Journal of Visualized Experiments

Modeling Charcot Marie Tooth disease in vitro by transfecting mouse primary motoneurons --Manuscript Draft--

Invited Methods Article - JoVE Produced Video
JoVE57988R2
Modeling Charcot Marie Tooth disease in vitro by transfecting mouse primary motoneurons
motoneuron; lower motoneuron; spinal motoneuron; motor neuron; magnetofection; neuromuscular disorder; neurodegeneration; Charcot-Marie-Tooth; neurofilament
A. Jacquier Institut NeuroMyoGène Lyon, FRANCE
Institut NeuroMyoGène
arnaud.jacquier@univ-lyon1.fr
Arnaud Jacquier
Valérie Risson
Laurent Schaeffer
Response

TITLE:

Modeling Charcot-Marie-Tooth Disease In Vitro by Transfecting Mouse Primary Motoneurons

2 3 4

1

AUTHORS AND AFFILIATIONS:

5 Arnaud Jacquier^{1,2}, Valérie Risson¹, Laurent Schaeffer^{1,3}

6 7

8

9

¹Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Université Lyon, Lyon, France ²Unité Fonctionnelle de Neurogénétique Moléculaire, Hospices Civils de Lyon, Bron, France

³Centre de Biotechnologie Cellulaire, Hospices Civils de Lyon, Bron, France

10 11

Corresponding Author:

12 **Arnaud Jacquier**

13 arnaud.jacquier@univ-lyon1.fr

14 15

Email Addresses of Co-authors:

(valerie.risson@univ-lyon1.fr) Valerie Risson Laurent Schaeffer (laurent.schaeffer@univ-lyon1.fr)

17 18

16

19 **KEYWORDS:**

Motoneurons, spinal motoneurons, neuromuscular disorder, Charcot-Marie-Tooth disease, neurofilament, magnetofection, neurodegeneration

21 22 23

24

25

26

20

SUMMARY:

The goal of this technique is to prepare a highly enriched culture of primary motoneurons (MNs) from murine spinal cord. To evaluate the consequences of mutations causing MN diseases, we describe here the isolation of these isolated MNs and their transfection by magnetofection.

27 28 29

30

31

32

33

34

35

36

37

38

39

40

41

ABSTRACT:

Neurodegeneration of spinal motoneurons (MNs) is implicated in a large spectrum of neurological disorders including amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease, and spinal muscular atrophy, which are all associated with muscular atrophy. Primary cultures of spinal MNs have been used widely to demonstrate the involvement of specific genes in such diseases and characterize the cellular consequences of their mutations. This protocol models a primary MN culture derived from the seminal work of Henderson and colleagues more than twenty years ago. First, we detail a method of dissecting the anterior horns of the spinal cord from a mouse embryo and isolating the MNs from neighboring cells using a density gradient. Then, we present a new way of efficiently transfecting MNs with expression plasmids using magnetofection. Finally, we illustrate how to fix and immunostain primary MNs. Using neurofilament mutations that cause Charcot-Marie-Tooth disease type 2, this protocol demonstrates a qualitative approach to expressing proteins of interest and studying their involvement in MN growth, maintenance, and survival.

42 43 44

INTRODUCTION:

Neuromuscular diseases encompass a variety of clinically and genetically distinct pathologies that are characterized by the alteration of muscle and/or the nervous system. Because of advances in sequencing technologies, hundreds of genes responsible for these rare disorders have been identified during the last decade (list available at the Neuromuscular Disease Center, http://neuromuscular.wustl.edu/index.html). The variety of identified mutations indicates that different mutations in a single gene can cause different phenotypes and diseases^{1–3} and that mutations in different genes can produce similar phenotypes^{4, 5}. In this context, there are efforts to develop cellular models that can become powerful tools for analyzing mutation consequences and pathological mechanisms.

Spinal MNs have large somas located in the ventral horns of the spinal cord, form long axons to target skeletal muscle fibers, and allow for voluntary movements through the release of acetylcholine at neuromuscular junctions. Since MNs are affected by neuromuscular diseases such as amyotrophic lateral sclerosis, Charcot-Marie-Tooth disease (CMT), and spinal muscular atrophy, Dr. Henderson and colleagues developed the first protocol⁶ that allowed for cultivation of *in vitro* spinal MNs and the discovery of neurotrophic factor GDNF⁷ (glial cell derived neurotrophic factor). Technical refinements since then have allowed for more accurate purification of spinal MNs and their subtypes using FACS⁸, but enrichment by density gradient remains powerful and widely used in laboratories currently working with primary spinal MNs^{9–14}. Subsequently, it is also possible to obtain a higher MN purification grade through immunopanning by taking advantage of surface marker p75^{(NTR) 15–17}.

The spinal cord contains different subtypes of cervical, thoracic, and lumbar MNs, as well as median and lateral motor columns that differ among their location in the anterior horn on a dorso-ventral axis and among the targets they innervate^{8,18}. Primary MN cultures can recover all of these MN subtypes in physiological proportions. The main limitation of this technique is the low number of MNs obtained at the end of the procedure; in fact, it can be expected to obtain around 10⁵ MNs from six embryos, which is suitable for microscopy but limiting for biochemistry experiments. To perform experiments with more standardized subtypes and abundant MNs (>10⁶ cells), embryonic stem cell-derived MNs should be considered¹⁸.

Transfection of wild-type/mutant transgenes or knockdown endogenous genes into primary MNs is a rapid and helpful tool for deciphering physiopathological pathways, especially when mouse models are unavailable. Magnetofection is one technique for transfecting primary neurons, similar to lipofection without the related neurotoxicity. Furthermore, transfection can be performed on mature neurons after several days *in vitro*, unlike techniques based on electroporation⁹. However, one disadvantage of this technique is that the beads bind nucleic acids in the culture, causing noise in DAPI labeling. Viral infection is likely the most efficient technique for transfecting MNs; however, magnetofection does not require certain safety procedures needed for viral production and cellular infection.

PROTOCOL:

All procedures involving animals were accepted by the ethical committee of the institution.

