Journal of Visualized Experiments

Examples of automated segmentation of the cortical grey matter from T1-weighted MRI **images**--Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video			
Manuscript Number:	JoVE58198R1			
Full Title:	Examples of automated segmentation of the cortical grey matter from T1-weighted MR images			
Keywords:	MRI; Structural; SPM; FSL; FreeSurfer; Ants; MALP-EM; Quality control; Grey Matter			
Corresponding Author:	Rachael I Scahill University College London Institute of Neurology London, UNITED KINGDOM			
Corresponding Author's Institution:	University College London Institute of Neurology			
Corresponding Author E-Mail:	r.scahill@ucl.ac.uk			
Order of Authors:	Rachael I Scahill			
	Eileanoir B Johnson			
	Sarah J Tabrizi			
Additional Information:				
Question	Response			
Please indicate whether this article will be Standard Access or Open Access.	Standard Access (US\$2,400)			
Please indicate the city, state/province, and country where this article will be filmed . Please do not use abbreviations.	Russell Square House, London, WC1B 5EH			

TITLE:

2 Automated Segmentation of Cortical Grey Matter from T1-Weighted MRI Images

3 4

1

AUTHORS AND AFFILIATIONS:

- Eileanoir B Johnson¹, Rachael I Scahill¹, Sarah J Tabrizi¹ 5
- 6 ¹Huntington's Disease Research Centre, UCL Institute of Neurology, London, United Kingdom

7 8

Corresponding Authors:

- 9 Eileanoir B Johnson (eileanoir.johnson@ucl.ac.uk)
- 10 Rachael I Scahill (r.scahill@ucl.ac.uk) 11 Sarah J Tabrizi (s.tabrizi@ucl.ac.uk)

12 13

KEYWORDS:

14 MRI, structural, SPM, FSL, FreeSurfer, ANTs, MALP-EM, quality control, grey matter

15 16

17

18

SUMMARY:

This protocol describes the process of applying seven different automated segmentation tools to structural T1-weighted MRI scans to delineate grey matter regions that can be used for the quantification of grey matter volume.

19 20 21

22

23

24

25

26

27

28

29

30

ABSTRACT:

Within neuroimaging research, a number of recent studies have discussed the impact of between-study differences in volumetric findings that are thought to result from the use of different segmentation tools to generate brain volumes. Here, processing pipelines for seven automated tools that can be used to segment grey matter within the brain are presented. The protocol provides an initial step for researchers aiming to find the most accurate method for generating grey matter volumes from T1-weighted MRI scans. Steps to undertake detailed visual quality control are also included in the manuscript. This protocol covers a range of potential segmentation tools and encourages users to compare the performance of these tools within a subset of their data before selecting one to apply to a full cohort. Furthermore, the protocol may be further generalized to the segmentation of other brain regions.

31 32 33

34

35

36

37

38

39 40

41

42 43

44

INTRODUCTION:

Neuroimaging is widely used in both clinical and research settings. There is a current move to improve the reproducibility of studies that quantify brain volume from magnetic resonance imaging (MRI) scans; thus, it is important that investigators share experiences of using available MRI tools for segmenting MRI scans into regional volumes, to improve the standardization and optimization of methods¹. This protocol provides a step-by-step guide to using seven different tools to segment the cortical grey matter (CGM; grey matter which excludes subcortical regions) from T1-weighted MRI scans. These tools were previously used in a methodological comparison of segmentation methods², which demonstrated variable performance between tools on an Huntington's disease cohort. Since performance of these tools is thought to vary among different datasets, it is important for researchers to test a number of tools before selecting only one to apply to their dataset.

Grey matter (GM) volume is regularly used as a measure of brain morphology. Volumetric measures are generally reliable and able to discriminate between healthy controls and clinical groups³. The volume of different tissue types of brain regions is most often calculated using automated software tools that identify these tissue types. Thus, to create high quality delineations (segmentations) of the GM, accurate delineation of the white matter (WM) and cerebrospinal fluid (CSF) is critical in achieving accuracy of the GM region. There are a number of automated tools that may be used for performing GM segmentation, and each requires different processing steps and results in a different output. A number of studies have applied the tools to different datasets to compare them with one other, and some have optimized specific tools^{1,4–11}. Previous work has demonstrated that variability between volumetric tools can result in inconsistencies within the literature when studying brain volume, and these differences have been suggested as driving factors for false conclusions being drawn about neurological conditions¹.

 Recently, a comparison of different segmentation tools in a cohort that included both healthy control participants and participants with Huntington's disease was performed. Huntington's disease is a genetic neurodegenerative disease with a typical onset in adulthood. Gradual atrophy of subcortical and CGM is a prominent and well-studied neuropathological feature of the disease. The results demonstrated variable performance of seven segmentation tools that were applied to the cohort, supporting previous work that demonstrated variability in findings depending on the software used to calculate brain volumes from MRI scans. This protocol provides information on the processing used in Johnson *et al.* (2017)² that encourages careful methodological selection of the most appropriate tools for use in neuroimaging. This manual covers the segmentation of GM volume but does not cover the segmentation of lesions, such as those seen in multiple sclerosis.

PROTOCOL:

Note: Ensure that all images are in NifTI format. Conversion to NifTI is not covered here.

1. Segmentation via SPM 8: Unified Segment

Note: This procedure is performed via the SPM8 GUI which operates within Matlab. The SPM8 guide provides further detail and can be found at: http://www.fil.ion.ucl.ac.uk/spm/doc/spm8 manual.pdf.

1.1. Make sure that SPM8 is installed and set in the software path.

1.2. SPM segmentation is performed using a GUI. To open SPM, open a command window and type 'spm' into the command line.

1.3. Press 'PET & VBM' to open the structural MRI toolbox.

1.4. Press 'Batch' to open the Batch Editor. This allows segmentation to be performed on multiple scans at a time. 1.5. Select 'SPM | Spatial | Segment'. 1.6. Click 'Data | Select Files'. Choose the T1-weighted scans as input. Note: The files must be unzipped NifTi files, with the extension being '.nii'. 1.7. Click on 'output files | Grey Matter' and ensure that 'Native Space' is selected, do the same for White Matter. If the CSF segmentation is not required leave this as 'None'. 1.8. If the scans have already been bias-corrected, change the 'Bias Corrected' option to 'Don't Save Corrected'. For the 'Clean up any partitions' option, test the three different options and use visual quality control (QC, Section 8) to determine which works best for the data. 1.9. Leave the other settings as their defaults. Then, click on the green flag to run the segmentation. Note: This takes around 5 minutes per participant, and the command line will say, 'Running Segment'. When finished, the command window will display 'Done'. 1.10. Perform visual QC on the GM (C1*.nii file) as described in Section 8. 2. Segmentation via SPM 8: New Segment Note: This procedure is performed via the SPM8 GUI. The SPM8 guide provides further detail and can be found at: http://www.fil.ion.ucl.ac.uk/spm/doc/spm8 manual.pdf. Make sure that SPM8 is installed and set in the software path. Open the SPM software, typically performed by typing 'spm' into a command line. This opens a graphical user interface (GUI) window with a range of options that can be selected to perform analysis. 2.1. Press 'PET & VBM'. 2.2. Press 'Batch' to open the Batch Editor. 2.3. Select 'SPM | Tools | New Segment' in the Batch window. Select the T1 image files (with extension '.nii'). 2.4. Set 'Native Tissue type' to 'Native Space'. As needed, turn off the different tissue classes (such as CSF) - if not required - by setting them to 'None'. Set 'Warped Tissue' to 'None'. Note: All other options can be left as the default setting.

