Journal of Visualized Experiments

Use of autometallography to localize and semi-quantify silver in cetacean tissues --Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video
Manuscript Number:	JoVE58232R2
Full Title:	Use of autometallography to localize and semi-quantify silver in cetacean tissues
Keywords:	Autometallography (AMG); cetacean; cetacean histological Ag assay (CHAA); ImageJ; inductively coupled plasma mass spectroscopy (ICP-MS); silver (Ag); quantitative analysis
Corresponding Author:	Wen-Ta Li National Taiwan University Taipei, N.A. TAIWAN
Corresponding Author's Institution:	National Taiwan University
Corresponding Author E-Mail:	heerolee1104@gmail.com
Order of Authors:	Wen-Ta Li
	Bang-Yeh Liou
	Wei-Cheng Yang
	Meng-Hsien Chen
	Hui-Wen Chang
	Hue-Ying Chiou
	Victor Fei Pang
	Chian-Ren Jeng
Additional Information:	
Question	Response
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Room 513, Building 3, Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan (R.O.C.)

44

CORRESPONDING AUTHOR:

Chian-Ren Jeng

KEYWORDS:

Autometallography (AMG); Cetacean; Cetacean Histological Ag Assay (CHAA); ImageJ; Inductively Coupled Plasma Mass Spectroscopy (ICP-MS); Silver (Ag); Quantitative Analysis

SHORT ABSTRACT:

A protocol is presented to localize Ag in cetacean liver and kidney tissues by autometallography. Furthermore, a new assay, named the cetacean histological Ag assay (CHAA) is developed to estimate the Ag concentrations in those tissues.

LONG ABSTRACT:

Silver nanoparticles (AgNPs) have been extensively used in commercial products, including textiles, cosmetics, and health care items, due to their strong antimicrobial effects. They also may be released into the environment and accumulate in the ocean. Therefore, AgNPs are the major source of Ag contamination, and public awareness of the environmental toxicity of Ag is increasing. Previous studies have demonstrated the bioaccumulation (in producers) and magnification (in consumers/predators) of Ag. Cetaceans, as the apex predators of ocean, may have been negatively affected by the Ag/Ag compounds. Although the concentrations of Ag/Ag compounds in cetacean tissues can be measured by inductively coupled plasma mass spectroscopy (ICP-MS), the use of ICP-MS is limited by its high capital cost and the requirement for tissue storage/preparation. Therefore, an autometallography (AMG) method with an image quantitative analysis by using formalin-fixed, paraffin-embedded (FFPE) tissue may be an adjuvant method to localize Ag distribution at the suborgan level and estimate the Ag concentration in cetacean tissues. The AMG positive signals are mainly brown to black granules of various sizes in the cytoplasm of proximal renal tubular epithelium, hepatocytes, and Kupffer cells. Occasionally, some amorphous golden yellow to brown AMG positive signals are noted in the lumen and basement membrane of some proximal renal tubules. The assay for estimating the Ag concentration is named the Cetacean Histological Ag Assay (CHAA), which is a regression model established by the data from image quantitative analysis of the AMG method and ICP-MS. The use of AMG with CHAA to localize and semi-quantify heavy metals provides a convenient methodology for spatio-temporal and cross-species studies.

INTRODUCTION:

Silver nanoparticles (AgNPs) have been extensively used in commercial products, including textiles, cosmetics, and health care items, due to their great antimicrobial effects^{1,2}. Therefore, the production of AgNPs and the number of AgNP-containing products are increased over time^{3,4}. However, AgNPs may be released into the environment and accumulate in the ocean^{5,6}. They have become the major source of Ag contamination, and the public awareness of the environmental toxicity of Ag is increasing.

The status of AgNPs and Ag in the marine environment is complicated and constantly changing. Previous studies have indicated that AgNPs can remain as particles, aggregate, dissolve, react with different chemical species, or be regenerated from Ag⁺ ions^{7,8}. Several types of Ag

compounds, such as AgCl, have been found in marine sediments, where they can be ingested by benthic organisms and enter the food chain 9,10 . According to a previous study conducted in the Chi-ku Lagoon area along the southwestern coast of Taiwan, the Ag concentrations of marine sediments are extremely low and similar to the crustal abundance, and those of fish liver tissue are usually below the detection limit ($< 0.025 \, \mu g/g \, wet/wet$) 11 . However, previous studies conducted in different countries have demonstrated relatively high Ag concentrations in the livers of cetaceans 12,13 . The Ag concentration in the livers of cetaceans is age-dependent, suggesting that the source of Ag in their bodies is most likely their prey 12 . These findings further suggest the biomagnification of Ag in animals at higher trophic levels. Cetaceans, as the apex predators in the ocean, may have suffered negative health impacts caused by Ag/Ag compounds $^{12-14}$. Most importantly, like cetaceans, humans are mammals, and the negative health impacts caused by Ag/Ag compounds in cetaceans may also occur in humans. In other words, cetaceans could be sentinel animals for the health of marine environment and humans. Therefore, the health effects, the tissue distribution, and concentration of Ag in cetaceans are of great concern.

Although the concentrations of Ag/Ag compounds in cetacean tissues can be measured by inductively coupled plasma mass spectroscopy (ICP-MS), the use of ICP-MS is limited by its high capital cost (instrument and maintenance) and the requirements for tissue storage/preparation^{12,15}. In addition, it is usually difficult to collect comprehensive tissue samples in all investigations of stranded cetacean cases due to logistical difficulties, a shortage of manpower, and a lack of related resources¹². The frozen tissue samples for ICP-MS analysis are not easily stored because of limited refrigeration space, and frozen tissue samples may be discarded due to broken refrigeration equipment¹². These aforementioned obstacles hamper investigations of contamination levels in cetacean tissues by ICP-MS analysis using frozen tissue samples. In contrast, formalin fixed tissue samples are relatively easy to collect during the necropsy of dead-stranded cetaceans. Therefore, it is necessary to develop an easy to use and inexpensive method to detect/measure the heavy metals in cetacean tissues by using formalin fixed tissue samples.

Although the suborgan distributions and concentrations of alkali and alkaline earth metals may be altered during the formalin-fixed, paraffin-embedded (FFPE) process, only lesser effects on transition metals, such as Ag, have been noted¹⁶. Hence, FFPE tissue has been considered as an ideal sample resource for metal localization and measurements^{16,17}. Autometallography (AMG), a histochemical process, can amplify heavy metals as variably sized golden yellow to black AMG positive signals on FFPE tissue sections, and these amplified heavy metals can be visualized under light microscopy¹⁸⁻²¹. Hence, the AMG method provides information on the suborgan distributions of heavy metals. It can provide important additional information for studying the metabolic pathways of heavy metals in biological systems because ICP-MS can only measure the concentration of heavy metals at the organ level¹⁸. Furthermore, digital image analysis software, such as ImageJ, has been applied to the quantitative analysis of histological tissue sections^{22,23}. The variably-sized golden yellow to black AMG positive signals of FFPE tissue sections can be quantified and used to estimate the concentrations of heavy metals. Although the absolute Ag concentration cannot be directly determined by the AMG method with image

- 133 quantitative analysis, it can be estimated by a regression model based on the data obtained
- 134 from the image quantitative analysis and ICP-MS, which is named cetacean histological Ag assay
- 135 (CHAA). Considering the difficulties in measuring Ag concentrations by ICP-MS analysis in most
- 136 stranded cetaceans, CHAA is a valuable adjuvant method to estimate Ag concentrations in
- 137 cetacean tissues, which cannot be determined by ICP-MS analysis due to the lack of frozen
- 138 tissue samples. This paper describes the protocol of a histochemical technique (AMG method)
- 139 for localizing Ag at the suborgan level and an assay named CHAA to estimate the Ag
- 140 concentrations in the liver and kidney tissues of cetaceans.