90 1 **Solution Preparation** 91 92 1.1 Prepare 10 mL of 4% BSA dialyzed in L-15 medium. 93 94 1.1.1 Dissolve bovine serum albumin powder at 4% (w/v) in 10 mL of L-15 medium. 95 96 1.1.2 Add the solution to a 20 mL dialysis cassette with a 20 kDa cut-off. Dialyze against 500 97 mL of L-15 medium for 3 days under agitation at 4 °C. Change the L-15 medium every day. 98 99 1.1.3 Filter the solution through a 0.22 µm membrane and aliquot in 15 mL tubes. Store the 100 tubes at -20 °C. 101 102 Note: This protocol uses the following references: unmodified raw L-15 medium = L-15 103 medium, acidic L-15 medium = pH L-15, and basic L-15 medium = Bicarbonate L-15. 104 105 1.2 Prepare 200 mL of pH L-15. 106 107 1.2.1 Adjust the pH of the L-15 medium: First, fill a wash-bottle with some pieces of dry ice. 108 Inject gas (CO₂) into the L-15 medium until the color turns orange (~pH 6.4 and ~40 pressures). 109 The pH can be also adjusted with a standard pH meter. 110 111 1.2.2 Filter the medium through a 0.22 μm membrane and store at 4 °C for one month. 112 113 1.3 Prepare 100 mL of Bicarbonate L-15. 114 1.3.1 Add 2.5 mL of 7% sodium bicarbonate to 97.5 mL of L-15 medium and store at 4 °C. 115 116 117 1.4 Prepare the IPCS (Insulin Putrescin Conalbumin Selenite) supplements. 118 119 1.4.1 Dissolve 2.5 mg of insulin in 0.5 mL of 0.1 M HCl. Add 4.5 mL of double-distilled water. 120 121 1.4.2 Dissolve 8 mg of putrescine in 5 mL of phosphate-buffered saline (PBS). 122 123 1.4.3 Dissolve 100 mg of conalbumin in 10 mL of PBS. 124 125 1.4.4 Dissolve 1 mg of sodium selenite in 19.3 mL of water, adjust the pH to 7.4, and dilute 126 the solution 10-fold. 127

1.4.5 Combine 1 mL of insulin solution, 1 mL of putrescine solution, 1 mL of conalbumin, and

0.1 mL of sodium selenite solution to obtain 3.1 mL of IPCS supplement solution. Store the

132 1.5 Prepare a 0.02 mM progesterone solution.

solution at -20 °C.

89

128

129

130

133134 1.5.1 Dissolve 1 mg of progesterone in 1.6 mL of 80% ethanol.

135

136 1.5.2 Dilute the solution 100-fold in 100% ethanol and store it at -20 °C.

137

138 1.6 Prepare 100 mL of complete L-15 medium.

139

140 1.6.1 Add 1.8 mL of D-glucose solution (200 mg/mL) to 92 mL of pH L-15 to obtain a final concentration of 3.5 mg/mL glucose.

142

1.6.2 Combine 1 mL of 100x Penicillin-Streptomycin (10,000 U/mL), 2 mL of heat-inactivated horse serum, 3.1 mL of IPCS mix, and 0.1 mL of progesterone solution (2 x 10⁻⁵ M).

145

146 1.6.3 Filter the medium on a 0.22 μ m membrane and store it at 4 °C.

147

148 1.7 Prepare 5 mL of density gradient solution (final concentration of 5.5%) per experiment.

149

- 150 1.7.1 Add 476 μL of the commercial 60% density gradient medium to 4524 μL of L-15 (if
- possible, without red phenol to increase the visual contrast at the interphase; dilution ratio of

152 1:10.5).

153

154 1.7.2 Store the solution at 4 °C for 2 weeks or freeze it at -20 °C.

155

156 1.8 Prepare 10 mL of culture media.

157

158 1.8.1 Add 200 μL of supplement medium to 9.6 mL of neuron cell culture medium.

159

160 1.8.2 Add 200 μ L of heat-inactivated horse serum (which tends to differentiate glial cell precursors and works against proliferation) to 25 μ L of glutamine and 10 μ L of 2-mercaptoethanol.

162 163

164 1.8.3 Filter the media through a 0.22 μm filter.

165

1.8.4 Add the following neurotrophic factors: ciliary neurotrophic factor (CNTF) at a final concentration of 10 ng/mL, and brain derived neurotrophic factor (BDNF) and glial cell derived neurotrophic factor (GDNF) at final concentrations of 1 ng/mL.

169

170 1.8.5 Store the media at 4 °C.

171

172 1.9 Prepare 50 mL of dissection media.

173

1.9.1 Add 2.25 mL of glucose (200 mg/mL) to 47.05 mL of HBSS. Add 700 μ L of 1 M HEPES with pH 7.4. Store the media at 4 °C.

178 179 1.10.1 Dissolve 20 g of PFA in 500 mL of PBS. 180 181 1.10.2 Under a chemical hood, heat the solution to 60 °C and add a few drops of 1 M NaOH 182 until the solution becomes clear. 183 184 1.10.3 Filter the solution through a filter paper and adjust the pH to 7.2. Store it at -20 °C. 185 186 Note: Alternatively, other commercial PFA solutions can be used and diluted to 4% in PBS. 187 1.11 188 Clean the dissection tools including the forceps, scissors, and silicone dishes with 70% 189 ethanol before use, and with soap and clear water after use. 190 191 2 Poly-ornithine/Laminin (Po/L) Dish Coating 192 193 Note: Volumes are adapted to coat a 24-well plate. 194 195 2.1 If needed, put a sterile 12 mm coverslip in the well. 196 197 2.2 Coat the wells with 500 µL of 10 µg/mL Poly-L-Ornithine solution dissolved in water. 198 199 2.3 Let the wells settle at room temperature for 1 h. 200 201 2.4 Remove the Poly-L-Ornithine solution and air-dry for 30 min. 202 203 2.5 Coat the wells overnight at 37 °C with 500 μ L of 3 μ g/mL laminin in bicarbonate L-15. 204 205 Note: Wells can be stored at 37 °C for 7 days in the incubator. For long incubations, adding 206 sterile PBS between the wells can help to avoid medium evaporation. 207 208 Dissection 3 209 210 Sacrifice a pregnant mouse when the embryos are at embryonic stage E12.5. Clean the 211 belly with 70% ethanol. 212 213 3.2 Remove the womb by cutting the two oviducts and the vagina and put it in a Petri dish filled with cold PBS (without Ca²⁺ Mg²⁺). 214 215 Collect all the embryos and transfer them to fresh, cold PBS (without Ca²⁺ Mg²⁺) in a 216 3.3 217 Petri dish. 218 219 Put one embryo in a dish coated with silicone and full of dissection media (with HBSS,

177

220

1.10

Prepare a 4% PFA solution.

