Journal of Visualized Experiments

Overview of Methods for Corrosion Study of Metals and Study of Efficiency of Corrosion Inhibitors in Less Conductive Media --Manuscript Draft--

A C 1 T	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Article Type:	Invited Methods Article - JoVE Produced Video	
Manuscript Number:	JoVE57757R3	
Full Title:	Overview of Methods for Corrosion Study of Metals and Study of Efficiency of Corrosion Inhibitors in Less Conductive Media	
Keywords:	static immersion corrosion test; dynamic corrosion test; biofuels; ethanol-gasoline blends; Electrochemical Impedance Spectroscopy; corrosion rate; corrosion inhibitors	
Corresponding Author:	Martin Staš University of Chemistry and Technology Prague Prague, CZECH REPUBLIC	
Corresponding Author's Institution:	University of Chemistry and Technology Prague	
Corresponding Author E-Mail:	Martin.Stas@vscht.cz	
First Author:	Lukáš Matějovský	
Other Authors:	Lukáš Matějovský	
	Jan Macák	
	Olga Pleyer	
Additional Information:		
Question	Response	
Please indicate whether this article will be Standard Access or Open Access.	be Standard Access (US\$2,400)	
Please indicate the full address at which this article will be filmed .	Technicka 5, 166 28 Prague 6, Czech Republic	

TITLE:

Metal Corrosion and the Efficiency of Corrosion Inhibitors in Less Conductive Media

2 3 4

1

AUTHORS & AFFILIATIONS:

5 Lukáš Matějovský¹, Jan Macák², Olga Pleyer¹, Martin Staš¹

6 7

8

- ¹Department of Petroleum Technology and Alternative Fuels, University of Chemistry and Technology Prague, Prague, Czech Republic
- 9 ²Department of Power Engineering, University of Chemistry and Technology Prague, Prague, Czech Republic

10

11 12

Email Addresses:

- 13 Lukáš Matějovský (Lukas.Matejovsky@vscht.cz)
- 14 Jan Macák (Jan.Macak@vscht.cz)
- 15 Olga Pleyer (Olga.Pleyer@vscht.cz)
- 16 Martin Staš (Martin.Stas@vscht.cz)

17 18

Corresponding Author:

19 Martin Staš

20 21

KEYWORDS:

Static immersion corrosion test, dynamic corrosion test, biofuels, ethanol-gasoline blends, electrochemical impedance spectroscopy, corrosion rate, corrosion inhibitors

23 24 25

26

27

28

22

SHORT ABSTRACT:

The testing of processes associated with material corrosion can often be difficult especially in non-aqueous environments. Here, we present different methods for short-term and long-term testing of corrosion behavior of non-aqueous environments such as biofuels, especially those containing bioethanol.

29 30 31

32

33

34

35

36

37

38

39

40

41

42

43

44

LONG ABSTRACT:

Material corrosion can be a limiting factor for different materials in many applications. Thus, it is necessary to better understand corrosion processes, prevent them and minimize the damages associated with them. One of the most important characteristics of corrosion processes is the corrosion rate. The measurement of corrosion rates is often very difficult or even impossible especially in less conductive, non-aqueous environments such as biofuels. Here, we present five different methods for the determination of corrosion rates and the efficiency of anti-corrosion protection in biofuels: (i) a static test, (ii) a dynamic test, (iii) a static test with a reflux cooler and electrochemical measurements (iv) in a two-electrode arrangement and (v) in a threeelectrode arrangement. The static test is advantageous due to its low demands on material and instrumental equipment. The dynamic test allows for the testing of corrosion rates of metallic materials at more severe conditions. The static test with a reflux cooler allows for the testing in environments with higher viscosity (e.q., engine oils) at higher temperatures in the presence of oxidation or an inert atmosphere. The electrochemical measurements provide a more comprehensive view on corrosion processes. The presented cell geometries and arrangements (the two-electrode and three-electrode systems) make it possible to perform measurements in biofuel environments without base electrolytes that could have a negative impact on the results and load them with measurement errors. The presented methods make it possible to study the corrosion aggressiveness of an environment, the corrosion resistance of metallic materials, and the efficiency of corrosion inhibitors with representative and reproducible results. The results obtained using these methods can help to understand corrosion processes in more detail to minimize the damages caused by corrosion.