141

142 [Place Figure 1 here]

143 144

PROTOCOL:

145

- 146 The study was performed in accordance with international guidelines, and the use of cetacean
- 147 tissue samples was permitted by the Council of Agriculture of Taiwan (Research Permit 104-
- 148 07.1-SB-62).

149 150

1. **Tissue Sample Preparation for ICP-MS Analysis**

151

- 152 Note: The liver and kidney tissues were collected from freshly dead and moderately autolyzed
- stranded cetaceans²⁴, including 6 stranded cetaceans of 4 different species, 1 *Grampus griseus* 153
- 154 (Gg), 2 Kogia spp. (Ko), 2 Lagenodelphis hosei (Lh), 1 Stenella attenuata (Sa). Each stranded
- 155 cetacean had a field number for individual identification. The tissue sample preparation for ICP-
- 156 MS analysis followed the method established in M.H. Chen's lab, and M.H. Chen's lab
- conducted the ICP-MS analysis 11,13,25. 157

158

159

1.1. Collect liver and kidney tissues for ICP-MS analysis from stranded cetaceans and store 160 them at -20 °C until use.

161

162 Collect pair-matched liver and kidney tissues from the same stranded cetaceans for 1.2. 163 AMG analysis (please see step 2).

164

165 1.3. Trim the outer layer of the tissue samples collected for ICP-MS analysis with a stainlesssteel scalpel. Cut the inner part of the tissue samples into small cubes (about 1 cm³) and place 166 167 them in zip lock plastic bags. Normally, each bag contains 10 g of the tissues.

168

169 1.4. Store the plastic bags containing tissue samples at -20 °C for subsequent procedures.

170

- 171 Put the 1 cm³ cubes samples in a freeze dry system (-50 °C, Vacuum pump with a
- 172 displacement of at least 98 L/min, 0.002 mBar) for at least 72 h till completely dried by
- 173 weighing to the constant.

174

- 175 1.6. Homogenize the dried cubes into powder with a homogenizer for subsequent tissue
- 176 digestion.

177		
172	17	Weigh 0.3 g of homogenized freeze-dried samples in 30 ml holy

1.7. Weigh 0.3 g of homogenized freeze-dried samples in 30 mL polytetrafluoroethylene (PTFE) bottles and mix them with 10 mL of 65% w/w nitric acid.

180

181 1.8. Put closures on the PTFE bottles, but leave the closures untightened.

182

Note: This allows the brown fume to form in the PTFE bottles and reflux inside the bottle for digestion until the brown fume disappears and turns clear.

185

1.9. Heat the digested samples with a hot plate, from 30 °C to 110/120 °C (according to the brown fume forming condition) in the PTFE bottles for 2 to 3 weeks until the brownish gas in the PTFE bottles becomes colorless and the liquid in the PTFE bottles becomes translucent greenish pale yellow or completely clear.

190

191 Note: Perform the heating process in chemical fume hood.

192

193 1.10. Heat the digested samples at 120 °C to evaporate the nitric acid in the PTFE bottles until only 0.5-1 mL remains.

195

Note: Perform the heating process in a chemical fume hood, and always monitor the temperature increase to ensure that no brownish gas leaks from the PTFE bottles' closures.

198

199 1.11. Tighten the closures and cool them at room temperature for about 1 h.

200

201 1.12. Place the funnels with filter papers on 25 mL volumetric flasks and wash the remaining liquid with 1 M HNO $_3$ to a final volume of 25 mL.

203

Note: Wash the bottle for at least three times and the closure twice.

204205

206 1.13. Validate the analytical quality of ICP-MS analysis by using the standard reference 207 materials, including DOLT-2 (dogfish liver) and DORM-2 (dogfish muscle).

208

1.14. Use duplicates of each analytical sample and triplicates of standard reference materialsfor ICP-MS analysis.

211

1.15. Average the Ag concentrations of each analytic samples and present the data as dry weight basis concentration (μ g/g dry weight).

214215

2. Tissue Sample Preparation for AMG Analysis

216

2.1. Collect pair-matched liver and kidney tissues for AMG analysis from a stranded cetacean and fix them in 10% neutral buffered formalin until use.

219

Note: Store the tissue samples in plastic bottles in 10% neutral buffered formalin (NBF, pH 7.0) for 24 to 48 hours. The volume of NBF should be at least 10 times greater than the tissue volume.

223224

2.2. Trim the formalin fixed liver and kidney tissues with stainless steel disposable microtome blades and put the trimmed tissue sections in cassettes with labels.

225226227

Note: The size of each tissue sections should be approximately 2 cm x 1 cm and the thickness of each tissue section should not exceed 3 mm. Put the liver and kidney tissues from the same individual in the same cassette.

229230231

232

233

228

2.3. Dehydrate the trimmed tissue sections with a tissue processor through a series of graded ethanol (70% for 1 h, 80% for 1 h, 95% for 1 h, 95% for 2 h, 100% for 1 h x 2 staining dishes, and 100% for 2 h), non-xylene (for 1 h and 2 h in different staining dishes), and immerse the dehydrated tissue samples in paraffin (for 1 h and 2 h in different staining dishes).

234235

236 2.4. Place the dehydrated tissue samples in the bottoms of steel histology molds and embed the dehydrated tissue samples with paraffin.

238239

2.5. Chill the formalin fixed paraffin-embedded (FFPE) tissue blocks at −20 °C. Trim the FFPE blocks with the microtome until the tissue surface is exposed.

240241242

2.6. Chill the FFPE blocks at -20 °C again. Section the FFPE blocks at 5 μm by microtome.

243244

2.7. Fill a water bath with double-distilled water at 45 °C. Lift the ribbons of tissue sections and make them float on the surface of the warm water by using tweezers and brushes.

245246247

2.8. Separate the ribbons of tissue sections with tweezers. Place a section onto a microscope slide.

248249250

2.9. Place the microscope slides on a slide warmer and allow sections to dry overnight at 37 °C.

251252

2.10. Put the microscope slides in slide racks and deparaffinize them by soaking them in 3
 different staining dishes of pure non-xylene (approximately 200 to 250 mL) for 8, 5, and 3 min.

255256

257

2.11. Hydrate the tissue sections in slide racks by soaking them in different staining dishes of graded ethanol solutions (100% ethanol twice, 90% ethanol once and 80% ethanol once [1 min each]), and rinse them in double-distilled water.

258259

Note: These solutions are approximately 200 to 250 mL in different staining dishes.

260261

262 2.12. Rinse the tissue sections in phosphate-buffered saline (PBS) with 0.5% Triton X-100, wash them with PBS for several times, and then rinse them in double-distilled water.