4.5 g/L glucose, and 7 mM HEPES pH 7.4).

221		
222	<mark>Note:</mark>	Embryo dissection is performed under a microscope using clean fine forceps and scissors.
223	<mark>Altern</mark>	natively, a regular Petri dish without silicone can be used for dissection.
224		
225 226	<mark>3.5</mark>	Remove the head, tail, and viscera, using forceps as scissors.
227 228	3.6	Maintain the embryo with the belly against the silicone with forceps.
229	3.7	With a second pair of forceps, insert one of the tips into the central canal of the rostral
230	<mark>spinal</mark>	cord.
231		
232	<mark>3.8</mark>	Close the forceps to tear the dorsal tissue a few millimeters.
233		
234	<mark>3.9</mark>	Repeat this operation toward the caudal side until the entire spinal cord is open (Figure
235	<mark>1B).</mark>	
236		
237	3.10	Detach the rostral part of the spinal cord (cerebral trunk) from the body.
238		
239	3.11	Turn the embryo to maintain the open spinal cord against the silicone.
240		
241	3.12	Pinch the rostral part of the spinal cord and pull the embryo by the head to extract the
242	<mark>spinal</mark>	cord.
243		
244		Meninges and dorsal root ganglia (DRGs) should remain attached to the embryo.
245 246		wise, carefully pull away any remaining meninges and DRGs still attached to the spinal At this step, DRGs could also be collected for sensitive neuron culture (see Discussion).
247	3.13	Flatten the enimal cord on the cilisane and remove the derest half of the cord by cutting
248		Flatten the spinal cord on the silicone and remove the dorsal half of the cord by cutting the middle of each side using a scalpel. Cut the middle part into 10 pieces using a scalpel,
249	_	
250 251	anu ti	ransfer the pieces to a new tube.
	4	Spinal Cord Cell Suspension
252	4	Spinal Cord Cell Suspension
253	11	Paneat this dissection procedure for 6 to 9 spinal cords
254	4.1	Repeat this dissection procedure for 6 to 8 spinal cords.
255 256	4.2	Let the spinal cord pieces collect at the bottom of the tube and replace the HBSS with 1
256 257		Ham-F10 medium.
	IIIL OI	nani-rio mediani.
258	4.3	Add 10 ul of truesia (2.5% w/w final concentration 0.025%) Incubate the tube for 10
259 260		Add 10 μL of trypsin (2.5% w/v; final concentration 0.025%). Incubate the tube for 10
260 261	mm a	t <mark>37 °C.</mark>
261	A A	To stop the engumentic direction, transfer the fragments to a year, 15 ml tube containing
262	4.4	To stop the enzymatic digestion, transfer the fragments to a new 15 mL tube containing
263		L of complete L-15 medium, 100 μL of 4% (w/v) BSA, and 100 μL of DNase (1 mg/mL in L-
264	TO IIIE	<mark>edium).</mark>

265

266 4.5 Triturate twice by aspirating 1 mL using a P1000 pipette. Let the fragments settle for 2
267 min. Collect the supernatant in a fresh 15 mL tube.

268269

270

4.6 To the fragments, add 900 μ L of complete L-15 medium, 100 μ L of 4% (w/v) BSA, and 100 μ L of DNase (1 mg/mL in L-15 medium).

271

272 4.7 Triturate **6 times** by aspirating 1 mL using a P1000 pipette. Let the fragments settle for 2 min. Add the supernatant to the 15 mL tube obtained in step 4.5.

274

275 4.8 To the fragments, add 900 μL of complete L-15 medium, 100 μL of 4% (w/v) BSA, and 276 100 μL of DNase (1 mg/mL in L-15 medium).

277

4.9 Triturate 10 times by aspirating 1 mL using a P1000 pipette. Let the fragments settle for
279 2 min. Add the supernatant to the 15 mL tube obtained in step 4.5. Proceed with the
280 supernatant.

281282

4.10 Using a P1000 pipet, gently place a 2 mL BSA 4% (w/v) cushion at the bottom of supernatant tube. Centrifuge at 470 x g for 5 min.

283284285

4.11 Remove the supernatant and resuspend the cell pellet with 2 mL of complete L-15 medium.

286287

5 MN Enrichment by Gradient Density

288289290

291

5.1 Split the cell suspension into two 15 mL tubes (1 mL each). Then, add 2 mL of complete L-15 medium. If starting with 6 embryos, use the equivalent of 3 embryos per tube in 3 mL of medium.

292293294

5.2 Add 2 mL of density gradient solution by slowly adding the solution to the bottom of each tube to obtain a sharp interface.

295296297

298

5.3 Centrifuge at 830 x g for 15 min at room temperature. After this step, small cells should be at the bottom of the tube, whereas large cells such as MNs should be at the density gradient solution/medium interface.

299300

301 5.4 Collect the cells at the interface by aspirating 1 or 2 mL and transfer them to a fresh 15 mL tube. Adjust the volume in each tube to 10 mL with L-15 pH medium.

303 304

5.5 Add 2 mL of the 4% BSA cushion to the bottoms of the 2 tubes and centrifuge at 470 x g for 5 min at room temperature.