2.5. Click the green flag to run the segmentation.

Note: The command line will say, 'Running New Segment'. Once it has finished running the MATLAB command line will say, 'Done New Segment'. 2.6. Perform visual QC on the GM (C1*.nii file) as described in Section 8. 3. Segmentation via SPM 12: Segment Note: This procedure is performed via the SPM12 GUI. The SPM12 guide provides further detail and can be found at: http://www.fil.ion.ucl.ac.uk/spm/doc/manual.pdf. 3.1. Open the SPM software by typing 'spm' into the command window. This opens a graphical user interface (GUI) window with a range of options that can be selected to perform analysis. 3.2. Press 'PET & VBM'. Press 'Batch' to open the Batch Editor. 3.3. Click on 'SPM | Spatial | Segment'. Then, click on 'Data | Volumes'. 3.4. Set 'Native Tissue type' to 'Native Space'. Turn off the tissue classes that are not required (such as CSF) by setting them to 'None'. Set 'Warped Tissue' to 'None'. Note: All other options can be left as default setting. 3.5. Click the green flag to run the segmentation. Note: The command window will display: 'Running Segment'. Once the run is complete, it will display: 'Done Segment'. 3.6. Perform visual QC on the GM (C1*.nii file) as described in Section 8. 4. Segmentation via FSL FAST Note: This procedure is done in the command line. The FSL guide provides further detail and can be found at: https://fsl.fmrib.ox.ac.uk/fsl/fslwiki. 4.1. Run BET brain extraction. This may need to be optimized for different datasets, but the basic command is: bet T1 ID.nii bet T1 ID.nii 4.2. Run FSL FAST segmentation: fast bet T1 ID.nii Note: This will output partial volume maps and binary regions for GM, CSF, and WM.

4.3. Perform visual QC on the GM region (the file ending *_pve_1.nii.gz) as described in Section 5. Segmentation via FreeSurfer Note: This procedure is done in the command line. The FreeSurfer guide provides further detail and can be found at: https://surfer.nmr.mgh.harvard.edu/. 5.1. Set the directory where the data is by typing: export SUBJECTS DIR=/path/to/nii/files 5.2. Run the segmentation by running the commands: recon-all -i T1 ID.nii -subjid T1 ID -autorecon1 -cw256 recon-all -subjid T1 ID -autorecon2 -autorecon3 Note: The commands take > 10 h per participant. The -cw256 flag is needed to crop scans with fields of view larger than 256 down to this size for processing. 5.3. Check that processing has completed correctly by looking at the script located in the 'output folder | scripts | recon-all.log'. Check that the last line says 'recon-all -s T1 ID finished without error'. 5.4. Perform visual QC on the GM region as described in Section 8. 6. Segmentation via ANTs Note: This procedure is done in the command line. ANTs is a more complex software than the other tools and it should be noted that the procedure explained here could be further optimised for each cohort to improve the results. ANTs documentation can be found at: http://stnava.github.io/ANTsDoc/. There are two ways to segment the images into tissue classes as described below. 6.1. To use the first method, run the command 'antsAtropos.sh' with default settings and without including tissue priors. Note: This often performs well especially when only 3 tissue classes are required: GM, WM, other. 6.1.1. Set the path to ANTs software by typing the command: export ANTSPATH=/path/to/ANTs/bin/

6.1.2. Run the segmentation pipeline by typing the command:

- 223 antsAtroposN4.sh -d <image_dimension> -a <t1.nii.gz> -c <number of tissue classes> -o <output>
- 224
- 225 6.1.2.1. Optional arguments for this command are:
- 226 Brain mask: -x <mask.nii.gz>;
- 227 Tissue priors: -p <segmentationPriors%d.nii.gz>.

6.1.3. This will create a folder with the output including partial volume maps and an extracted brain. Perform visual QC on the GM region as described in Section 8.

231

- 232 6.2. To generate more tissue classes (GM, subcortical GM, WM, CSF, other, etc.) or perform the
- 233 segmentation on a cohort showing neural pathology, use specific tissue priors. Download
- 234 tissue priors from different websites. Alternatively, use a study-specific template to make priors
- 235 this is much more complex but can be beneficial, especially in cohorts with pathological brain
- changes.

237

- 238 6.2.1. To create a study-specific template/priors, first create a study-specific template:
- 239 antsMultivariateTemplateConstruction.sh -d <image_dimension> -o template <other options>
- 240 <images.nii.gz>

241

- 242 6.2.1.1. Optional arguments for this command are:
- 243 -c: control for parallel computation.
- 244 If running in serial, use a 0; -j: number of cores; -r: do rigid-body registration of inputs before
- creating template (default 0) -- 0 == off 1 == on. This is only useful when an initial template is
- 246 not available.

247

248 6.2.2. Download a brainmask and priors from the ANTs website.

249

- Note: This mask may need to be edited to make sure it is a good approximation of the template
- brain. The brainmask is one of the most important parts of the pipeline; if it is poor, then brain
- extraction/Atropos will run poorly. Some of the download options are:
- 253 https://figshare.com/articles/ANTs ANTsR Brain Templates/915436.
- The downloaded template should then be registered to the study template.

255

- 256 6.2.3. Calculate the registration, which will output a series of warps that can then be applied to
- 257 the downloaded template to transform it to study-specific template space. To calculate the
- registration, use the command:
- antsRegistrationSyNQuick.sh -d 3 -f template.nii.gz -m downloaded template.nii.gz -o
- 260 downloaded_to_template -n 6

261

- 262 6.2.3.1. The options in this command are:
- -d: dimension (i.e., 3D scans would be '3'); -f: fixed image (i.e., the space where the images
- need to end up); -m: moving image (i.e., the image that needs to be moved); -o: output name
- 265 (no extension needed); -n: number of threads.

266267

6.2.4. Apply the registration to the data:

268 antsApplyTransforms -d 3 -i downloaded template.nii.gz -r template.nii.gz -o 269 downloaded to template.nii.gz -t downloaded to template1Warp.nii.gz -t 270 downloaded to template0GenericAffine.mat.

271 272

- 6.2.4.1. The options in this command are:
- 273 -d: dimension (i.e., 3D scans would be '3'); -i: input image (i.e., the image that needs to be 274 moved); -r: reference image (i.e., the reference image defines the spacing, origin, size, and 275 direction of the output warped image); -o output name, this is the downloaded template in the 276 study-specific template space (extension needed in this case); -t transform file name, the 277 output file from the registration calculation.

278 279

6.2.5. Visually check the registration for correspondence between the study-specific template and downloaded template (to do this, open the study-specific template on top of the downloaded template).

281 282

280

283 6.2.6. If the registration has worked, apply the transformation to the downloaded priors and 284 extracted template brain, repeating step 6.2.5.

285 286

Note: Following these steps, there will be a study-specific template, a downloaded template aligned with the study-specific template, along with a downloaded brain extraction mask and tissue priors also aligned with the study-specific template.