INTRODUCTION:

Corrosion causes great material and economic damage around the world. It causes considerable material losses due to partial or complete material disintegration. The released particles can be understood as impurities; they can negatively change the composition of the surrounding environment or the functionality of various devices. Also, corrosion can cause negative visual changes of materials. Thus, there is a need to understand corrosion processes in more detail to develop measures to prevent corrosion and minimize its potential risks¹.

Considering environmental issues and the limited fossil fuel reserves, there is an increasing interest in alternative fuels, among which biofuels from renewable sources play an important role. There are a number of different potentially available biofuels, but bioethanol produced from biomass currently is the most suitable alternative for substituting (or blending with) gasolines. The use of bioethanol is regulated by the Directive 2009/28/EC in the European Union^{2,3}.

Ethanol (bioethanol) has substantially different properties in comparison with gasolines. It is highly polar, conductive, completely miscible with water, etc. These properties make ethanol (and fuel blends containing ethanol also) aggressive in terms of corrosion⁴. For fuels with low ethanol content, contamination by small amounts of water can cause separation of the water-ethanol phase from the hydrocarbon phase and this can be highly corrosive. Anhydrous ethanol itself can be aggressive for some less noble metals and cause "dry corrosion"⁵. With existing cars, corrosion can occur in some metallic parts (especially from copper, brass, aluminum or carbon steel) that come into contact with the fuel. Furthermore, polar contaminants (especially chlorides) may contribute to the corrosion as a source of contamination; oxygen solubility and oxidation reactions (that can occur in ethanol-gasoline blends (EGBs) and be a source of acidic substances) can also play an important role^{6,7}.

One of the possibilities on how to protect metals from corrosion is the use of so-called corrosion inhibitors that make it possible to substantially slow down (inhibit) corrosion processes⁸. The selection of corrosion inhibitors depends on the type of corrosive environment, the presence of corrosion stimulators, and particularly on the mechanism of a given inhibitor. Currently, there is no versatile database or classification available that would enable simple orientation in corrosion inhibitors.

Corrosion environments can be divided into aqueous or non-aqueous, as the intensity and the nature of corrosion processes in these environments differ significantly. For non-aqueous

environments, electrochemical corrosion connected with different chemical reactions is typical, whereas only electrochemical corrosion (without other chemical reactions) occurs in aqueous environments. Moreover, electrochemical corrosion is much more intensive in aqueous environments⁹.

In non-aqueous, liquid organic environments, corrosion processes depend on the degree of polarity of the organic compounds. This is associated with the substitution of hydrogen in some functional groups by metals, which is connected with the change of the characteristics of the corrosion processes from electrochemical to chemical, for which lower corrosion rates are typical in comparison with electrochemical processes. Non-aqueous environments typically have low values of electrical conductivity⁹. To increase conductivity in organic environments, it is possible to add so called supporting electrolytes such as tetraalkylammonium tetrafluoroborates or perchlorates. Unfortunately, these substances can have inhibitive properties, or, on the contrary, increase corrosion rates¹⁰.

There are several methods for short-term and long-term testing of corrosion rates of metallic materials or the efficiency of corrosion inhibitors, namely with or without environment circulation, *i.e.*, static and dynamic corrosion test, respectively¹¹⁻¹⁵. For both methods, the calculation of the corrosion rates of metallic materials is based on weight losses of the tested materials over a certain time period. Recently, electrochemical methods are becoming more important in corrosion studies due to their high efficiency and short measurement times. Moreover, they can often provide more information and a more comprehensive view on corrosion processes. The most commonly used methods are electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and the measurement of the stabilization of the corrosion potential in time (in a planar, two-electrode or in a three electrode arrangement)¹⁶⁻²³.

Here, we present five methods for the short-term and long-term testing of the corrosion aggressiveness of an environment, the corrosion resistance of metallic materials and the efficiency of corrosion inhibitors. All of the methods are optimized for measurements in non-aqueous environments and are demonstrated on EGBs. The methods allow for obtaining representative and reproducible results, which can help to understand corrosion processes in more detail to prevent and minimize corrosion damages.