305 306

5.6 Remove the supernatant and resuspend the pellet in 3 mL of complete L-15 medium.

5.7	Repeat step 5.5.
5.8	Remove the supernatant and resuspend the cell pellet in 2 mL of complete culture
	um. Count the cell number and viability under a phase contrast microscope with a ocytometer.
Note:	For 6 spinal cords, the cell number is expected to be around 1×10^5 MNs.
6	MN Culture
6.1	Dilute the MNs to the appropriate density, usually 5,000 to 10,000 cells in 500 μL of
<mark>cultu</mark>	re medium per well in a 24-well plate.
Note:	Seeding density is around 30,000 and 1,500 cells for 6- and 96-well plates, respective
<mark>6.2</mark>	Remove the laminin solution with a P1000.
6.3 <mark>dryin</mark>	Immediately transfer the MNs diluted in culture medium into the coating plates to a g.
6.4	Incubate the culture for 2 days at 37 °C.
7	Magnetofection of MNs
	In the following steps, the quantities used are meant for the transfection of one well plate. Please refer to the manufacturer's protocol for another format.
7.1 and v	For the DNA preparation, resuspend 1 μg of DNA in 50 μL of neuronal culture mediuortex for 5 seconds.
7.2 medi	For bead tube preparation, resuspend 1.5 μL of beads in 50 μL of neuronal culture um.
<mark>7.3</mark> temp	Add the 50 μ L bead solution to the 50 μ L DNA solution and incubate for 20 min at recent erature (total volume = 100 μ L).
7.4 trans	During this incubation, withdraw 100 μL of culture medium from the well that will b fected.
Note:	Put the magnetic plate in the incubator to warm it to 37 °C.
7.5 <mark>the m</mark>	Transfer 100 μL of the DNA/bead mix to the well, and incubate the plate 20-30 min nagnetic plate at 37 °C.

353 354	7.6	Wait at least 24 h before detection of cDNA expression.	
355	8	Fixation and Staining	
356	Ü	Tracton and Stanning	
357	8.1	Wash the culture 2 times with PBS.	
358	0.1	Tradit the dattare 2 times with 1 box	
359	8.2	Incubate the culture for 20 min at room temperature in 4% PFA/PBS.	
360		,	
361	8.3	Wash the culture 2 times with PBS.	
362			
363	8.4	Incubate the culture in 500 μL of blocking buffer (PBS, 4% BSA, 2% normal serum, 0.3%	
364	Triton	X-100, 0.1 M glycine) for 1 h at room temperature.	
365			
366	Note:	Normal serum should be derived from the same species as the secondary antibody (e.g.,	
367	Norma	al Goat Serum).	
368			
369	8.5	Incubate the culture overnight at 4 $^{\circ}\text{C}$ with primary antibody diluted in 250 μL of	
370	blocki	ng buffer.	
371			
372	Note:	For example, TUJ1 is used at 1/1000, SMI32 is used at 1/1000, and Lc3b is used at 1/200.	
373			
374	8.6	Wash the culture 3 times with PBS.	
375	0.7	The best three by the Charles are the control of th	
376	8.7	Incubate the culture with fluorophore-conjugated secondary antibodies diluted in 250	
377 378	μιοιι	plocking buffer for 1 hour at room temperature.	
379	8.8	Wash the culture 3 times with PBS.	
380	0.0	Wash the culture 3 times with FB3.	
381	8.9	Mount on glass slides using mounting medium.	
382	0.5	Mount on glass shaes asing mounting mediam.	
383	REPRE	SENTATIVE RESULTS:	
384		24 hours in the culture, motoneurons (MNs) should already show significant axonal	
385		h (at least 6 times longer than the soma size). In the following days, axons should	
386	•	ue to grow and display branching (Figure 2). There will be different morphologies due to	
387		be specificities. For example, median column MNs that innervate axial muscles have	
388	shorter and more branched axons than lateral motor column MNs that innervate limb		
389	muscle	es ¹⁸ .	
390			
391	These	isolation and culturing techniques described above have recently been used to	
392		terize a new mutation in the neurofilament gene NEFH that causes an autosomal	
393		ant axonal form of CMT ¹³ . In this case, two days after plating, purified MNs were	
394		ected with plasmids encoding either a mutant form of NEFH fused to eGFP or the wild-	
395		orm fused to eGFP. Two days later, mutant NEFH-eGFP formed aggregates along the	
396	cytosk	eletal network. Four days after magnetofection, these aggregates evolved in a prominent	

perinuclear aggresome containing the LC3b autophagic marker (**Figure 3**). This approach allowed us to demonstrate that the mutant form of NEFH induced the formation of aggregates that are associated with autophagic pathways in primary MNs.

FIGURE AND TABLE LEGENDS:

Figure 1: Overview of procedure main steps. A. E12.5 mouse embryos are dissected to extract the ventral horn of the spinal cord. Then, neurons from the ventral horn cells are dissociated and MNs are purified by density gradient before plating. Finally, MNs are transfected by magnetofection and analyzed after a few days. **B.** The first step in spinal cord dissection is when the roof plate of the spinal cord is opened along the rostro-caudal axis with forceps. Then, the spinal cord is detached from the body by pulling the cerebral trunk. At this point, meninges and dorsal root ganglia (DRG) remain on the embryonic body. The dorsal part of the spinal cord is cut longitudinally with a scalpel.

Figure 2: Representative MN culture. A. MNs morphology after 4 days of culture revealed by staining of endogenous non-phosphorylated neurofilament heavy chain (SMI32). Scale bar represents $100~\mu m$. B. MNs morphology after 4 days *in vitro* and transfected for eGFP transgene by magnetofection at day 2. MNs were counterstained with the marker SMI32 or the panneuronal marker Tuj1. Arrows show somas of the neurons. Scale bar represents $100~\mu m$.

Figure 3: Confocal images of magnetofected MNs expressing wild-type or mutant eGFP-NEFH constructs (in green) and stained for the autophagic marker LC3b (in red). Arrows show mutant eGFP-NEFH protein aggregates that are also LC3b positive. Scale bar represents 10 μ m. Images are modified from Jacquier *et al.* 2017, Acta Neuropathologica Communication¹³.

DISCUSSION:

One of the critical points in this protocol is that the mouse embryos are dissected at a precise time window during development (E12.5) to optimize the amount of MNs obtained at the end. In addition, for optimal yield, the dissection should be performed in the morning or early in the afternoon. Before E12.5 (e.g., at E11.5), dissection is difficult, especially regarding the elimination of the meninges. After E12.5, the number of obtained MNs drops significantly. To control the embryo stage of development, adult females and males are first placed together at the end of the day. The next morning, the adults are separated, and females are checked for the presence of a vaginal plug. If a plug is present, embryos are at this point considered to be in E0.5 day of development. For these experiments, we typically use a mouse line that is vigorous and productive. Progenitors originating from a colony bred in Missouri were used in this protocol, and the strain was named CF1 (Carworth Farms strain 1). This strain was introduced at Charles River Laboratories France in 1967, and it acquired the name OF1 (Oncins France 1).