288 289

287

- 290 6.2.7. Run the study specific template through antsCorticalThickness.sh; this provides GM, WM, 291 and CSF regions that can be used for study-specific priors:
- 292 antsCorticalThickness.sh -d 3 -a template.nii.gz -e downloaded to template.nii.gz -m
- 293 downloaded binarised template extracted brain in studyspace.nii.gz -p 294 downloaded labelsPriors%d.nii.gz -o CT template

295

296

6.2.7.1. The options in this command are:

labelsPriors%02d.nii.gz).

297 -d: dimension (i.e., 3D scans would be '3'); -a: image to be segmented (in this case, the study-298 specific template); -e: brain template (not skull stripped; in this case, the downloaded template 299 that has been registered to the study-specific template); -m: downloaded brain extraction mask 300 (in this case, the extracted brain from the downloaded template that has been registered to the 301 study-specific template); -p: priors specified using c-style formatting (e.g., -p

302 303 304

Note: The command assumes that the first four priors are ordered as follows: 1: CSF, 2: cortical GM, 3: WM, and 4: subcortical GM (in this case, the priors from the downloaded template that has been registered to the study-specific template).

306 307

305

308 6.2.8. Running this command will result in generated priors for the template, but they need 309 smoothing prior to use in Atropos segmentation. The smoothing command is part of ANTs 310 software. Smooth all priors using the command:

- 311 SmoothImage 3 CT template BrainSegmentationPosteriors2.nii.gz
- 312 CT_template_BrainSegmentationPosteriors_smoothed.nii.gz

- 314 6.2.9. Prior to running Atropos, run brain extraction on all native space scans. The study-specific
- 315 template can be used, and extracted brain generated from running antsCorticalThickness.sh on
- 316 the template (step 6.2.1):
- 317 antsBrainExtraction.sh -d 3 -a T1.nii.gz -e template.nii.gz -m
- 318 template BrainExtractionBrain.nii.gz -o T1 brain.nii.gz

319

- 320 6.2.9.1. The options in this command are:
- -d: dimensions; -a: anatomical image; -e: brain extraction template (i.e., template created,
- without skull stripping); -m: study specific brainmask used for brain extraction; -o: output
- 323 prefix.

324

- 325 6.2.10. Then run Atropos:
- antsAtroposN4.sh -d 3 -a T1.nii.gz -x T1_brain.nii.gz -c 3 -o Atropos_specific_template

327

- 328 6.2.10.1. The options in this command are:
- 329 -d = dimensions; -a: anatomical image; -x: brain extraction mask generated from the brain
- extraction; -c: number of tissue classes to segment; -o: output prefix; -p: study-specific
- 331 segmentation priors < segmentationPriors%d.nii.gz>

332333

6.2.11. Perform visual QC on the GM region as described in Section 8.

334335

7. Segmentation via MALP-EM

336

- 7.1. To run MALP-EM, open a terminal window, change the directory into the MALP-EM install directory and type:
- ./malpem-proot -i T1_scan.nii -o ./ -m optional_brain_mask_final.nii.gz -f 3T -t 6 -c

340

7.2. Once the command has been completed, check that there is an output folder with tissue classes and regional segmentations.

343

7.3. Perform visual QC on the GM as described in Section 8.

345

8. Visual Quality Control

346347

- Note: Visual quality control should be performed on all segmented regions to be used in the
- 349 analysis. Quality control ensures that the segmentations are of a high standard and represent
- reliable segmentation of the CGM. To perform quality control, each scan is opened and overlaid on the original T1 to compare the generated region to the CGM visible on the scan.
- 352
- 353 **8.1. SPM, FSL, ANTs, and MALP-EM Segmentations**

354

355 8.1.1. Perform visual QC using FSLeyes: https://users.fmrib.ox.ac.uk/~paulmc/fsleyes_userdoc/

	Open a terminal window and open the T1 and the GM regions overlaid on the T1. T
this, ty	·
rsieyes	<mark>s T1.nii Region1.nii Region2.nii.</mark>
<mark>and all</mark>	Once FSLeyes opens, use the opacity toggle on the top pane to adjust/reduce the clow visualisation of the T1 image underneath the GM region. Change the color of the nation overlay via the 'color dropdown tab' in the top pane.
<mark>8.1.4.</mark>	Scroll through every slice in the brain.
	Here this is done using the coronal view, but users should use the view that they have been been serience with.
8.1.5.	Check every slice for regions of under- or over-estimation of the region being inspe
Note:	See the representative results section for examples of good and bad segmentation
<mark>8.2. Fr</mark>	eeSurfer QC
8.2.1.	Peform visual QC using FreeView.
	Refer to the documentation here: //surfer.nmr.mgh.harvard.edu/fswiki/FreeviewGuide/FreeviewGeneralUsage/Freevart.
<mark>directo</mark>	Open a terminal window. To view the volumetric GM region overlaid on the T1, chory to the subject folder and type: ew ./mri/T1.mgz ./mri/aparc+aseg.mgz:colormap=lut:opacity:.3
0 2 2	Coroll through avery clies in the brain
0.2.3.	Scroll through every slice in the brain.
	Here this is done using the coronal view, but users should use the view that they have been been serience with.
8.2.4.	Check every slice for regions of under- or over-estimation of the region being inspe
Note:	See the representative results section for examples of the segmentations.

as per the steps described in section 8. When performing visual QC, it is important to directly compare the GM regions to the T1 scan by viewing them overlaid on the T1.

Regions should be rejected for gross errors as shown in **Figure 1**. Sometimes these errors result if processing was run incorrectly, or if the brain was poorly positioned within the field of view. To correct these errors, the native T1 scans can be rigidly re-aligned to standard space and segmentation can be re-attempted. The rate of failures will vary depending on quality of the data and tools used, as well as the classification of failure. In the current study, failure rates of total failures resulting in rejection were < 5% for all tools, but less significant errors were consistently seen across a number of tools. FSL FAST, SPM 8 New Segment and FreeSurfer had errors (but not failures) in > 50% of scans for this cohort. This error rate was quantified by examining the notes taken during the visual QC process, with errors included if they were seen as a reasonable departure from the expected regions, as shown in Figures 2-6. It is important to note that these tools have been validated on other datasets and result in much lower error rates ^{3, 8}. While these errors could possibly be improved via manual intervention or inclusion of a mask at brain extraction, since SPM New Segment and MALP-EM resulted in a lower error rate for this dataset, these tools would be used instead. Masks can be applied before processing within ANTs and MALP-EM, and after processing for SPM (all versions) and FSL FIRST.

More minor errors are shown in **Figures 2-6**. By testing different segmentation tools on a dataset before application to the whole cohort, the tool that performs best on that dataset can be selected for analysis. When performing QC, a procedure should be developed for choosing to reject, edit, or accept segmentations. Common errors seen for the seven tools are described here, with examples shown in **Figures 2-6**. Errors in segmentation such as these can often be corrected with the addition of a mask in the processing stream or editing the regions. However, regions with extensive over- or under-estimation of the cortex may need to be rejected from analysis. Strict criteria should be developed and followed when making this decision. These steps are not covered in this protocol and will vary from dataset to dataset.