For the static immersion corrosion test in metal-liquid systems, static corrosion tests in metal-liquid systems can be performed in a simple apparatus consisting of a 250 mL bottle equipped with a hook for hanging an analyzed sample, see **Figure 1**.

For the dynamic corrosion test with liquid circulation, metal corrosion inhibitors or the aggressiveness of liquids (fuels) can be tested in a flow apparatus with the circulation of the liquid medium presented in **Figure 2**. The flow apparatus consists of a tempered part and a reservoir of the tested liquid. In the tempered part, the tested liquid is in contact with a metallic sample in the presence of air oxygen or in an inert atmosphere. The gas (air) supply is ensured by a frit with the tube reaching the bottom of the flask. The reservoir of the tested liquid containing about 400–500 mL of the tested liquid is connected with a reflux cooler that allows for the connection

of the apparatus with the atmosphere. In the cooler, the evaporated portion of the liquid is frozen at -40 °C. The peristaltic pump allows for the pumping of the liquid at a suitable rate of about $0.5 \text{ L}\cdot\text{h}^{-1}$ via a closed circuit from chemically stable and inert materials (e.g., Teflon, Viton, Tygon) from the storage part into the tempered part, from which the liquid returns via the overflow into the storage part.

For the static immersion corrosion test with a reflux cooler in the presence of gaseous medium, corrosion inhibitors, the resistance of metallic materials or the aggressiveness of a liquid environment can be tested in the apparatus presented in **Figure 3**. The apparatus contains two parts. The first part consists of a two-necked, tempered 500 mL flask with a thermometer. The flask contains a sufficient amount of a liquid environment. The second part consists of (i) a reflux cooler with a ground glass joint to achieve a tight connection with the flask, (ii) a hanger for placing the metallic samples and (iii) a frit with a tube for gas (air) supply reaching the bottom of the flask. The apparatus is connected to the atmosphere via the cooler that avoids liquid evaporation.

The apparatus for the electrochemical measurements in the two-electrode arrangement is presented in **Figure 4**. The electrodes are made from metal sheets (3 x 4 cm, from mild steel), which are completely embedded in epoxide resin on one side to protect them from the surrounding corrosive environment. Both electrodes are screwed to the matrix so that the distance between them is about 1 mm^{22} .

The electrochemical measurements in the three-electrode arrangement consist of working, reference and auxiliary electrodes placed in the measuring cell so that a small distance between the electrodes is ensured; see **Figure 5**. As the reference electrode, calomel or argent-chloride electrodes with a salt bridge containing either (i) a 3 mol·L⁻¹ solution of potassium nitrate (KNO₃) or (ii) a 1 mol·L⁻¹ solution of lithium chloride (LiCl) in ethanol can be used. A platinum wire, mesh or plate can be used as the auxiliary electrode. The working electrode consists of (i) a measuring part (tested material with a screw thread) and (ii) a screw attachment isolated from the corrosion environment, see **Figure 6**. The electrode must be sufficiently isolated by an anti-underflow seal.

PROTOCOL:

1. The Static Immersion Corrosion Test in Metal-Liquid Systems

1.1. Add 100–150 mL of the tested liquid corrosion environment for testing the resistance of metallic materials or the efficiency of corrosion inhibitors (i.e., aggressive EGB contaminated with water and trace amounts of chlorides, sulfates and acetic acid) into a 250 mL bottle equipped with a hook for hanging an analyzed sample (Figure 1).

1.2. Adjust the surface of the metallic samples by grinding using sandpaper (1200 mesh) and polishing under running water so that the surface is adjusted evenly. Then, degrease the sample surface thoroughly with about 25 mL of acetone and about 25 mL of ethanol, dry it freely or using pulp tissue, and weigh the sample on an analytical balance with an accuracy of four decimal

places.

Note: The sample treatment must always be performed in the same manner, otherwise measurements can be loaded by an error. It is crucial to always use sandpaper with the same grain size and the used sandpapers must be disposable, *i.e.*, one piece of sandpaper for each sample and measurement. The surface must be adjusted evenly, it cannot contain any surface defects such as scratches, pits, *etc*.