264 265 Note: These solutions are approximately 200 to 250 mL in different staining dishes. 266 267 2.13. Prepare equal amounts of the three components (initiator, moderator, and activator) 268 provided by silver enhancement kit in dark and mix them thoroughly. 269 270 Note: The solutions of moderator and activator are sticky, so please use pipette with wide tip 271 openings (or cut the tips to create wider openings). For each slide, 300 μL of the mixed solution 272 (depending on the size of the tissue section) is usually enough. Therefore, if 10 slides are used, 273 the amount of each component (initiator, moderator, and activator) is 1000 µL (the mixed 274 solution is 3000 µL for 10 slides). 275 276 2.14. Incubate the tissue sections in the mixed solution for 15 min in the dark at room 277 temperature. Fully cover the tissue sections on the slides with the mixed solution. A longer 278 incubation time may lead to false-positive AMG signals. 279 280 2.15. Wash the slides with double-distilled water and stain them in hematoxylin for 10 s as a 281 counterstain. 282 283 2.16. Wash the slides with running tap water, dry them, and mount them with mounting 284 medium. 285 286 2.17. Examine the slides under a light microscope. 287 288 2.18. Randomly capture ten histological images with a 40X objective lens from each tissue 289 section by using a connected digital camera with computer imaging software. 290 291 **Semi-Quantitative Analysis for AMG Positive Values of Histological Images** 292 293 Note: AMG positive value means the percentage of the area with AMG positive signals. 294 295 3.1. Use image analysis software (ImageJ) to analyze the histological images. 296 297 3.2. Open the histological image by pressing **File | Open**. 298

300 In

3.3.

3.4.

nuclear counterstain (Figure 2).

Image | Type | RGB Stack.

signals are usually decreased under the blue channel when hematoxylin stain is applied for

Split the chosen picture into three color channels (red, blue, and green) by pressing

Quantify the AMG positive signals by using the blue channel. Nuclear false positive

303 304 305

306

307

302

299

3.5. Measure the percentage of the area with AMG positive signals in each histological image with the threshold tool (Image | Adjust | Threshold).

308	
309	3.6. Manually adjust the cut-off value of the threshold for each histological image (from 90
310	to 110) based on the presences of false positive areas in nuclei and/or red blood cells.
311	
312	Note: In default setting, the AMG positive signals should be highlighted in red.
313	
314	3.7. Press Analyze Set Measurements, and check the box of Area Fraction to specify that
315	the area fraction is recorded.
316	
317	3.8. Press Analyze Measure. The positive percent area of each histological image is
318	displayed in the column of %Area of the Result window.
319	
320	3.9. Average the positive percent areas of 10 histological images from each tissue section
321	and define the result as the AMG positive value for each tissue section.
322	
323	[Place Figure 2 here]
324	
325	4. Establishment of the Cetacean Histological Ag Assay (CHAA) by Regression Model
326	
327	Note: The following analysis is performed in Prism 6.01 for Windows.
328	
329	4.1. Evaluate the correlation between the results of ICP-MS and AMG positive values.
330	
331	4.2. Open the software, create a new project file, and choose XY and Correlation.
332	
333	4.3. Input data including the results of ICP-MS and AMG positive values.
334	
335	4.4. Press Analysis and choose Correlation under the category XY Analysis to analyze the
336	strength of association between the results of the ICP-MS and AMG positive values by Pearson
337	correlation analysis.
338	
339	Note: The results of the ICP-MS and AMG positive values have to be positively correlated with
340	each other; otherwise, the subsequent regression model should not be developed.
341	
342	4.5. Statistically compare the regression models, including linear regression, quadratic
343	regression, cubic regression, and linear regression through origin, through statistics
344	software ^{12,26,27} .
345	
346	Note: If the regression model generates an unrealistic Ag concentration, the regression model
347	should be abandoned ¹² .
348	
349	4.6. Go back to the Data Table (left panel) and press Analysis Nonlinear regression (curve
350	fit) under the category XY Analysis OK.
351	

4.7. In the window **Parameters: Nonlinear regression**, choose different regression model in the page **Fit** and then compare different regression models in the page **Compare**.

354 355

356

357

360

362

4.8. In the page **Compare**, choose the comparison methods, including the extra sum-of-squares F test and Akaike's information criterion (AIC). According to the results of the comparison methods, use a relatively appropriate regression model in the CHAA.

358 359

4.9. Estimate Ag concentrations of the cetacean liver and kidney tissues with unknown Ag concentrations by using the CHAA.

361

4.10. Evaluate the accuracy and precision of the CHAA for liver and kidney tissues. The difference between precision and accuracy is illustrated in **Figure 3**.

363 364

4.11. Accuracy: Calculate the mean standard deviation (SD) from differences between knownand estimated Ag concentrations.

367 368

369

370

4.12. Precision: Perform repeated measurement (at least triplicate) of AMG positive values of serial sections from the same FFPE tissues. Calculate the mean SD of measurements from liver or kidney tissues from differences between known and estimated Ag concentrations

371

Note: The methods of evaluating the accuracy and precision are depicted in **Figure 4**.

372373

374 [Place Figures 3 and 4 here]

375

376 5. Estimation of Ag Concentrations by CHAA.

377

5.1. Collect the liver and kidney tissues from stranded cetaceans and fix them in 10% neutral buffered formalin.

380

381 5.2. Process the formalin-fixed tissues routinely (please see step 2).

382

5.3. Estimate the Ag concentrations of the cetacean liver and kidney tissues with unknown Ag concentrations by CHAA (please see steps 3 and 4).

385 386

REPRESENTATIVE RESULTS:

- Representative images of the AMG positive signals in the cetacean liver and kidney tissues are shown in **Figure 5**. The AMG positive signals include variably-sized brown to black granules of
- various sizes in the cytoplasm of proximal renal tubular epithelium, hepatocytes, and Kupffer
- 390 cells. Occasionally, amorphous golden yellow to brown AMG positive signals are noted in the
- lumen and basement membrane of some proximal renal tubules. There is a positive correlation
- 392 between the results of ICP-MS and AMG positivity values in liver and kidney tissues, and linear
- 393 regression through origin is preferred according to the extra sum-of-squares F test and
- AIC^{12,26,27}. In the accuracy test, the mean SDs of the CHAA for liver and kidney are 3.24 and 0.16,
- respectively. In the precision test, the mean SDs of the CHAA for liver and kidney are 2.8 and

0.35, respectively. The raw data of the accuracy and precision tests are summarized in Table 1. The AMG positive values, Ag concentrations estimated by CHAA, and Ag concentrations measured by ICP-MS from the liver and kidney tissues of these six stranded cetaceans are summarized in **Table 2**.

FIGURE AND TABLE LEGENDS:

402 403

404

396

397

398

399

400 401

> Figure 1: Flowchart depicting the establishment and application of cetacean histological Ag assay (CHAA) for estimating Ag concentrations. CHAA = cetacean histological Ag assay, FFPE = Formalin-fixed, paraffin-embedded, ICP-MS = inductively coupled plasma mass spectroscopy.

405 406 407

Figure 2: The presence of nuclear false positive signals under different color channels (counterstain: hematoxylin stain). Representative nuclear false positive signals are indicated by yellow arrows. PPA = positive percentage of areas.

