO LICENSE AGREEMENT

course of his or her duties as a United States government employee.

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found at: http://creativecommons.org/licenses/by-nc-
- nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion

- of the Article, and in which the Author may or may not appear.
- 2. **Background.** The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and(c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. **Retention of Rights in Article.** Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. **Grant of Rights in Video Standard Access.** This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video - Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this **Section 6** is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. **Government Employees.** If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum

- rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. **Protection of the Work.** The Author(s) authorize JoVE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.
- 9. **Likeness, Privacy, Personality.** The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 11. **JoVE Discretion.** If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

ARTICLE AND VIDEO LICENSE AGREEMENT

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to

the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 13. **Fees.** To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 14. **Transfer, Governing Law.** This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

CORRESPONDING AUTHOR

Name:	Riccardo Pinciroli, MD			
Department:	Anesthesia and Critical Care			
Institution:	Niguarda Hospital and University of Milan-Bicocca Medical School, Milan, Italy			
Title:	Staff Anesthesiologist and Assistant Professor			
Signature:	Date: December 29, 2018			

Please submit a **signed** and **dated** copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

Riccardo Pinciroli, MD

Anesthesia and Critical Care Service 1

ASST Grande Ospedale Metropolitano Niguarda

P.zza Ospedale Maggiore 3, 20162 Milan, Italy

Assistant Professor of Anesthesia and Critical Care, University of Milan-Bicocca Medical School riccardo.pinciroli@unimib.it | +39 02 6444 4637

Phillip Steindel, Ph.D.

Review Editor, Journal of Visualized Experiments (JoVE)

Cc:

Ronald Myers, PhD.

Senior Science Editor, Journal of Visualized Experiments (JoVE)

1 Alewife Center, Suite 200, Cambridge, MA 02140

RE: Resubmission of JoVE58507 ENDOTOXIN ACTIVITY ASSAY FOR THE DETECTION OF WHOLE BLOOD ENDOTOXEMIA IN CRITICALLY ILL PATIENTS,

Response to Review - Cover Letter

Dear Dr. Steindel,

We are pleased to resubmit for publication a new version of our manuscript, modified according to the Editor's recommendations. Particularly, point-by-point:

 You have indicated in your ALA that you want Open Access but checked Standard in Editorial Manager-which are you choosing? If standard, please sign a new ALA (attached) and include it with your submission.

A new ALA has been attached to the resubmission. We confirm we want Standard Access.

2. EAA is a commercial term (see http://www.spectraldx.com/eaa.html, e.g.); please use another abbreviation for this assay.

Throughout the revised version of the manuscript, we referred to the measurement of "Endotoxin Activity (EA)". No brand name has been used.

Please include an ethics statement before the numbered protocol steps, indicating that the protocol follows the guidelines of your institution's human research ethics committee.

Added. See Page 3, lines 102-105.

4.

4. 1: This section should be in the imperative.

The section has been modified as requested (Page 3, from line 110)

5. 2.10: How long do you vortex here?

10 seconds. The text has been changed accordingly.

6. 2.10.2: What does 'for duplicate tubes 1, 2 and 3' mean-repeat the readings for those tubes?

Each EA assay is run in duplicates, meaning the same blood sample is tested through chemiluminometry in two separate sets of tubes (tube #1, tube #2, tube #3 AND tube#1-duplicate, tube#2-duplicate, tube#3-duplicate). The two resulting EAs are averaged. This is repeatedly remarked in the protocol description (1.3, 2.2, 2.5, 2.6, 2.7, 2.10.2, 2.11).

7. 3: This section probably belongs (in paragraph form) in the results section; otherwise it should be in the imperative and entirely numbered steps.

We thank the editor for the useful suggestion. After proper rephrasing, the paragraph was moved to the Representative Results section.

8. Figure 1: It is unclear why this is here; the video will probably convey all essential information about the instrument.

The figure was added during the review process following reviewer #1/comment #3. However, we agree with the editor and removed the figure representing the instrument.

Kind regards,

Riccardo Pinoiroli, M