A second critical point is the centrifugation steps that greatly influence the purity of the culture. MNs represent a low percentage of the spinal cord cells (around 1%), and the goal is to obtain a culture containing 40 to 50% MNs among other spinal neuronal cells and less than 5% glial cell progenitors. To monitor the efficacy of centrifugations, cell suspension samples acquired before

and after each step can be plated in MNs medium for 24 hours, followed by fixing and staining for the expression of motor neuron markers Hb9 (81.5C10, DSHB) or Islet-1/Islet-2 (ISL1/2, 40.2D6 /39.4D5, DSHB), whose combinations define different MNs subpopulation¹⁹. On more mature MNs, other markers such as Choline Acetyl Transferase (CHAT, Ab144P) or Neurofilament H non-phosphorylated (SMI-32P) can be used to estimate the quality of the culture. A good alternative for quickly monitoring the efficacy of purification is to use transgenic mice that express the Green Fluorescent Protein (GFP) specifically in MNs. For example, Wichterle and colleagues previously developed transgenic mice expressing GFP under the control of the mouse Hb9 (also called Hlxb9 or Mnx1) promoter¹⁸. Hb9::GFP transgenic mice display distinct expression of GFP in dendrites, axons, and somas of spinal MNs from embryonic day 9.5 to postnatal day 10.

MNs require growth on a permissive substrate obtained by Poly-L-Ornithine and laminin coating. Depending on experimental conditions, a variety of plastic-, polymer-, and glass-based containers can be used (*e.g.*, 6-, 24-, 96-well plates, glass coverslips, or chamber slides). Among these options, microfluidic devices may be of interest to address specific questions regarding synapse formation or axonal guidance and transport²⁰. MNs are known to be sensitive to changes in their microenvironment involving patterns, concentration factors, mechanical changes in the substrate (*e.g.*, stiffness), sheer stress, and spatiotemporal gradient cues (*e.g.*, topographic features, patterning of surfaces with substances of different cellular affinities). Microfluidic platforms are systems that can integrate multifactorial conditions, allowing for the determination of optimal cellular microenvironments.

Since the discovery of GDNF's survival effects⁷, the number of neurotrophic factors involved in MN initial growth and survival, guidance and development of axons, and inducing of synaptic plasticity is growing. Interestingly, each factor acts on a specific subpopulation of MNs⁸. For example, CNTF has been described to protect the median motor column (MMC) which innervates axial muscles, whereas HGF acts on the lateral motor column (LMC) which innervates limb muscles. On the other hand, GDNF and BDNF both show the strongest prosurvival activity on whole populations of MNs. Finally, the combination of GDNF, BDNF, and CNTF is sufficient for protecting more than 70% of a MN population and is commonly used in laboratories.

In standard culture conditions, MNs can be kept *in vitro* up to 14 days by replacing half of the culture media with fresh media once every 3 days, starting from the fifth day of culture. During *in vitro* maturation, MNs can be transfected by magnetofection at any time using this protocol. Efficiency and toxicity of this technique may be modulated by the nature of the plasmids and inserts. In our case, when magnetofection was performed on MN culture after 2 days *in vitro* using a 9 kb plasmid with a CAGGS promotor (pCAGEN²¹) controlling neurofilament cDNA, we observed an average of $31.48\% \pm 9.94$ (standard deviation) of transfected MNs 48 hours post-transfection. Nevertheless, for other constructs, a different ratio of DNA/beads should be tested as described in the manufacturer's protocol. Another parameter that may influence the transfection level efficiency is the maturation of MNs over time. Indeed, during the first 3 days of culture, growth of axons and enlargement of somas will occur, which increases the surface

area where the beads will penetrate. This parameter may increase MN transfection efficiency over time during maturation.

486 487 488

489

490

491

492

493

Finally, in comparison with MN cultures, it would be interesting to cultivate sensory neurons^{22–24}. In particular, Charcot-Marie-Tooth disease is a sensory motor neuropathy characterized by distal muscular atrophy related to the degeneration of both spinal MNs and sensory neurons of DRGs. Interestingly, DRGs are located on both sides of the spinal cord and can be collected during the same dissection procedure used to obtain MNs. In this regard, it is possible to compare the pathophysiological mechanisms at work in these two relevant cell types, motoneurons and DRG sensitive neurons.

494 495 496

497

498

499

500

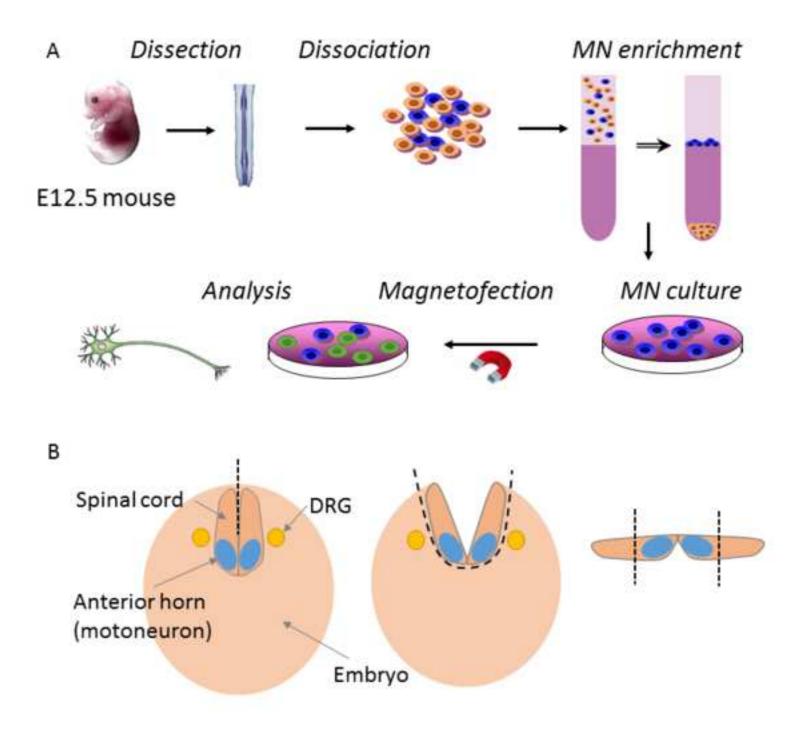
ACKNOWLEDGMENTS:

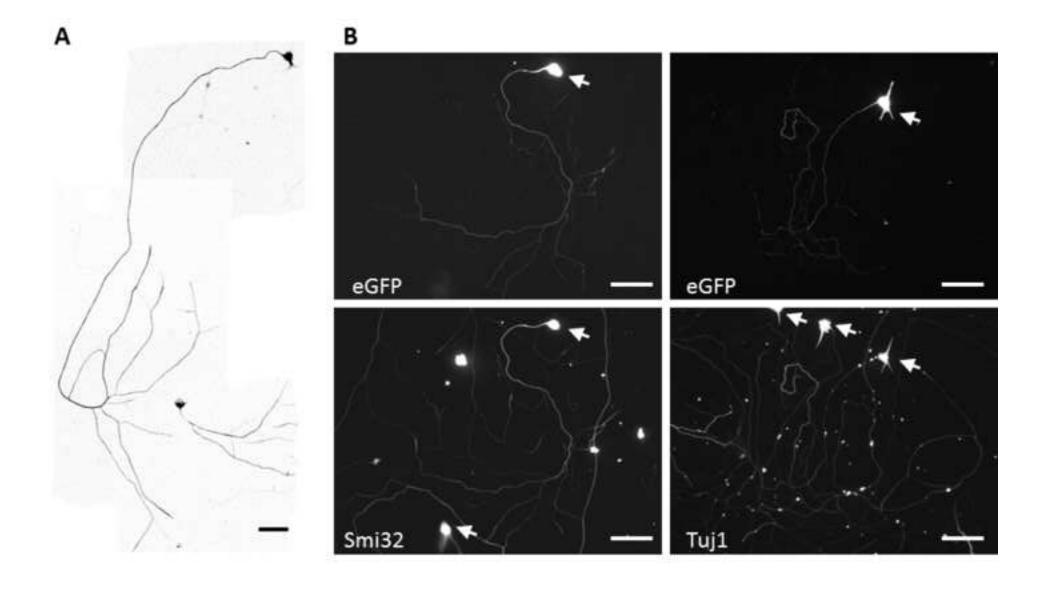
We would like to thank the "Association pour le développement de la neurogénétique" for Dr. Jacquier's fellowship and AFM-Telethon for its support through MyoNeurAlp strategic plan. We would also like to thank Dr. Chris Henderson, Dr. William Camu, Dr. Brigitte Pettmann, Dr. Cedric Raoul, and Dr. Georg Haase, who participated in developing and improving the technique and spread their knowledge.

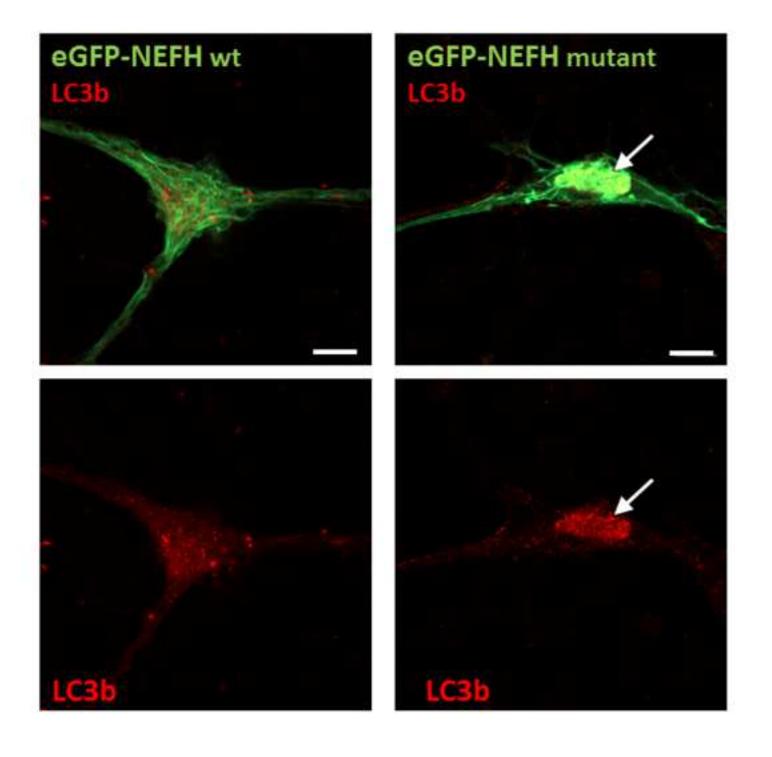
501 502 503

DISCLOSURES:

The authors have nothing to disclose.


504 505 506


REFERENCES:


- 1. Gonzalez, M.A., *et al.* A novel mutation in VCP causes Charcot–Marie–Tooth Type 2 disease. *Brain.* **137** (11), 2897–2902 (2014).
- 2. Johnson, J.O., *et al.* Exome sequencing reveals VCP mutations as a cause of familial ALS. *Neuron.* **68** (5), 857–864 (2010).
- 3. Watts, G.D.J., *et al.* Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. *Nature Genetics.* **36** (4), 377–381 (2004).
- 4. Brown, R.H., Al-Chalabi, A. Amyotrophic Lateral Sclerosis. *New England Journal of Medicine*. **377** (2), 162–172 (2017).
- 5. Taylor, J.P., Brown, R.H., Cleveland, D.W. Decoding ALS: from genes to mechanism. *Nature*.
 539 (7628), 197–206 (2016).
- 6. Henderson, C.E., Bloch-Gallego, E., Camu, W. Purified embryonic motoneurons. *Nerve Cell Culture: A Practical Approach.* 69–81 (1995).
- 7. Henderson, C.E., *et al.* GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. *Science*. **266** (5187), 1062–1064 (1994).
- 8. Schaller, S., et al. Novel combinatorial screening identifies neurotrophic factors for selective
 classes of motor neurons. Proceedings of the National Academy of Sciences. 114 (12), E2486–
 E2493 (2017).
- 9. Jacquier, A., et al. Alsin/Rac1 signaling controls survival and growth of spinal motoneurons.
 Annals of Neurology. 60 (1), 105–117 (2006).
- 10. Raoul, C., et al. Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL. *Proceedings of the National Academy of*

529 *Sciences.* **103** (15), 6007–6012 (2006).