409 410 411

412

413

408

Figure 3: The difference between accuracy and precision. Accuracy means how close the measurement is to the true value (i.e., Ag concentration determined by ICP-MS); precision means the repeatability of the measurement (i.e., the consistency among the repeated measurements of AMG positive values from the triplicate tissue sections).

414 415 416

417

418

419

420

421

Figure 4: The scheme depicting the methods of evaluating the accuracy and precision. CHAA = cetacean histological Ag assay; FFPE = Formalin-fixed, paraffin-embedded; ICP-MS = inductively coupled plasma mass spectroscopy; Ai = Each of the Ag concentrations determined by ICP-MS of each pair-matched tissue sample; Bi = Each of the Ag concentrations estimated by CHAA of each pair-matched tissue sample; Ci, Di, and Ei = Each of The Ag concentrations estimated by CHAA of triplicate samples from each pair-matched tissue sample; i = 1 to n. Please see raw data of the accuracy and precision tests in the section of representative results.

422 423 424

425

426

427

428

429

430

431

432

433

434

435

436

Figure 5: Representative histological images of the AMG positive signals in the liver and kidney tissues of cetaceans (counterstain: hematoxylin stain). (A) The AMG positive signals in cetacean liver tissue are evenly distributed (Grampus griseus (Gg); field code: TP20111116; Ag concentration measured by inductively coupled plasma mass spectroscopy (ICP-MS): 21.82 µg/g dry weight). (B) The AMG positive signals are brown to black granules of various sizes in the cytoplasm of hepatocytes (red arrows) and Kupffer cells (red arrow heads) (Gg; field code: TP20111116). (C) A few AMG positive signals of brown to black granules are shown in the cytoplasm of hepatocytes (red arrows) (Kogia spp. (Ko); field code: TC20110722; Ag concentration measured by ICP-MS: 3.86 µg/g dry weight). (D) The AMG positive signals in cetacean kidney tissue are mainly located in the renal cortex (Gg; field code: TP20111116; Ag concentration measured by ICP-MS: 0.42 µg/g dry weight). The black dashed line is placed on the junction between the renal cortex and medulla. (E) Higher magnification of Figure 5D (red dashed rectangle). The AMG positive signals in the renal cortex are brown to black granules of various sizes in the cytoplasm of the proximal renal tubular epithelium (red arrows). Amorphous golden yellow to brown AMG positive signals are shown in the lumens (red arrow

437 438

439 head) and basement membrane (yellow arrow head) of some proximal renal tubules. No to minimal AMG positive signals are shown in the glomeruli (green arrow) and distal renal tubules (green arrow head)(Gg; field code: TP20111116). **(F)** Scattered brown granules of various sizes are shown in the cytoplasm of the proximal renal tubular epithelium (red arrows) (Ko; field code: TC20110722; Ag concentration measured by ICP-MS: $0.05 \mu g/g$ dry weight).

Table 1: The representative results of the accuracy and precision tests for cetacean histological Ag assay (CHAA). CHAA = cetacean histological Ag assay, ICP-MS = inductively coupled plasma mass spectroscopy, SD = standard deviation.

DISCUSSION:

The purpose of the article study is to establish an adjuvant method to evaluate the Ag distribution at suborgan levels and to estimate Ag concentrations in cetacean tissues. The current protocols include 1) Determination of Ag concentrations in cetacean tissues by ICP-MS, 2) AMG analysis of pair-matched tissue samples with known Ag concentrations, 3) Establishment of the regression model (CHAA) for estimating the Ag concentrations by AMG positive values, 4) Evaluation of the accuracy and precision of CHAA, and 5) Estimation of Ag concentrations by CHAA.

 In this study, the data of ICP-MS were significantly and positively correlated with those of AMG positive values, suggesting that the Ag concentration in cetacean tissues can be estimated by the AMG positive value. Therefore, the CHAA, which is based on the AMG positive value and regression model, has been developed for estimating the Ag concentrations in the liver and kidney tissues of cetaceans. Generally, a regression model with more parameters (*i.e.*, a more complex regression model) fits well into the data, but it is undetermined that the more complex one is actually better than the simpler one. Therefore, the best regression model must be chosen by statistical analysis^{26,27}. The results of the statistical analysis indicate that the linear regression model is sufficient to estimate the Ag concentration based on the AMG positive value¹².

In CHAA for kidney tissue, the mean SD (0.35) of the precision test was larger than that of the accuracy test (0.16). Conversely, in CHAA for liver tissue, the mean SD (2.8) of the precision test was smaller than that of the accuracy test (3.24). Based on this result, it is suggested that the uneven distribution of the AMG positive signals and the relatively low Ag concentrations in cetacean kidney tissue interfere negatively with the precision of CHAA for kidney tissue. Therefore, the CHAA for kidney tissue may be accurate but imprecise. However, the even distribution of the AMG positive signals and the relatively high Ag concentrations in cetacean liver tissues suggest that the CHAA for liver tissue is a reliable method to estimate the Ag concentrations in cetacean liver tissues. Furthermore, if more tissues with known Ag

concentrations determined by ICP-MS are available, a more accurate and precise regression model can be developed to estimate the Ag concentration.

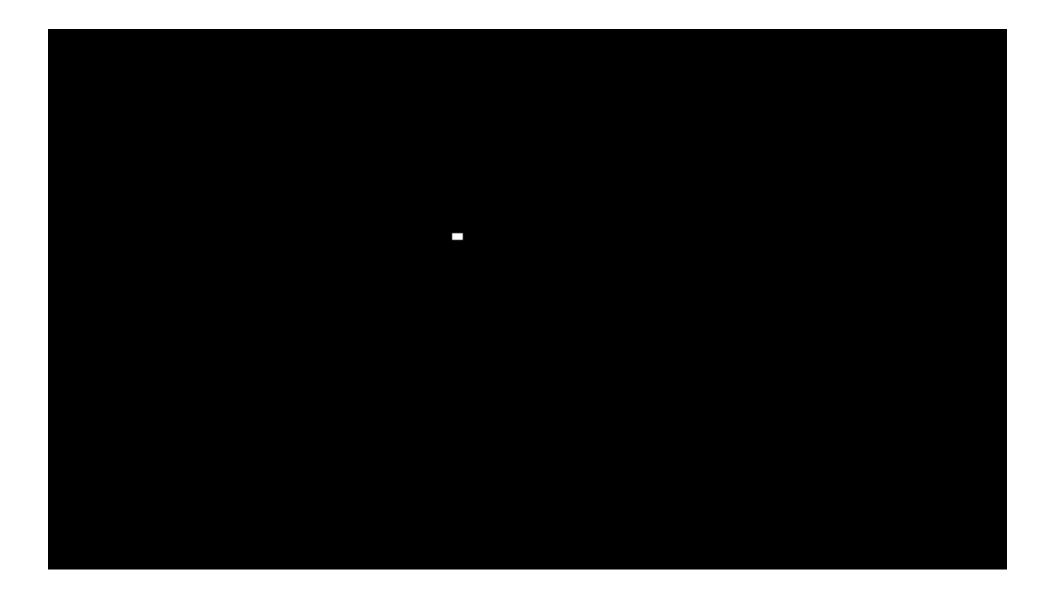
Although the current protocols provide an adjuvant method to investigate Ag in animal tissues, some limitations on the AMG method should be noted. First, false-positive AMG signals may present due to interference from other heavy metals, such as mercury, bismuth and zinc²⁸. Therefore, the results of the AMG method have to be interpreted with other specific methods, such as ICP-MS, to monitor the actual composition of heavy metals²⁸. Second, it is difficult to detect a homogenously distributed heavy metal because it may generate brighter amorphous AMG positive signals, which may not be identified by visualization under microscopic examination. Furthermore, the amorphous and brighter AMG positive signals are difficult to analyze with image analysis software because the color of the AMG positive signals may be similar to that of the background (e.g., the amorphous AMG positive signals found in the lumen of proximal renal tubules). Therefore, the AMG positive signals cannot be highlighted after the adjustment of the cut-off value of the threshold in the image analysis software. Third, because the AMG positive values are based on the percentage of the area of AMG positive signals, it is possible that the values of highly concentrated heavy metals may be underestimated.