1.3. After the surface treatment, hang the metallic sample into the liquid in the bottle so that it does not lie on the bottom of the bottle, see **Figure 1**. Close the bottle tightly enough to prevent liquid evaporation and air entry.

1.4. Choose the volume of the tested liquid so that the liquid/metal surface ratio is about 190 10 cm³/1 cm² minimally.

1.5. At regular intervals, remove the metallic sample from the bottle, rinse it with about 25 mL of acetone, and use pulp tissue to dry it and remove the surface layer of excess corrosion products. Then, weigh the sample on an analytical balance with an accuracy of four decimal places. After weighing, return the sample back into the bottle.

Note: The intervals for removing and weighing the samples should be chosen individually for each tested sample based on a visual evaluation of the changes in the sample surface during the test. Shorter intervals (e.g., 8 h or less) should be applied when intensive surface changes are observed and the intervals can become longer (e.g., 24 h, 48 h) when less intensive or no surface changes are visible. When comparison between the samples is required, the test duration must be the same.

1.6. From the weight of the metallic sample, calculate the weight loss from the beginning of the experiment related to the sample surface for the given exposure time. After equilibrium in the metal-liquid system occurs (no increase in the weight loss over time has been observed), terminate the experiment.

1.7. Calculate the corrosion rate according to the procedure presented in **Step 4** (before pickling) or in **Step 5** (after pickling of the surface corrosion products).

Note: Corrosion rates obtained after pickling of the surface corrosion products are used for the evaluation of the efficiencies of corrosion inhibitors, for more details, see **Representative Results**.

2. The Dynamic Corrosion Test with Liquid Circulation

2.1. Add 500 mL of the tested liquid corrosion environment into the four-necked flask of the storage part of the apparatus. Lubricate the ground glass joints of the flask with a silicone grease and fix (i) a reflux cooler, (ii) a thermometer, (iii) a suction capillary connected to a pump and

- (iv) the overflow connected to the tempered part on the necks of the flask according to **Figure 2**.
- 223 2.2. Turn on the cryostat connected to the cooler and set the temperature to -40 °C. Fill the closed cooling circuit with ethanol.
- 2.3. Use the capillary for fuel pumping to connect the pump to the preheating spiral of the tempered part, which brings a preheated fuel via the bottom of the measuring cell. Turn on the pump and set the desired fuel flow rate (500 mL·h⁻¹). Turn on the thermostat of the tempered part and set the temperature to the desired value (40 °C).
- 2.4. Once the tempered part is filled with fuel and the fuel starts to flow via the overflow part back into the storage flask, open the measuring cell that consists of two parts connected via a ground glass joint and hang the ground, polished, degreased and weighed sample (metal sheet with appropriate proportions) on the hanger.
- Note: The sample treatment is performed according to the procedure presented in **Step 1.2**.
- 2.5. Connect the frit to the tube for air supply with a pressure vessel via a pressure regulator and a flowmeter and set the desired gas flow rate on the flowmeter (20–30 mL·min⁻¹).
- 241 2.6. At regular intervals, remove the metallic sample from the tempered part and follow the instructions presented in **Step 1.5**.
- 244 2.7. Follow the instructions presented in **Steps 1.6** and **1.7**.

222

225

230

235

237

240

243

245

248

251

255

257

260

263

- 246 **3.** The Static Immersion Corrosion Test with a Reflux Cooler in the Presence of Gaseous 247 Medium
- 3.1. Add 200–300 mL of the tested sample (e.g., tested engine oil containing an aggressive E100 fuel) into the tempered flask.
- 3.2. Hang a ground, polished, degreased and weighed sample on the hook of the cooler.
 Lubricate the ground glass joint of the cooler with a silicone grease and fix the cooler into the
 flask.
- Note: The sample treatment is performed according to the procedure presented in **Step 1.2**.
- 258 3.3. Connect the frit to the tube for the air supply with a pressure vessel via a pressure regulator and a flowmeter and set the desired gas flow rate (80 mL·min⁻¹) on the flowmeter.
- 3.4. Set the temperature to 80 °C on the thermostat for flask tempering and to -40 °C on the cryostat connected to the cooler.
- 264 3.5. After an appropriate period (e.g., 14 days), remove the metallic sample from the

apparatus and follow the instructions presented in **Step 1.5**.