- 530 11. Madji Hounoum, B., et al. Wildtype motoneurons, ALS-Linked SOD1 mutation and glutamate profoundly modify astrocyte metabolism and lactate shuttling. *Glia*. **65** (4), 592–605 (2017).
- Magrane, J., Sahawneh, M.A., Przedborski, S., Estevez, A.G., Manfredi, G. Mitochondrial
 Dynamics and Bioenergetic Dysfunction Is Associated with Synaptic Alterations in Mutant
 SOD1 Motor Neurons. *Journal of Neuroscience*. 32 (1), 229–242 (2012).
- 536 13. Jacquier, A., et al. Cryptic amyloidogenic elements in mutant NEFH causing Charcot-537 Marie-Tooth 2 trigger aggresome formation and neuronal death. *Acta Neuropathologica Communications*. **5**, (2017).
- 539 14. Aebischer, J., *et al.* IFNγ triggers a LIGHT-dependent selective death of motoneurons 540 contributing to the non-cell-autonomous effects of mutant SOD1. *Cell Death and* 541 *Differentiation*. **18** (5), 754–768 (2011).
- 542 15. Wiese, S., et al. Isolation and enrichment of embryonic mouse motoneurons from the lumbar spinal cord of individual mouse embryos. *Nature Protocols*. **5** (1), 31–38 (2010).
- 544 16. Camu, W., Henderson, C.E. Purification of embryonic rat motoneurons by panning on a 545 monoclonal antibody to the low-affinity NGF receptor. *Journal of Neuroscience Methods*. **44** 546 (1), 59–70 (1992).
- 547 17. Conrad, R., Jablonka, S., Sczepan, T., Sendtner, M., Wiese, S., Klausmeyer, A. Lectin-based
 Isolation and Culture of Mouse Embryonic Motoneurons. *Journal of Visualized Experiments*.
 (55), (2011).
- 550 18. Wichterle, H., Lieberam, I., Porter, J.A., Jessell, T.M. Directed differentiation of embryonic 551 stem cells into motor neurons. *Cell.* **110** (3), 385–397 (2002).
- 552 19. Francius, C., Clotman, F. Generating spinal motor neuron diversity: a long quest for neuronal identity. *Cellular and Molecular Life Sciences*. **71** (5), 813–829 (2014).
- Neto, E., et al. Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of
 In Vitro Tools for Neurobiological Research. The Journal of Neuroscience. 36 (46), 11573–11584
 (2016).
- 557 21. Matsuda, T., Cepko, C.L. Electroporation and RNA interference in the rodent retina in vivo 558 and in vitro. *Proceedings of the National Academy of Sciences of the United States of America*. 559 **101** (1), 16–22 (2004).
- 560 22. Sleigh, J.N., Weir, G.A., Schiavo, G. A simple, step-by-step dissection protocol for the rapid isolation of mouse dorsal root ganglia. *BMC Research Notes.* **9**, (2016).
- 562 23. Yu, L., *et al.* Highly efficient method for gene delivery into mouse dorsal root ganglia neurons. *Frontiers in Molecular Neuroscience.* **8** (2), (2015).
- 564 24. Malin, S.A., Davis, B.M., Molliver, D.C. Production of dissociated sensory neuron cultures 565 and considerations for their use in studying neuronal function and plasticity. *Nature Protocols*. 566 **2** (1), 152–160 (2007).

Name of Material/ Equipment	Company	Catalog Number	Comments/Description
<u>Material</u>			
Silicone dissection dish	Living systems instrumentation	DD-90-S-BLK-3PK	Sylgard
round coverslip	NeuVitro, Knittel glass	GG-12-Pre	12 mm
Slide a Lyzer cassettes	ThermoFisher Scientific	66030	20,000 MWCO ; 30 mL
Filter unit	Millipore	SCGVU02RE	
GP Sterile Syringe Filters	Millipore	SLGP033RS	
4 well plate	ThermoFisher Scientific	167063	Nunclon Delta treated plate
forceps	FST by Dumont	11252-20	#5 forceps
scissor	FST by Dumont	14060-10	fine scissors
scalpel	FST by Dumont	10035-20	curved blade
scalpel	FST by Dumont	10316-14	micro-knife scalpel
Petri dish	Greiner	663102	ø x h = 100 x 15 mm
15 mL polypropylene tube	Falcon	352096	
filter paper	Watman	1001125	circle, 125 mm diameter
glass chamber slide	Lab-Tek	154526	4 chambers
Plasmid pCAGEN	Addgene	#11160	
Solutions and mediums			
Bovine serum albumin	Sigma-Aldrich	A9418	
L-15 medium	ThermoFisher Scientific	11415056	
L-15 medium, no red phenol	ThermoFisher Scientific	21083027	
Insulin	Sigma-Aldrich	16634	
Putrescine	Sigma-Aldrich	P5780	
Conalbumin	Sigma-Aldrich	C7786	
Sodium selenite	Sigma-Aldrich	S5261	
Progesterone	Sigma-Aldrich	P8783	
Poly-DL-Ornithine	Sigma-Aldrich	P8638	
, Laminin	Sigma-Aldrich	L2020	
trypsin 2.5%, 10x	ThermoFisher Scientific	15090046	
DNAse	Sigma-Aldrich	DN25	
PBS w/o Ca Mg	ThermoFisher Scientific	14190144	without Mg ²⁺ Ca ²⁺
sodium bicarbonate	ThermoFisher Scientific	25080094	<u>-</u>