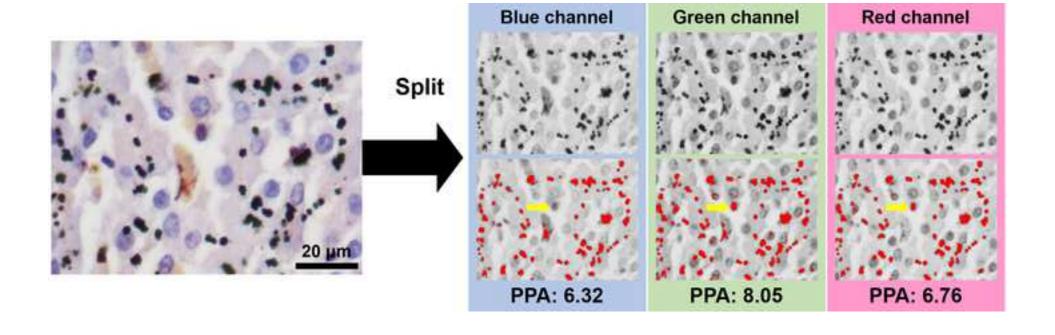
FFPE samples are relatively easy to collect and store, and our previous study has demonstrated that the current AMG method can successfully amplify FFPE samples stored for over 15 years¹². The mechanism of AMG is not affected by different animal species, for it has been wildly used in various animal species^{20,29-31}. Although the current article is focused on the cetaceans, the protocols described here may also be used in different animal species. In addition, the cost of the AMG method with ICP-MS is relatively low (as compared to laser ablation-ICP-MS), and thus the current protocols are valuable for researchers or countries lacking sufficient research funding to investigate the distribution and concentration of heavy metals in animal tissues. In conclusion, the use of AMG with quantitative analysis to localize and semi-quantify heavy metals provides a convenient methodology for spatio-temporal and cross-species studies.

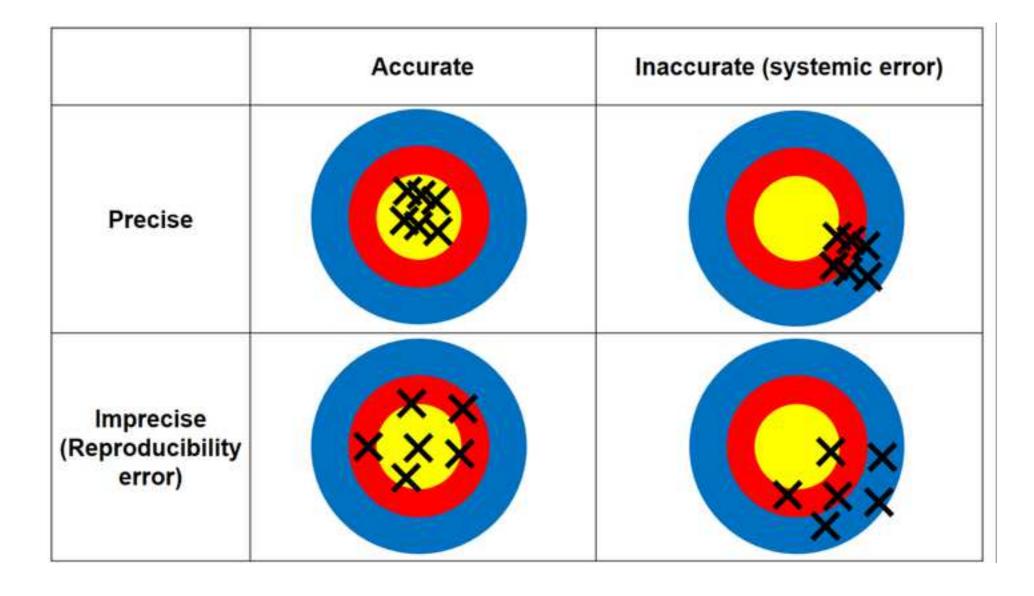
ACKNOWLEDGMENTS:

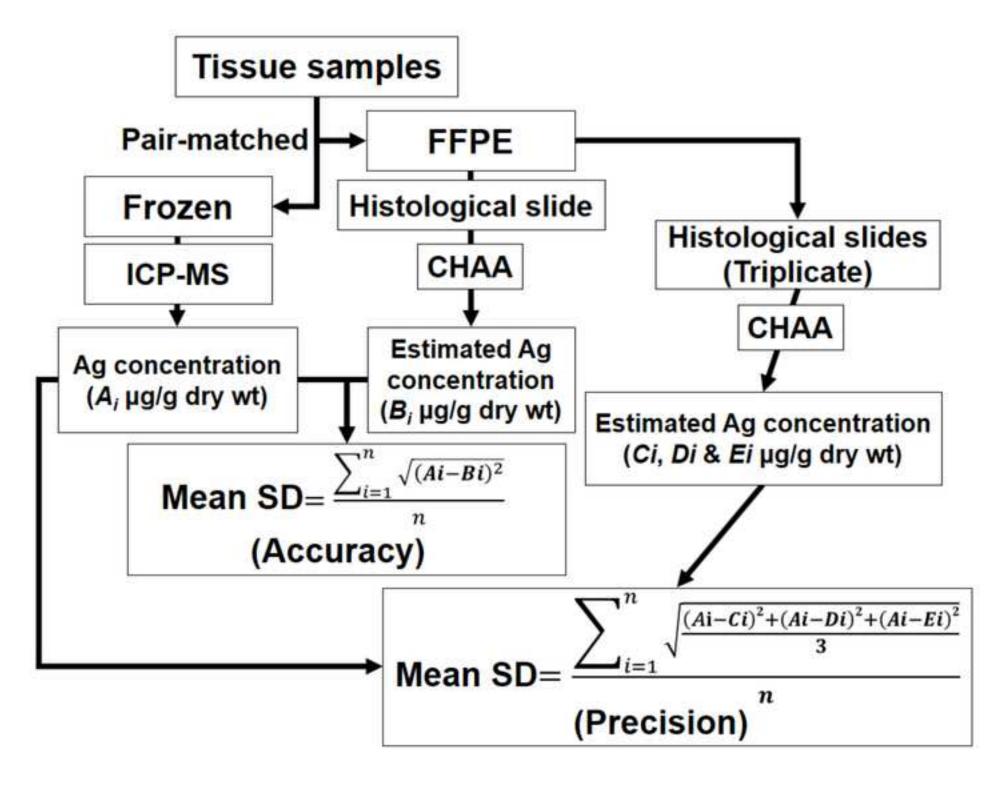
We thank the Taiwan Cetacean Stranding Network for sample collection and storage, including the Taiwan Cetacean Society, Taipei; the Cetacean Research Laboratory (Prof. Lien-Siang Chou), the Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei; the National Museum of Natural Science (Dr. Chiou-Ju Yao), Taichung; and the Marine Biology & Cetacean Research Center, National Cheng-Kung University. We also thank the Forestry Bureau, Council of Agriculture, Executive Yuan for their permit.