Generally, when performing visual QC, it is important to pay particular attention to temporal and occipital regions, as these are areas that show the most consistent errors. **Figure 2** shows examples of good and bad temporal segmentations, and **Figure 3** shows examples of good and bad occipital segmentations. **Figure 4** shows another common issue that occurs in all tools, in which non-brain tissue is classified as CGM in superior slices of the brain. **Figure 5** displays another issue seen in a number of segmentations where regions of the CGM are excluded from the segmentation. This often occurs in superior slices of the brain, as seen in **Figure 5**.

SPM8 Unified Segment commonly resulted in poor temporal delineation, with the segmented GM region spilling into non-brain tissue surrounding the temporal lobes. Spillage into the occipital lobe is common, while under-estimation of the frontal lobes also seen in a number of regions. For SPM8 New segment, poor temporal delineation and occipital spillage were also common. Using this version of SPM also results in voxels within the skull and dura being classified as GM in nearly all segmentations. SPM12 was improved compared to earlier versions

of SPM, with the temporal lobe segmentations improved and less spillage in other regions. ANTs showed highly variable performance on this cohort, with the initial brain extraction determining the quality of segmentation. It is important to pay particular attention to the external boundaries, and if brain extraction is poor using ANTs, then the brain mask included in the Atropos command can be improved. Issues with over-estimation of the GM in the temporal and occipital lobes were again common. MALP-EM showed fewer issues with over-estimation of the temporal and occipital lobes; although, there was under-estimation of the cortex in a number of cases. This can be improved by inclusion of a brain mask in the pipeline. FSL FAST segmentations were highly variable, due to the variable performance of BET brain extraction on the data from this cohort. Again, issues within occipital and temporal lobes were common; however, these can be improved with optimization of brain extraction. Finally, FreeSurfer volumetric regions are often tight along the GM/CSF boundary, typically excluding some regions of GM in the outer boundary (Figure 6). As with other tools, spillage outside of the GM is prevalent within the temporal and occipital lobes. Finally, Figure 7 shows an example of a good segmentation displayed in FSLview that had no errors in segmentation. Manual editing of the regions can often be performed to improve regions, although this is not covered here.

FIGURE AND TABLE LEGENDS:

Figure 1: Example of a failed segmentation displayed on a T1 scan. This segmentation should be re-processed and excluded from analysis if it cannot be improved.

Figure 2: Examples of the performance of different tools on the temporal lobe on a T1 scan. (A) The T1 scan without a segmentation. (B) The T1 scan with an example of a good regional delineation (MALP-EM). (C) The T1 scan with an example of a good regional delineation (FreeSurfer). (D) The T1 scan with an example of a poor regional delineation, showing spillage in the left and right temporal lobes (SPM 8 New Segment). (E) The T1 scan with an example of a poor regional delineation, showing spillage in the left and right temporal lobes (FSL FAST). The scans are viewed in FSLeyes with the T1 scan as a base image and the GM region as an overlay. In this figure, the GM regions are viewed as red-yellow with an opacity of 0.4. The color gradient represents partial volume of voxels, with voxels that are more yellow having a higher PVE estimate (more likely to be GM) and those that are red having a lower PVE estimate (less likely to be GM).

Figure 3: Examples of the performance of different tools on the occipital lobe on a T1 scan. (A) The T1 scan without a segmentation. (B) The T1 scan with an example of a good regional delineation (MALP-EM). (C) The T1 scan with an example of a poor occipital lobe delineation with spillage into the dura in the medial section of the region (SPM 8 Unified Segment). (D) The T1 scan with an example of a poor occipital lobe delineation with spillage into the dura in the medial and superior sections of the region (SPM 8 New Segment). (E) The T1 scan with an example of a poor occipital lobe delineation with spillage into the dura in the medial and superior sections of the region (FSL FAST). The scans are viewed in FSLeyes with the T1 scan as a base image, and the GM region as an overlay. In this figure, the GM regions are viewed as redyellow with an opacity of 0.4. The color gradient represents partial volume of voxels, with

voxels that are more yellow having a higher PVE estimate (more likely to be GM) and those that are red having a lower PVE estimate (less likely to be GM).

Figure 4: Example of a GM region spilled into the dura, displayed in an FSLview window (in sagittal, coronal, and axial views). The blue region highlights spillage into the dura.

Figure 5: Example of a GM region that has excluded regions of the CGM from segmentation. This region is displayed in an FSLview window, in sagittal, coronal, and axial views. The axial view best shows the regions that have been excluded from segmentation.

Figure 6: Example of a FreeSurfer GM region that is very tight along the GM/CSF boundary, displayed in FreeView. The coronal window in the top left best displays the under-estimation in the CGM in this region.

Figure 7: Example of a well-delineated MALP-EM region on a T1 brain scan. The region shows no issues with over- or under-estimation of the CGM in any region.

Table 1: Demographic information and average GM volumes (mL) for 20 control participants from the TRACK-HD study, segmented using the seven tools described here.

DISCUSSION:

Recently, research has demonstrated that the use of different volumetric methods may have important implications for neuroimaging studies^{1,2}. By publishing protocols that help guide novice users in how to apply different neuroimaging tools, as well as how to perform QC on the results output by these tools, researchers may select the best method to apply to their dataset.

While most steps in this SOP can be adjusted to suit the data and researcher requirements, one of the most critical processes presented here are the steps describing detailed visual quality control. Visual QC should be performed on all segmentations output by these tools and is essential for the accurate measurement of CGM. The QC steps taken to ensure high-quality segmentations have been developed after the examination of thousands of CGM regions. By comparing different tools via visual examination, the most accurate method can be found for each dataset.

For each tool, there are different options that can be used to optimize segmentation on each dataset. It is often preferable to realign all scans to native space prior to segmentation, as this can reduce errors in segmentation; however, this is not essential. Furthermore, the regions output by each tool differ, with some including only cortical GM and some also including subcortical regions. Furthermore, some regions output partial volume estimates (PVE) and some output discrete tissue maps. While volume extraction is not covered here, and discussion of the difference between PVE and discrete tissue maps is beyond the scope of this standard operating procedure (SOP), PVE maps are generally accepted as a more reliable measure¹². This SOP provides information on the processing used in Johnson *et al.* (2017)² to segment and QC the scans; however, there may be more appropriate selections for other users depending on

the quality of their images, and further processing such as the application of masks to limit regions to cortical GM may be required. All segmentations can be performed in native space. This protocol provides example pipelines for seven different methods that can be used to segment the CGM from T1 MRI scans. These examples largely follow the default pipelines that are recommended for each software, and it is important to note that further optimization of these pipelines may be necessary for the successful segmentation of a region on different scans. Some tools, such as MALP-EM, have limited options and are likely better for users who are new to neuroimaging. Other tools, including ANTs, can undergo detailed optimization, and the protocol presented here represents one possible application of this software. Additional options, such as the use of masks to limit calculation of the volumes, are also possible for most tools.

It is important to note that not all tools can be used on every operating system. SPM and ANTs are compatible with Windows, Mac, and Linux systems, FSL is compatible with Mac and Linux systems, and MALP-EM and FreeSurfer are compatible with Linux systems (or a Linux virtual machine running on a Windows/Mac PC).