Neuron cell culture medium HBSS HEPES buffer 1 M	ThermoFisher Scientific Sigma-Aldrich ThermoFisher Scientific	A3582901 H6648-500ML 15630056	Neurobasal Plus medium
	Sigma-Aldrich	D1556	Ontingon
Density gradiant medium	•		Optiprep
supplement medium	ThermoFisher Scientific	A3582801	B-27 Plus
Horse serum heat inactivated	ThermoFisher Scientific	26050-088	
L-Glutamine 200 mM	ThermoFisher Scientific	25030024	
2-mercaptoethanol	ThermoFisher Scientific	31350010	
penicilline/streptomycine	ThermoFisher Scientific	15140122	10,000 U/ml
Immuno fluorescence			
PBS, 10x	ThermoFisher Scientific	X0515	without Mg ²⁺ Ca ²⁺
Paraformaldehyde (PFA)	Sigma-Aldrich	441244	
normal goat serum	Sigma-Aldrich	G6767	
glycine	Sigma-Aldrich	G7126	
Triton X-100	Sigma-Aldrich	T8787	
Choline Acetyl Transferase (CHAT)	Chemicon	Ab144P	
Neurofilament H non phosphorylated	d		
(SMI32)	Biolegends	SMI-32P	IF at 1/1000
Islet-1	DSHB	40.2D6	
Islet-2	DSHB	39.4D5	
Hb9	DSHB	81.5C10	
Vectashield mounting medium	Vector Lab	H-1000	
Beta3 tubulin (Tuj1 clone)	Biolegends	801201	IF at 1/1000
Lc3b	Cell Signaling Technology	#2775	IF at 1/200
	·		

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Modeling Charcot-Man's - Tooth Disease in u. t., So Transfecting to				
Author(s):	Arrand SACQUIER, Voliare RISCOT, Laurent Schaoffer F				
Item 1 (check one	box): The Author elects to have the Materials be made available (as described at				
http://www.	.jove.com/author) via: Standard Access Dpen Access				
Item 2 (check one bo	ox):				
The Autl	hor is NOT a United States government employee.				
The Author is a United States government employee and the Materials were prepared course of his or her duties as a United States government employee.					
	thor is a United States government employee but the Materials were NOT prepared in the sor her duties as a United States government employee.				

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncat: nd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

1 Alewife Center #200 Cambridge, MA 02140 tot. 612,945,9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6, Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials. the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

1 Alewife Center #200 Cambridge, MA 02140 tel. 617,945,9061 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's

CORRESPONDING AUTHOR:

expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law.</u> This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

Name:	Arrand SACOVIET	
Department:	THSERM U1217 / CHRS WHR 53 10	
Institution:	Institut Heuro Myo Gene	
Article Title:	Modeling Charcot Mare- Took disease in voto by transferting me	orise
Signature:	6 A comme Date: 24 Numil 2018	

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

Dear Dr Jacquier,

Your manuscript JoVE57988R1 "Modeling Charcot Marie Tooth disease in vitro by transfecting mouse primary motoneurons" has been editorially reviewed and the following comments need to be addressed. Some revisions are required before we can formally accept your manuscript.

Your revision is due by May 02, 2018.

To submit a revision, go to the <u>JoVE submission site</u> and log in as an author. You will find your submission under the heading "Submission Needing Revision".

Best,

Nam Nguyen, Ph.D. Manager of Review JoVE 617.674.1888

Follow us: Facebook | Twitter | LinkedIn

About JoVE

Dear Dr Nguyen,

Please find the revisions of the manuscript in red in the text with the answers to the additional comments in the text.

All the best

Arnaud Jacquier

Editorial comments:

- 1. Please sign the author license agreement attached with standard access selected. Done
- 2. Please revise Figure 1 to say E12.5 mouse. Done
- 3. Please define all abbreviations before usage. Done
- 4. Additional comments are in the attached manuscript. Please specify the composition of all solutions/media throughout. Done
- 5. Please copy-edit the manuscript as there are scattered typos throughout the manuscript. Done

Sujet: 00793822 RE: reprint permission of a supplemental figure of my paper

De: Neil Castil < neil.castil@springernature.com>

Date: 01/02/2018 23:38

Pour: "arnaud.jacquier@ens-lyon.fr" <arnaud.jacquier@ens-lyon.fr>

Dear Dr. Jacquier,

Thank you for contacting SpringerOpen.

Reproduction of figures or tables from any article is permitted free of charge and without formal written permission from the publisher or the copyright holder, provided that the figure/table is original, Springer is duly identified as the original publisher, and that proper attribution of authorship and the correct citation details are given as acknowledgment.

If you have any questions, please do not hesitate to contact me.

With kind regards,

Neil Castil

Global Open Research Support Executive Global Open Research Support

Springer Nature

T +44 (0)203 192 2009

www.springernature.com

Springer Nature is a leading research, educational and professional publisher, providing quality content to our communities through a range of innovative platforms, products and services. Every day, around the globe, our imprints, books, journals and resources reach millions of people – helping researchers, students, teachers & professionals to discover, learn and achieve.

In the US: Springer Customer Service Center LLC, 233 Spring Street, New York, NY 10013

Registered Address: 2711 Centerville Road Wilmington, DE 19808 USA

State of Incorporation: Delaware, Reg. No. 4538065 Rest of World: Springer Customer Service Center GmbH,

Tiergartenstraße 15 – 17, 69121 Heidelberg

Registered Office: Heidelberg | Amtsgericht Mannheim, HRB

336546

Managing Directors: Derk Haank, Martin Mos, Dr. Ulrich Vest

1 sur 2 02/02/2018 12:07

-----Your Question/Comment ------

Dear editors,

I am the first author of an article publish by springer in open source :

Jacquier, A. /et al./ Cryptic amyloidogenic elements in mutant NEFH

causing Charcot-Marie-Tooth 2 trigger aggresome formation and neuronal

death. /Acta Neuropathol Commun/. *5*, doi: 10.1186/s40478-017-0457-1 (2017)

Now I am writing a paper in JOVE (journal of visualized experiment) that

describe in deep the protocol of primary motoneuron culture used in my

"Acta Neuropathologica Communication" paper. So I would like to reuse a

supplemental figure (Fig S4) to illustrate the JOVE with citation of the original paper.

If you accept, could you please write me a reprint permission?

Regards

Arnaud Jacquier

--

ATTENTION, changement d'adresse au 1er janvier 2018

Arnaud Jacquier, PhD
Equipe Interactions Neurone-Muscle (L. Schaeffer)
INMG, CNRS-UMR5310/INSERM U1217
8 avenue Rockefeller
69373 Lyon Cedex 08, France
E-mail: arnaud.jacquier@univ-lyon1.fr
http://www.inmg.fr/fr/eq_schaeffer.php

2 sur 2 02/02/2018 12:07