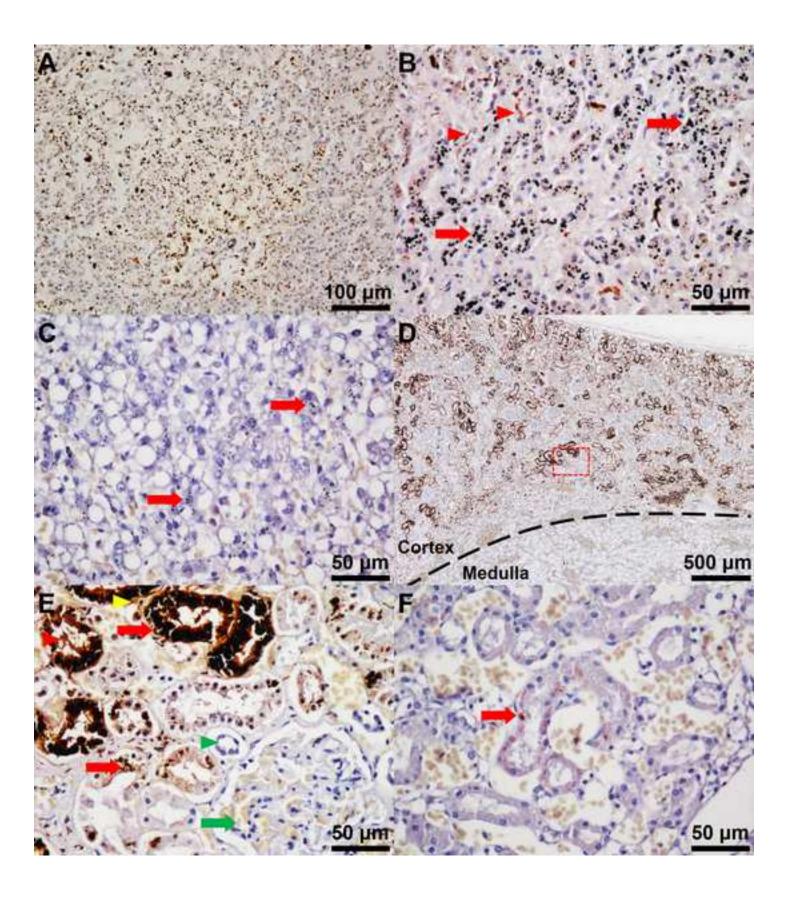
DISCLOSURES:


521 The authors have nothing to disclose.


REFERENCES:


1 McGillicuddy, E. *et al.* Silver nanoparticles in the environment: Sources, detection and ecotoxicology. *Science Total Environment*. **575**, 231-246 (2017).


- 526 2 Yu, S.J., Yin, Y.G., Liu, J.F. Silver nanoparticles in the environment. *Environmental Science*:
- 527 *Processes and Impacts.* **15** (1), 78-92 (2013).
- 528 3 Hansen, S.F. et al. Nanoproducts- what is actually available to European consumers?
- 529 Environmental Science: Nano. **3** (1), 169-180 (2016).
- Vance, M.E. et al. Nanotechnology in the real world: Redeveloping the nanomaterial
- consumer products inventory. *Beilstein Journal of Nanotechnology*. **6** 1769-1780 (2015).
- 532 5 Farre, M., Gajda-Schrantz, K., Kantiani, L., Barcelo, D. Ecotoxicity and analysis of
- 533 nanomaterials in the aquatic environment. Analytical and Bioanalytical Chemistry. 393 (1), 81-
- 534 95 (2009).
- Walters, C.R., Pool, E.J., Somerset, V.S. Ecotoxicity of silver nanomaterials in the aquatic
- environment: a review of literature and gaps in nano-toxicological research. Journal of
- 537 Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental
- 538 Engineering. **49** (13), 1588-1601 (2014).
- 539 7 Levard, C., Hotze, E.M., Lowry, G.V., Brown, G.E., Jr. Environmental transformations of
- silver nanoparticles: impact on stability and toxicity. *Environmental Science & Technology.* **46**
- 541 (13), 6900-6914 (2012).
- Massarsky, A., Trudeau, V.L., Moon, T.W. Predicting the environmental impact of
- 543 nanosilver. *Environmental Toxicology and Pharmacology.* **38** (3), 861-873 (2014).
- Wang, H. et al. Toxicity, bioaccumulation, and biotransformation of silver nanoparticles
- in marine organisms. *Environmental Science and Technology.* **48** (23), 13711-13717 (2014).
- 546 10 Buffet, P.E. et al. A marine mesocosm study on the environmental fate of silver
- nanoparticles and toxicity effects on two endobenthic species: the ragworm *Hediste diversicolor*
- and the bivalve mollusc Scrobicularia plana. Science of the Total Environment. 470-471 1151-
- 549 1159 (2014).
- 550 11 Chen, M.H. Baseline metal concentrations in sediments and fish, and the determination
- of bioindicators in the subtropical Chi-ku Lagoon, S W Taiwan. Marine Pollution Bulletin. 44 (7),
- 552 703-714 (2002).
- 553 12 Li, W.T. et al. Investigation of silver (Ag) deposition in tissues from stranded cetaceans by
- autometallography (AMG). Environmental Pollution. 235 534-545 (2018).
- 555 13 Chen, M.H. et al. Tissue concentrations of four Taiwanese toothed cetaceans indicating
- the silver and cadmium pollution in the western Pacific Ocean. Marine Pollution Bulletin. 124
- 557 (2), 993-1000 (2017).
- 558 14 Li, W.T. et al. Immunotoxicity of silver nanoparticles (AgNPs) on the leukocytes of
- common bottlenose dolphins (*Tursiops truncatus*). Scientific Reports. "In Press" (2018).
- Bornhorst, J.A., Hunt, J.W., Urry, F.M., McMillin, G.A. Comparison of sample preservation
- methods for clinical trace element analysis by inductively coupled plasma mass spectrometry.
- 562 American Journal of Clinical Pathology. **123** (4), 578-583 (2005).
- 563 16 Bonta, M., Torok, S., Hegedus, B., Dome, B., Limbeck, A. A comparison of sample
- 564 preparation strategies for biological tissues and subsequent trace element analysis using LA-ICP-
- 565 MS. Analytical and Bioanalytical Chemistry. **409** (7), 1805-1814 (2017).
- 566 17 Bischoff, K., Lamm, C., Erb, H.N., Hillebrandt, J.R. The effects of formalin fixation and
- tissue embedding of bovine liver on copper, iron, and zinc analysis. *Journal of Veterinary*
- 568 *Diagnostic Investigation.* **20** (2), 220-224 (2008).