This protocol covers the steps that can be used to perform segmentation and quality control (QC) on 3D T1-weighted MRI scans to generate CGM regions. However, the protocol assumes that images are 3D T1 images in NifTI format (.nii extension). In the analysis performed by Johnson *et al.*², images were already bias-corrected using the N3 procedure¹³. This protocol also assumes that the software has been downloaded and installed on a linux machine as per the instructions provided by each tool. The software compared here include SPM8¹⁴, SPM12, FSL¹⁵, FreeSurfer^{16,17}, ANTs¹⁸, and MALP-EM¹⁹.

This SOP covers a range of segmentation techniques; however, there are other options available for segmenting structural T1 scans. These methods were selected for previous comparison by Johnson *et al.*² based on their frequency of use within Huntington's disease research. However, every tool performs differently in each dataset, and segmentation tools not covered here may be appropriate for other datasets and research groups.

These tools are widely used within neuroimaging research. As software updates are created for these tools, it is likely that the output of each segmentation method will undergo significant changes over time. However, emphasis should remain on the process of visual QC to ensure that high-quality segmentations are used in neuroimaging studies.

ACKNOWLEDGMENTS:

We wish to thank all those at the CHDI/High Q Foundation responsible for the TRACK-HD study; in particular, Beth Borowsky, Allan Tobin, Daniel van Kammen, Ethan Signer, and Sherry Lifer. The authors also wish to extend their gratitude to the TRACK-HD study participants and their families. This work was undertaken at UCLH/UCL, which received a proportion of funding from the Department of Health's National Institute for Health Research Biomedical Research Centres funding scheme. S.J.T. acknowledges support of the National Institute for Health Research through the Dementias and Neurodegenerative Research Network, DeNDRoN.

DISCLOSURES:

579 The authors have nothing to disclose.

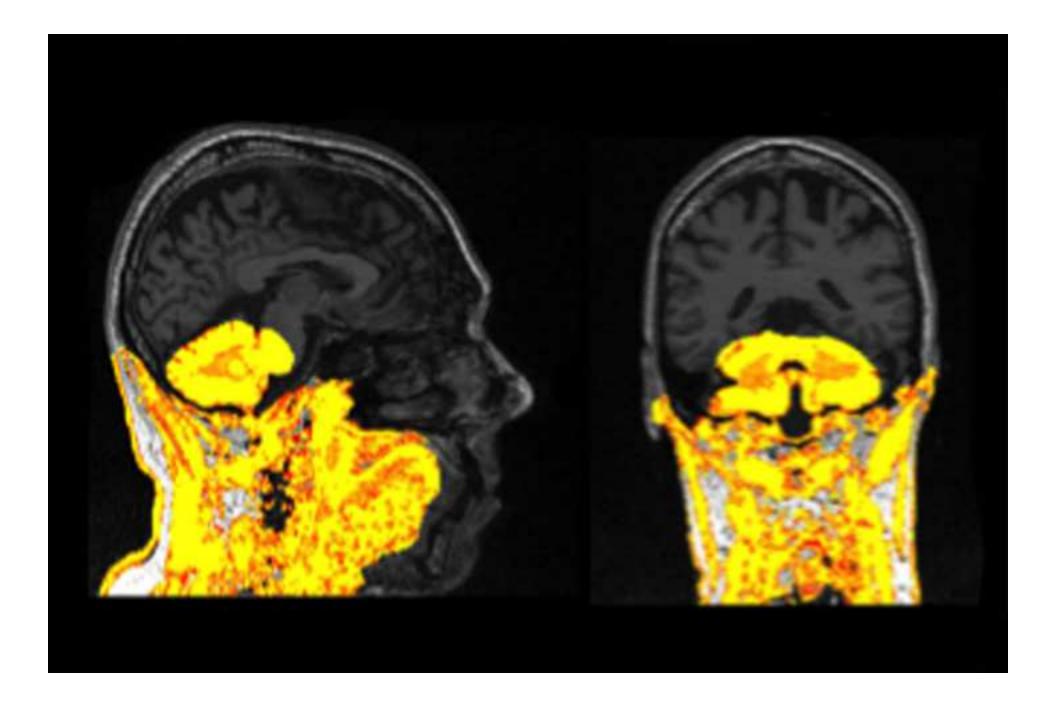
580 581

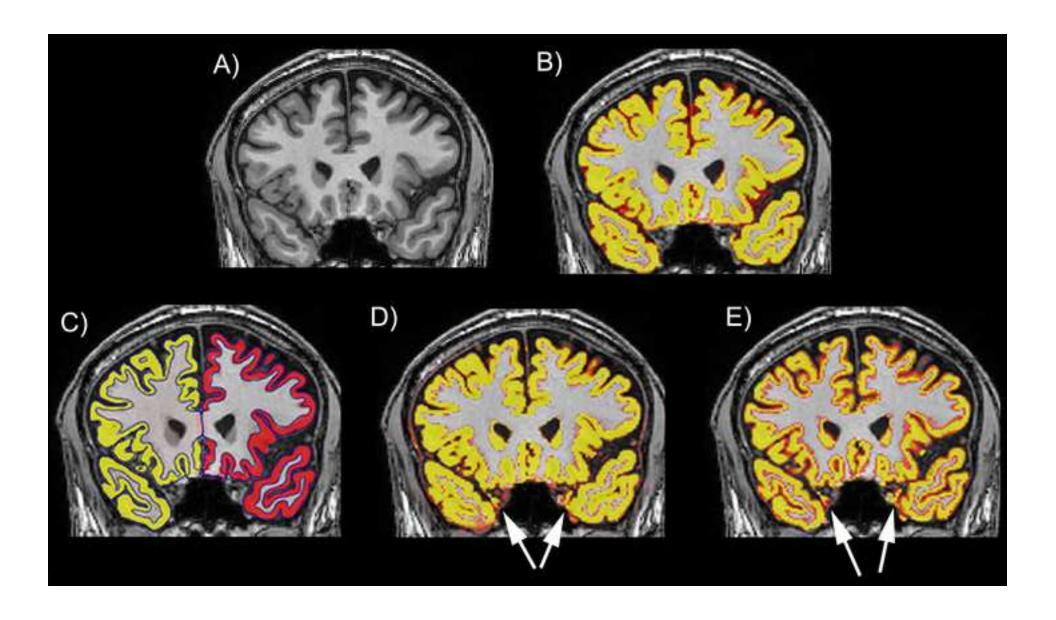
TRACK-HD Investigators:

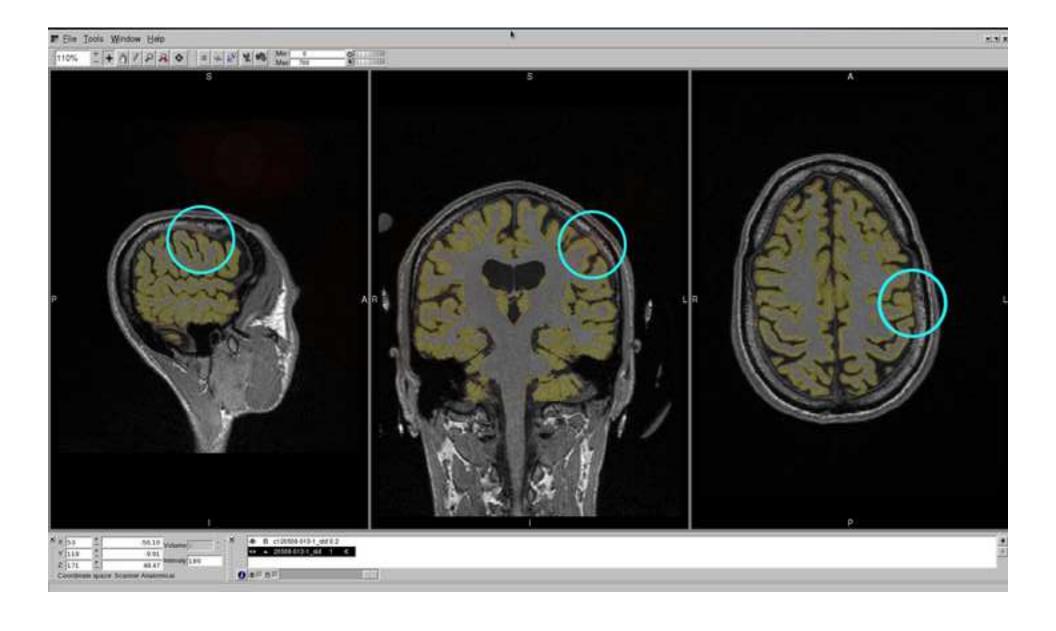
- 582 C. Campbell, M. Campbell, I. Labuschagne, C. Milchman, J. Stout, Monash University,
- Melbourne, VIC, Australia; A. Coleman, R. Dar Santos, J. Decolongon, B. R. Leavitt, A. Sturrock,
- University of British Columbia, Vancouver, BC, Canada; A. Durr, C. Jauffret, D. Justo, S. Lehericy,
- 585 C. Marelli, K. Nigaud, R. Valabrègue, ICM Institute, Paris, France; N. Bechtel, S. Bohlen, R.
- Reilmann, University of Münster, Münster, Germany; B. Landwehrmeyer, University of Ulm,
- Ulm, Germany; S. J. A. van den Bogaard, E. M. Dumas, J. van der Grond, E. P. 't Hart, R. A. Roos,
- Leiden University Medical Center, Leiden, Netherlands; N. Arran, J. Callaghan, D. Craufurd, C.
- 589 Stopford, University of Manchester, Manchester, United Kingdom; D. M. Cash, IXICO, London,
- 590 United Kingdom; H. Crawford, N. C. Fox, S. Gregory, G. Owen, N. Z. Hobbs, N. Lahiri, I. Malone, J.
- Read, M. J. Say, D. Whitehead, E. Wild, University College London, London, United Kingdom; C.
- Frost, R. Jones, London School of Hygiene and Tropical Medicine, London, United Kingdom; E.
- 593 Axelson, H. J. Johnson, D. Langbehn, University of Iowa, IA, United States; and S. Queller, C.
- 594 Campbell, Indiana University, IN, United States.