265 266 267

Follow the instructions presented in **Steps 1.6** and **1.7**.

268

269 270

271 4.1. 272

274

279

280

281

282

283

284 285

286 287

288 289

291 292 293

290

294

295 296

297

298

299 300

301

302

303 304

305

Calculation of the Corrosion Rate from Weight Losses 4.

From the corrosion losses obtained according to the methods presented in Steps 1-3, calculate the value of the corrosion rate according to **Equations 1** and **2**.

$$v_{Lr} = 8.76 \cdot \frac{v_{Pm}}{\rho} \tag{1}$$

(2)

$$u_{Pm} = \frac{\Delta m}{T \cdot S}$$

where v_{Pm} is the corrosion rate in g·m⁻²·h⁻¹, ρ is the density of the metallic material in g·cm⁻³, Δm is the average weight loss in g, S is the surface area of the metallic material in m², and T is the time (in hours) from the beginning of the test to the removal of the metal plate for measurement.

5. **Pickling of the Corrosion Products on the Metal Surface**

- Pickle the corroded samples of mild steel in a 10 wt. % solution of chelaton III at 50 °C for 5 min. Then, remove the sample from the solution, clean it using a brush under running water, rinse it with acetone, dry and weigh it. After that, put the sample back into the chelaton solution and repeat the procedure until a constant weight is obtained.
- 5.2. Pickle the corroded samples from brass, bronze or copper in a 10 vol. % solution of sulfuric acid under nitrogen bubbling (to remove dissolved air oxygen) for 1 min. Then, remove the sample from the solution, clean it using a brush under running water, rinse it with acetone, dry and weigh it. After that, put the sample back into the acid solution and repeat the procedure until a constant weight is obtained.

Electrochemical Measurements in the Two-Electrode Arrangement 6.

- Remove the electrode system from the measuring cell, unscrew it, adjust the surface of the electrodes according to the procedure presented in Step 1.2 (without weighing) and then complete the electrode system again.
- 6.2. Fill the measuring cell with 80 mL of the tested liquid corrosion environment and close it through the electrode system. Put the whole cell into a grounded Faraday cage. Connect the galvanostat and potentiostat to the electrode system so that one electrode of the system acts as a reference electrode and the second electrode acts as a working and an auxiliary electrode at the same time.

- 306
 307 6.3. In the instrument software, set the sequence containing the open circuit potential
 308 measurements (OCP, stabilization of corrosion potential in an open circuit) and the
 309 electrochemical impedance spectroscopy (EIS) measurement. The stabilization perform for at
 310 least 30 min to minimize the potential change.
- 312 6.4. Undertake the EIS measurements at sufficiently high amplitude according to the conductivity of corrosion environment (fuel).

- Note: The lower the fuel conductivity is, the higher amplitude values are needed. For fuels containing more than 80 vol. % of ethanol, choose the amplitude values in the range of 5–10 mV. For fuels containing ethanol in the range of 10–80 vol. %, choose the amplitude values in the range of 10–50 mV. For fuels containing less than 10 vol. % of ethanol, choose the amplitude values in the range of 50–80 mV.
- 321 6.5. Undertake the impedance measurements in a sufficient range of frequencies (1–5 mHz) to be able to evaluate the low- and also high-frequency parts of the spectra.
- 324 6.6. Determine the cell constant K_s for each electrode by measurement in n-heptane, which 325 has a permittivity of about 1.92 according to the following equation:

$$K_{S} = \frac{\varepsilon_{r} \cdot \varepsilon_{0}}{C}$$
328 (3)

- where C is the capacitance obtained from the high-frequency part of the impedance spectrum measured in a planar electrode arrangement in the n-heptane-metal system, ε_r is the relative permittivity of n-heptane, and ε_0 is the relative permittivity of the vacuum.
- 333 6.7. Use the obtained cell constant for the calculation of the fuel permittivity ε and for the recalculation of the resistivity R according to the following equations:

336
$$\varepsilon = \frac{K_s \cdot C_v}{\varepsilon_0}$$
337
$$R_s = \frac{R_v}{K_s}$$
339 (5)

7. Electrochemical Measurements in the Three-Electrode Arrangement

7.1. Adjust the measuring part of the working electrode from the tested metallic material according to the procedure presented in **Step 1.2** (without weighing) and screw it onto the electrode extension.