- 569 18 Miller, D.L., Yu, I.J., Genter, M.B. Use of Autometallography in Studies of Nanosilver
- 570 Distribution and Toxicity. *International Journal of Toxicology.* **35** (1), 47-51 (2016).
- 571 19 Anderson, D.S. et al. Influence of particle size on persistence and clearance of
- aerosolized silver nanoparticles in the rat lung. *Toxicological Sciences.* **144** (2), 366-381 (2015).
- 573 20 Kim, W.Y., Kim, J., Park, J.D., Ryu, H.Y., Yu, I.J. Histological study of gender differences in
- accumulation of silver nanoparticles in kidneys of Fischer 344 rats. *Journal of Toxicology and*
- 575 Environmental Health, Part A. **72** (21-22), 1279-1284 (2009).
- 576 21 Danscher, G. Applications of autometallography to heavy metal toxicology.
- 577 *Pharmacology Toxicology.* **68** (6), 414-423 (1991).
- 578 22 Deroulers, C. et al. Analyzing huge pathology images with open source software.
- 579 *Diagnostic Pathology.* **8**, 92 (2013).
- 580 23 Shu, J., Dolman, G.E., Duan, J., Qiu, G., Ilyas, M. Statistical colour models: an automated
- digital image analysis method for quantification of histological biomarkers. *BioMedical*
- 582 *Engineering Online.* **15**, 46 (2016).
- 583 24 Geraci, J.R., Lounsbury, V.J. Specimen and data collection. *Marine mammals ashore: a*
- 584 *field guide for strandings*. National Aquarium. Baltimore. 167-230 (2005)
- 585 25 Shih, C.-C., Liu, L.-L., Chen, M.-H., Wang, W.-H. Investigation of heavy metal
- bioaccumulation in dolphins from the coastal waters off Taiwan. National Sun Yat-sen University.
- 587 Kaohsiung (2001).
- 588 26 Liang, C.S. et al. The relationship between the striatal dopamine transporter and novelty
- seeking and cognitive flexibility in opioid dependence. Progress in Neuro-Psychopharmacology
- 590 and Biological Psychiatry. **74**, 36-42 (2017).
- 591 27 Spiess, A.N., Neumeyer, N. An evaluation of R² as an inadequate measure for nonlinear
- models in pharmacological and biochemical research: a Monte Carlo approach. BMC
- 593 *Pharmacology.* **10**, 6 (2010).
- 594 28 Stoltenberg, M., Danscher, G. Histochemical differentiation of autometallographically
- traceable metals (Au, Ag, Hg, Bi, Zn): protocols for chemical removal of separate
- autometallographic metal clusters in Epon sections. *Histochemical Journal.* **32** (11), 645-652
- 597 (2000).
- 598 29 Dimitriadis, V.K., Domouhtsidou, G.P., Raftopoulou, E. Localization of Hg and Pb in the
- 599 palps, the digestive gland and the gills in *Mytilus galloprovincialis* (L.) using autometallography
- and X-ray microanalysis. *Environmental Pollution.* **125** (3), 345-353 (2003).
- 601 30 Loumbourdis, N.S., Danscher, G. Autometallographic tracing of mercury in frog liver.
- 602 Environmental Pollution. **129** (2), 299-304 (2004).
- 503 Stoltenberg, M., Larsen, A., Kemp, K., Bloch, D., Weihe, P. Autometallographic tracing of
- mercury in pilot whale tissues in the Faroe Islands. *International Journal of Circumpolar Health.*
- 605 **62** (2), 182-189 (2003).

Accuracy test						
Field number	Liver			Kidney		
rieid Hullibei	CHAA*	ICP-MS	SD	CHAA*	ICP-MS	SD
TP20111116	16.82	21.82	4.99	0.64	0.42	0.22
TC20110611	10.12	2.77	0.96	0.11	0.05	0.35
TC20110722	2.70	3.86	1.15	0.01	0.05	0.04
TD20110608	0.76	0.06	7.35	0.02	0.05	0.06
TP20110830	13.97	14.93	4.28	0.69	1.04	0.24
IL20110101	6.00	1.73	0.72	0.38	0.14	0.03
	Mea	in SD	3.24	Mea	n SD	0.16
		Prec	ison test			
Field number		Liver		Kidney		
rieiu iiuiiibei	CHAA*	ICP-MS	SD	CHAA*	ICP-MS	SD
	20.90			0.21		
TP20111116	16.11	21.82	4.08	0.22	0.42	0.44
	17.75			0.14		
	1.52			0.00		
TD20110608	2.40	0.06	1.71	0.00	0.05	0.02
	1.12			0.00		
	13.12			0.45		
TP20110830	12.50	14.93	2.70	0.26	1.04	0.59
	11.35			0.33		
	Mea	in SD	2.83	Mea	n SD	0.35

^{*}The regression equations of the CHAA for livers and kidneys were respectively Y = $2.249 \times X$ (adjusted R2 = 0.74) and Y = $0.07288 \times X$ (adjusted R2 = 0.69).

Field number	Species		Liver				
i leid Hullibei	Species	AMG	CHAA*	ICP-MS	AMG		
TP20111116	Gg	7.48	16.82	21.82	8.82		
TC20110611	Ko	4.50	10.12	2.77	1.52		
TC20110722	Ko	1.20	2.70	3.86	0.11		
TD20110608	Lh	0.34	0.76	0.06	0.21		
TP20110830	Lh	6.21	13.97	14.93	9.43		
IL20110101	Sa	2.67	6.00	1.73	5.26		

^{*}The regression equations of the CHAA for livers and kidneys were respectively Y = 0.74) and Y = $0.07288 \times X$ (adjusted R2 = 0.69).

Kidney	
CHAA*	ICP-MS
0.64	0.42
0.11	0.05
0.01	0.05
0.02	0.05
0.69	1.04
0.38	0.14

^{= 2.249} x X (adjusted R2

Field number	Species		Liver			Kidney	
rieid Humbei	Species	AMG	CHAA*	ICP-MS	AMG	CHAA*	ICP-MS
TP20111116	Gg	7.48	16.82	21.82	8.82	0.64	0.42
TC20110611	Ko	4.50	10.12	2.77	1.52	0.11	0.05
TC20110722	Ko	1.20	2.70	3.86	0.11	0.01	0.05
TD20110608	Lh	0.34	0.76	0.06	0.21	0.02	0.05
TP20110830	Lh	6.21	13.97	14.93	9.43	0.69	1.04
IL20110101	Sa	2.67	6.00	1.73	5.26	0.38	0.14

^{*}The regression equations of the CHAA for livers and kidneys were respectively Y = $2.249 \times X$ (adjusted R2 = 0.74) and Y = $0.07288 \times X$ (adjusted R2 = 0.69).