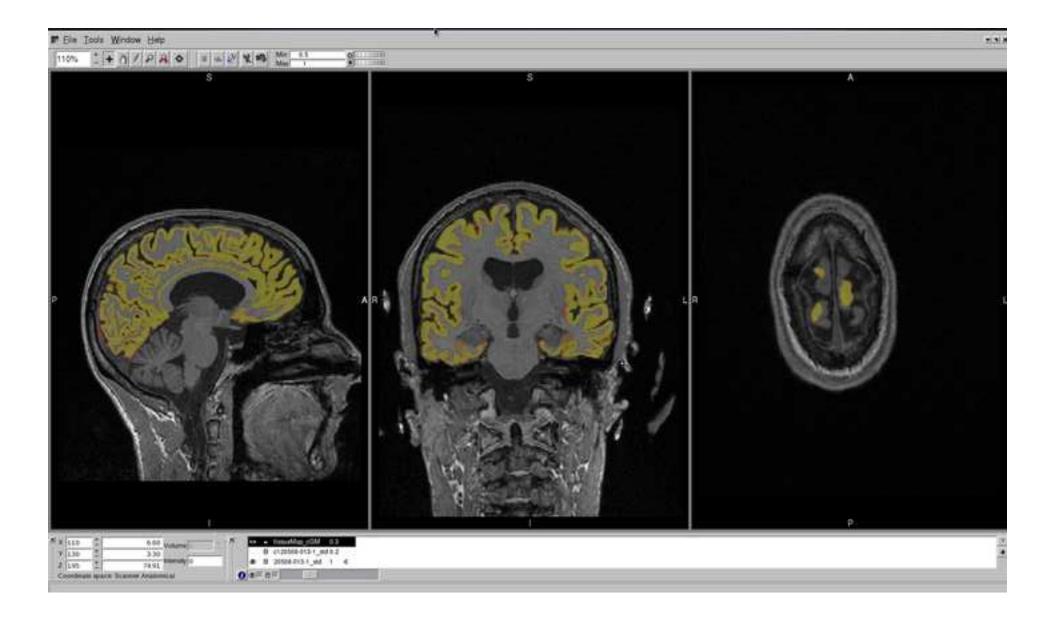
595596

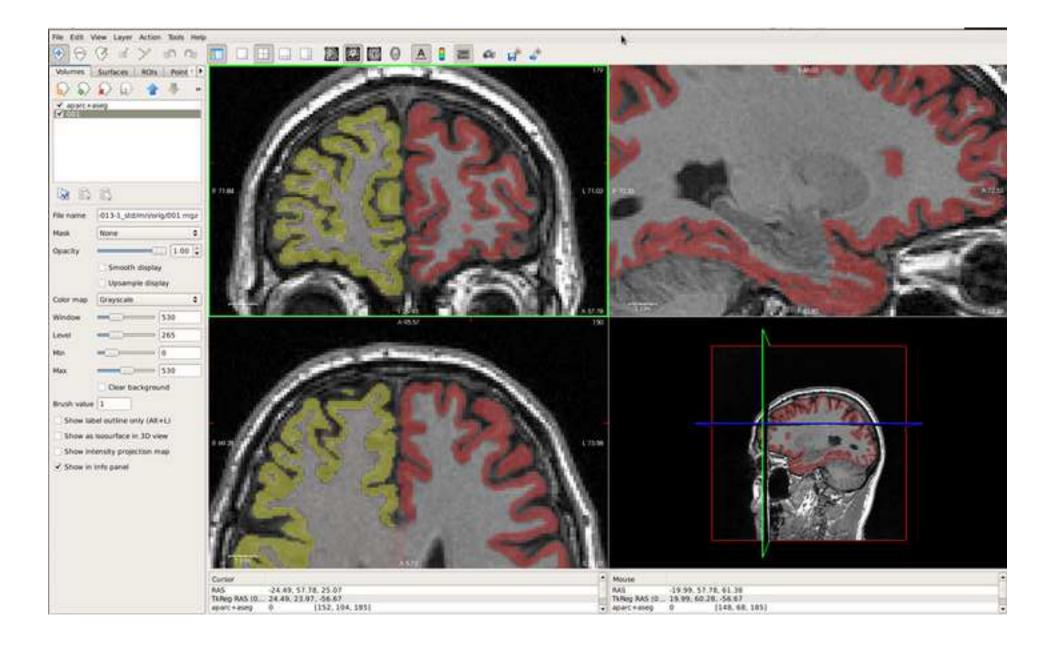
597

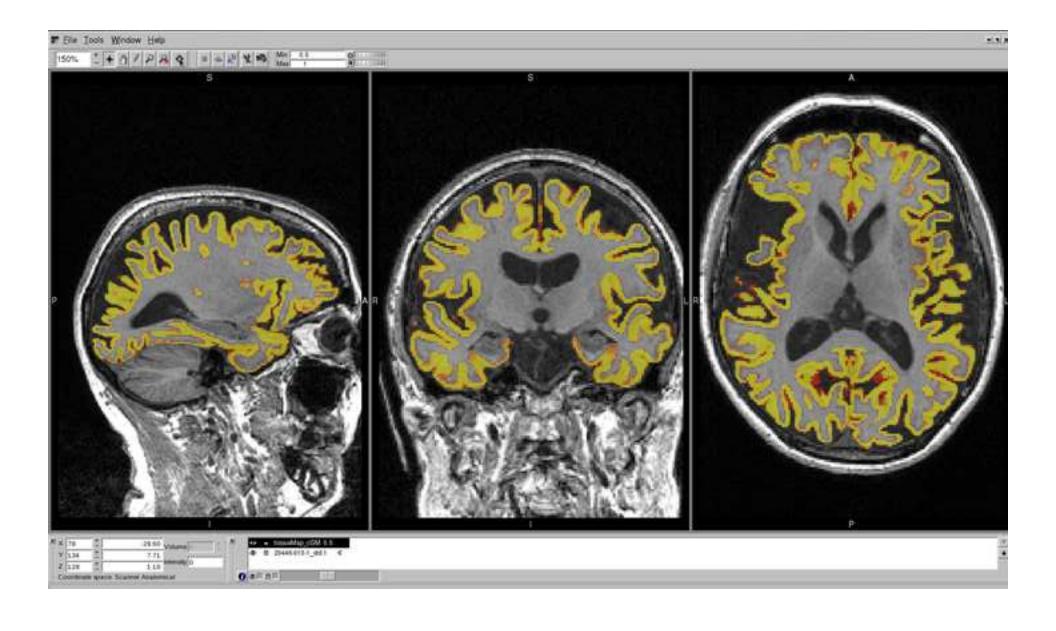

598


REFERENCES:


- 1. Katuwal, G.J., et al. Inter-Method Discrepancies in Brain Volume Estimation May Drive Inconsistent Findings in Autism. *Frontiers in Neuroscience*. **10**, 439 (2016).
- 599 2. Johnson, E.B., et al. Recommendations for the Use of Automated Gray Matter
- Segmentation Tools: Evidence from Huntington's disease. *Frontiers in Neurology*. **8**, 519 (2017).
- 3. Schwarz, C.G., et al. A large-scale comparison of cortical thickness and volume methods
- for measuring Alzheimer's disease severity. *NeuroImage: Clinical.* **11**, 802–812 (2016).
- 603 4. Clarkson, M.J., *et al.* A comparison of voxel and surface based cortical thickness estimation methods. *NeuroImage.* **57** (3), 856–865 (2011).
- 605 5. Eggert, L.D., Sommer, J., Jansen, A., Kircher, T., Konrad, C. Accuracy and reliability of
- automated gray matter segmentation pathways on real and simulated structural magnetic
- resonance images of the human brain. *Public Library of Science One*. **7** (9), e45081 (2012).
- 608 6. Fellhauer, I., et al. Comparison of automated brain segmentation using a brain phantom
- and patients with early Alzheimer's dementia or mild cognitive impairment. *Psychiatry*
- 610 *Research.* **233** (3), 299–305 (2015).
- 7. Gronenschild, E.H.B.M., et al. The effects of FreeSurfer version, workstation type, and
- 612 Macintosh operating system version on anatomical volume and cortical thickness
- measurements. *Public Library of Science One*. **7** (6), e38234 (2012).
- 8. Iscan, Z., et al. Test-retest reliability of freesurfer measurements within and between
- sites: Effects of visual approval process. *Human Brain Mapping*. **36** (9), 3472–85 (2015).
- 616 9. Kazemi, K., Noorizadeh, N. Quantitative Comparison of SPM, FSL, and Brainsuite for
- Brain MR Image Segmentation. *Journal of Biomedical Physics & Engineering*. **4** (1), 13–26
- 618 (2014).


- 619 10. Klauschen, F., Goldman, A., Barra, V., Meyer-Lindenberg, A., Lundervold, A. Evaluation of
- automated brain MR image segmentation and volumetry methods. Human Brain Mapping. 30
- 621 (4), 1310–27 (2009).
- 622 11. McCarthy, C.S., Ramprashad, A., Thompson, C., Botti, J.A., Coman, I.L., Kates, W.R. A
- 623 comparison of FreeSurfer-generated data with and without manual intervention. Frontiers in
- 624 *Neuroscience.* **9** (OCT), (2015).
- 625 12. Tohka, J. Partial volume effect modeling for segmentation and tissue classification of
- brain magnetic resonance images: A review. World Journal of Radiology. 6 (11), 855–64 (2014).
- 627 13. Sled, J.G., Zijdenbos, A.P., Evans, A.C. A nonparametric method for automatic correction
- of intensity nonuniformity in MRI data. *IEEE Transactions on Medical Imaging*. **17**, 87–97
- 629 (1998).
- 630 14. Ashburner, J., Friston, K.J. Unified segmentation. *NeuroImage*. **26** (3), 839–51 (2005).
- 631 15. Jenkinson, M., Beckmann, C., Behrens, T.E., Woolrich, M.W., Smith, S.M. FSL.
- 632 *NeuroImage*. **62**, 782–90 (2012).
- 633 16. Dale, A.M., Fischl, B., Sereno, M.I. Cortical surface-based analysis. I. Segmentation and
- 634 surface reconstruction. *NeuroImage*. **9**, 179–194 (1999).
- 635 17. Fischl, B., Sereno, M.I., Dale, A.M. Cortical surface-based analysis. II: Inflation, flattening,
- and a surface-based coordinate system. *NeuroImage*. **9**, 195–207 (1999).
- 637 18. Avants, B.B., Tustison, N.J., Wu, J., Cook, P.A., Gee, J.C. An open source multivariate
- 638 framework for n-tissue segmentation with evaluation on public data. Neuroinformatics. 9 (4),
- 639 381–400 (2011).


- 640 19. Ledig, C., et al. Robust whole-brain segmentation: application to traumatic brain injury.
- 641 *Medical Image Analysis*. **21** (1), 40–58 (2015).