Name of Material/ Equipment	Company	Catalog Number
HQ Silver enhancement kit	Nanoprobes	#2012
Surgipath Paraplast	Leica Biosystems	39601006
100% Ethanol	Muto Pure Chemical Co., Ltd	4026
Non-Xylene	Muto Pure Chemical Co., Ltd	4328
Silane coated slide	Muto Pure Chemical Co., Ltd	511614
Cover glass (25 x 50 mm)	Muto Pure Chemical Co., Ltd	24501
Malinol	Muto Pure Chemical Co., Ltd	20092
GM Haematoxylin Staining	Muto Pure Chemical Co., Ltd	3008-1
10% neutral buffered formalin solution	Chin I Pao Co., Ltd	
Tip (1000 μL)	MDBio, Inc.	1000
PIPETMAN Classic P1000	Gilson, Inc.	F123602
15 ml Centrifuge Tube	GeneDireX, Inc.	PC115-0500
Dogfish liver	National Research Council of Canada	DOLT-2
Dogfish muscle	National Research Council of Canada	DORM-2
Inductively coupled plasma mass spectrometry (ICP-MS)	PerkinElmer Inc.	PE-SCIEX ELAN 6100 DRC
FreeZone 6 liter freeze dry system	Labconco	7752030
BRAND® SILBERBRAND volumetric flask	Merck	Z326283
30 mL standard vial, flat interior with 33 mm closure	Savillex Corporation	200-030-12
Nitric acid, superpur®, 65.0%	Merck	1.00441
Hot Plate/Stirrers	Corning [®]	PC-220
High Shear lab mixer	Silverson	SL2T
Sterile polypropylene sample jar (250mL)	Thermo Scientific™	6186L05
Digital camera	Nikon Corporation	DS-Fi2
Light microscope	Nikon Corporation	ECLIPSE Ni-U
Shandon™ Finesse™ 325 manual microtome	Thermo Scientific™	A78100001H
Accu-Cut® SRM™ 200 rotary microtome	Sakura	1429
Microtome blade S35	FEATHER®	207500000
Slide staining dish and cover	Brain Research Laboratories	#3215
Steel staining rack	Brain Research Laboratories	#3003
Shandon embedding center	Thermo Scientific™	S-EC
Shandon Citadel® tissue processor	Thermo Scientific™	69800003

Slide warmer	Lab-Line Instruments	26005
Water bath	Shandon Capshaw	3964
Filter paper	Merck	1541-070
Prism 6.01 for windows	GraphPad Software	
ImageJ	National Institutes of Health	
Stainless steel tissue embedding mould	Shenyang Roundfin Trade Co., Ltd	RD-TBM003

Comments/Description

Paraffin

For freeze drying

For diagestion

For diagestion For diagestion

For homogenization

For homogenization

Statistic software

For paraffin emedding

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Use of autometallography (AMG) to localize and semi-quantify silver (Ag) in cetacean tissue
Author(s):	Wen-Ta Lia, Bang-Yeh Liou, Wei-Cheng Yang, Hui-Wen Chang, Meng-Hsien Chen, Hue-Ying Chiou,
(-)	Victor Fei Pang, Chian-Ren Jeng
•	e box): The Author elects to have the Materials be made available (as described at
http://ww	w.jove.com/author) via: Standard Access Open Access
Item 2 (check one	box):
The A	uthor is NOT a United States government employee.
The A	author is a United States government employee and the Materials were prepared in the nis or her duties as a United States government employee.
	uthor is a United States government employee but the Materials were NOT prepared in the nis or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. Background. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. <u>Grant of Rights in Video Standard Access</u>. This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. <u>Government Employees.</u> If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. <u>JoVE Discretion</u>. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. <u>Fees</u>. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law</u>. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDING AUTHOR:

Name:	Chian-Ren Jeng (鄭謙仁)				
Department:	Graduate Institute of Molecular and Comparative Pathobiology				
Institution:	National Taiwan University				
Article Title:	Use of autometallography (AMG) to localize and semi-quantify silver (Ag) in cetacean tissue				
Signature:	Date:	March 31 2018			

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- 2) Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

Dear Dr. Alisha DSouza and reviewers,

The attached files are revised manuscript with track changes (58232-R2) and response letter (**Response letter**). In the revised manuscript, we have made the following changes according to the editorial comments.

Responses to editorial comments

1. The language in the manuscript it not publication grade. There are missing articles and many awkward sentences throughout the manuscript. Also, there are verb tense issues as well as missing punctuation.

Response: The language used in this manuscript has been edited by Mr. John Ring, who is a native speaker of English and a language teacher on our campus with prolonged experience in editing scientific papers.

2. Please highlight up to 2.75 pages of the protocol to be featured in the protocol section of the video. Please ensure that the highlighted steps represent a coherent protocol or story. **Response:** The protocol section has been highlighted. The procedure of ICP-MS is

performed by Dr. Chen's Lab, and thus the protocol is not highlighted.

Responses to Additional comments

1. Line 152: This is repeated in the Discussion. It can be deleted here.

Response: This paragraph has been deleted.

2. Line 181: What settings are used?

Response: The information about the settings has been added (-50°C, Vacuum pump with a displacement of at least 98 L/min, 0.002 mBar)

3. Line 183: Homogenize how? Mortar and pestle?

Response: Homogenize the dried cubes into powder by homogenizer (Silverson High Shear lab mixer SL2T).

4. Line 188-191: This is unclear. Please revise.

Response: It has been rewritten as Put closures on the PTFE bottles, but leave the

closures untightened. Note: it allows the brown fume to be formed in the PTFE bottles and

reflux inside the bottle for digestion till the brown fume disappear and turn clear.

5. Line 201: Until RT? How long does it take?

Response: About one hour.

6. Line 203-204: 25 mL final volume?

Response: Yes, it is final volume.

7. Line 225-226: Trim to what size? How many tissue sections are being worked with?

Response: The information on the size has been added: The size of each tissue sections

should be approximately 2 x 1 cm and the thickness of each tissue section should not

exceed 3 mm. Put the liver and kidney tissues from the same individual in the same

cassette.

8. Line 234-235: Immerse

Response: Yes, immerse is a better term. We have modified the sentence as "Dehydrate

the trimmed tissue sections with a tissue processor through a series of graded ethanol

(70% for 1 h, 80% for 1 h, 95% for 1 h, 95% for 2 h, 100% for 1 h x 2 staining dishes, and

100% for 2 h), non-xylene (for 1 h and 2 h in different staining dishes), and immerse the

dehydrated tissue samples in paraffin (for 1 h and 2 h in different staining dishes)."

9. Line 245-246: Onto a microscope slide?

Response: Yes, onto a microscope slide.

10. Line 251-252: What concentrations?

Response: 100% (Pure).

11. Line 274: At RT?

Response: Yes.

12. Line 525-602: Please spell out journal names.

Response: We have spelt out journal names.

We thank you and the reviewers very much for providing us so many valuable suggestions. We hope the changes that we have made in the revision meet the reviewer's and your requests. We are looking forward to having our revised manuscript published in your distinguished journal "JoVE". In addition, we need to update the new grant number in this

manuscript, and the number is usually given to us in early August. We hope that we can

update the new grant number during or after video production.

Sincerely yours,

Chian-Ren Jeng, DVM, PhD

Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary

Medicine, National Taiwan University, No. 1, Section 4, Roosevelt Rd., Taipei 10617, Taiwan

Tel: +886-2-3366-3869; Email: crjeng@ntu.edu.tw