	Age	Sex (Female)	Education	SPM8 Segment	SPM8 New Segment
N=20	48.32 (-9.28) 30.73-62.97	N=13	4.05 (-1.28)	644.72 (77.40) 517.51-784.50	678.94 (71.25) 580.01- 852.75

Total GM volume (ml)				
SPM12 Segment	FSL FAST	ANTs	MALP-EM	FreeSurfer
	585.23	619.58	690.71	600.05
671.50 (72.43)	(55.70)	(58.45)	(69.12)	(56.70)
542.23-831.21	502.10-	519.03-	587.04-	527.34-
	723.89	760.16	871.31	748.92

Click here to download Author License Agreement (ALA) * ARTICLETANDO TIPE OF LICENSE A STEEMENT - UK

Title of Article: Author(s):	
	ne box): The Author elects to have the Materials be made available (as described at www.jove.com/author) via: Standard Access Open Access
tem 2 (check one	box):
The A	uthor is NOT a United States government employee.
	outhor is a United States government employee and the Materials were prepared in the his or her duties as a United States government employee.
	uthor is a United States government employee but the Materials were NOT prepared in the his or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution 3.0 Agreement (also known as CC-BY), the terms which and conditions of can be found http://creativecommons.org/licenses/by/3.0/us/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other pre-existing works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments;
- "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.

- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and
- (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 4. <u>Retention of Rights in Article.</u> Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the

ARTICLE AND VIDEO LICENSE AGREEMENT - UK

Author shall, with respect to the Article, retain the nonexclusive right to use all or part of the Article for the noncommercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the

Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.

- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This **Section 6** applies only if the "Open Access" box has been checked in

Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats.

7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict

shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.

- 8. <u>Likeness</u>, <u>Privacy</u>, <u>Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including,

ARTICLE AND VIDEO LICENSE AGREEMENT - UK

without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or

AUTHOR:

MS # (internal use):

damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. Transfer, Governing Law. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

Name:	
Department:	
Institution:	
Article Title:	
Signature:	Date:
1) Upload a so	ned and dated copy of this license by one of the following three methods: anned copy as a PDF to the JoVE submission site upon manuscript submission (preferred); cument to +1.866.381.2236; or
3) Mail the do	ocument to JoVE / Atn: JoVE Editorial / 1 Alewife Center Suite 200 / Cambridge, MA 02140

For questions, please email editorial@jove.com or call +1.617.945.9051.

UCL INSTITUTE OF NEUROLOGY QUEEN SQUARE

THE NATIONAL HOSPITAL FOR NEUROLOGY AND NEUROSURGERY QUEEN SQUARE LONDON WC1N 3BG

Department of Neurodegenerative Disease Head of Department and Director MRC Prion Unit: Professor John Collinge CBE, FRS

Dr Rachael Scahill MA PhD

27th June 2018

Dr Ronald Myers Science Editor JoVe

Dear Dr Myers,

Re: Examples of automated segmentation of the cortical grey matter from T1-weighted MRI images

Johnson et al.

Thank you for considering the above manuscript for the *Journal of Visualized Experiments*. We would like to thank the reviewers for taking the time to review the manuscript and for their helpful comments. We have addressed these comments as below and also addressed all the editorial comments in the amended manuscript.

Please do let me know if you have any further queries.

Yours sincerely

Dr Rachael Scahill

Reviewer #1:

Manuscript Summary:

The manuscript depicts a very useful and feasible workflow important to a very large community in neurosciences, that is (partly) automated grey matter segmentation.

We would like to thank Reviewer 1 for their feedback and for their comments, which have greatly improved the manuscript.

Major Concerns:

1. Such semiautomated measurements often require manual corrections, but this is something the authors emphasize sufficently (QC) in their manuscript.

We have elaborated on this information in the representative results section to ensure that this point is clear for readers.

Minor Concerns:

1. Workflow and results translatable to the specified tools using them on other operating Systems than Linux? E.g. MacOSX/macOS or Windows?

This suggestion is a very useful addition and has been clarified within the discussion on page 11 (limitations of the technique).

2. Application of masks feasible to which described software tools?

This has been clarified within the representative results section when discussing how to improve segmentation results.

- 3. Materials Table: "SPM8 Segment" = "SPM8 Unified Segment" as in line 90? Please unify terminology. This change has been made, and the manuscript has been re-reviewed for similar errors
- 4. Legend Figure 2: Please clarify that "different performance" means "different performance of the different software tools" or name the correspondingly used tool(s)

Additional detail has been added to the figure legends to clarify what is shown.

5. Figure 2: D+E: please depict the meant temporomesial spillage more clearly, e.g. using arrows. *Arrows have been added to the figures to guide readers more effectively to understand the errors.*

Reviewer #2:

Manuscript Summary:

The manuscript describes the procedure to segment gray matter and check the result images. The manuscript is relevant as there are many reports of gray matter volumes and atrophy in various neurological disorders, normal aging, and growth studies. I would recommend several revisions before publication.

We would also like to thank Reviewer 2 for their comments and improvements to the manuscript

Minor Concerns:

- **1. Define cortical and total gray matter as different or same from the beginning of the manuscript.** *This change has been made.*
- 2. More clearly at early on, describe the assumptions for example, that diseases such as vascular and multiple sclerosis lesions are out of scope.

This clarification has been added to the introduction on page 2.

- **3. Since SPM is GUI-based method, I would add more details of procedures to start analyses.** *The instructions for SPM on pages 3-4 have been expanded to provide additional guidance.*
- 4. There is an error in describing FreeSurfer and FSL in that you need the MATLAB path. FreeSurfer and FSL are not MATLAB based.

This error has been amended.

5. Hyphens vs dashes are not well distinguished.

We have checked the manuscript to ensure that hyphens and dashes have been used consistently.

6. Clarify if the scope includes volumes from segmentation or just to segment. It relates to how you may threshold the probability maps. So, some additional comments on the binary vs probability or likelihood output image would be nice.

We agree that this would be helpful, we have added an explanation of this along with a brief description of probability maps has been added to the discussion on page 11.

7. With FSL 5.0.10, fslview is obsolete and suggests fsleyes.

We have changed the recommended viewer to FSLeyes (see page 8) as suggested by Reviewer 2.

8. The figures should have arrows to indicate the areas of concerns. And slightly more detail on overlaid than just "you can change the opacity and colour to improve visualization." The way a user actually gets the similar images. Some explanation on the colors - especially the border appearance is different (red color on 'yellow' gray matter or purple color on the coronal slices).

Detail has been added to the SOP and figure legends to explain how to replicate the viewing conditions shown in these figures.

9. On FreeSurfer segmentation, more details on "Open a terminal and open the T1, with as many regions as required overlaid. To do this type: Freeview T1.nii Region1.nii Region2.nii." Specifying the filenames that is relevant for this purpose would help.

This stage has been re-written to provide clearer instructions – see page 8.

10. It's worth noting that different groups different steps before and after these segmentation programs. For example, before any SPM segmentation, our group performs linear registration (Normalize) that modifies the nifti header, which will reduce the failure rate.

We agree and have added more information regarding these steps to the discussion on page 11.

- 11. It helps to explain the example procedures to 'fix' the initial straightforward segmentation. This has been clarified within the representative results.
- 12. Can you speculate or give failure rates that may provide an extent of expectations for the readers and users.

This has been added to the representative results section, along with a description of how to improve segmentations

13. Line 354-355: "These errors can be corrected by re-running processing or re-orienting the brain to roughly align with standard space." is not clear as an SOP.

We recognise that this instruction was too brief, and have expanded this description slightly on page 9, although unfortunately it is beyond the scope of this manual to provide more extensive details