7.2. Fill the measuring cell with 100 mL of the tested liquid corrosion environment and close it with a cap through which the working electrode from the tested material and the auxiliary electrode from the platinum wire are led. Twist the wire, i.e., auxiliary electrode, evenly around the working electrode. Through the side entry of the cell, insert the reference electrode with a bridge so that it is as close to the working electrode as possible.

Note: Electrodes cannot touch each other.

7.3. Insert the cell into a grounded Faraday cell and connect the electrodes via a cable system to the galvanostat and potentiostat equipped with the appropriate software.

7.4. In the software of the used measuring devices, set the measuring sequence containing the measurement of (i) the OCP for a sufficiently long time period (at least 60 min), (ii) the EIS in the range of about 1 MHz–1 mHz at an amplitude value of 5–20 mV and (iii) the polarization characteristics (Tafel scan) in the range of 200–500 mV to the corrosion potential.

7.5. Calculate the current density j_{corr} according to the Stern-Geary equation:

$$j_{corr} = \frac{B}{R_p}$$
366 (6)

$$B = \frac{b_a \cdot b_b}{2.3 \cdot (b_a + b_b)}$$
369 (7)

where j_{corr} is the corrosion current density, b_a and b_k are Tafel constants, and R_p is the polarization resistance estimated from the EIS measurements. Furthermore, calculate the instantaneous corrosion rate from the material weight losses. Determine the material weight losses from the current density from Faraday's law as follows:

$$m = A \cdot I \cdot t \tag{8}$$

$$A = \frac{M}{z \cdot F}$$
378 (9)

where m is the mass of the substance in g; I is the current; t is the time; A is the proportionality constant designated as the electrochemical equivalent of the substance, measured in kg·C⁻¹; F is the Faraday constant (9.6485 × 10^4 C·mol⁻¹); and z is the number of electrons needed to exclude one molecule.²²

8. Calculation of the Efficiency of Corrosion Inhibitors

 8.1. Use the obtained values of polarization resistance or corrosion rate to calculate the efficiency of the corrosion inhibitors according to the following equations:

389
$$E_f = \frac{100 \cdot (R_i - R_0)}{R_i}$$
 390
$$391 \qquad \text{or}$$

$$E_f = \frac{100 \cdot (\nu_i - \nu_0)}{\nu_i}$$
 393
$$(11)$$

where E_f is the efficiency of corrosion inhibitors in %; R_i is the polarization resistance of material; v_i is the corrosion rate of material in a metal-fuel system containing the corrosion inhibitor; R_0 is the polarization resistance; v_0 is the corrosion rate in the metal-fuel system without the corrosion inhibitor.

REPRESENTATIVE RESULTS:

The above mentioned methods were used to measure the corrosion data of mild steel (consisting of 0.16 wt. % of C, 0.032 wt. % of P, 0.028 wt. % of S and balance F)²² in the environment of ethanol-gasoline blends (EGBs) containing 10 and 85 vol. % of ethanol (E10 and E85), respectively. For the preparation of these EGBs, gasoline in compliance with the requirements of the EN 228 containing 57.4 vol. % of saturated hydrocarbons, 13.9 vol. % of olefins, 28.7 vol. % of aromatic hydrocarbons, and 1 mg·kg⁻¹ of sulfur was used. The aggressiveness of these fuels was increased by the addition of water and trace amounts of chlorides (3 mg·kg⁻¹), sulfates (3 mg·kg⁻¹) and acetic acid (50 mg·kg⁻¹). The E10 fuel contained 0.5 vol. % of water so that no separation to aqueous-ethanol and hydrocarbon phases occurred. The E85 fuel was contaminated by 6 vol. % of water.²² The tested corrosion inhibitor contained octadecylamin and the concentration of the inhibitor in the fuels was 200 mg·L⁻¹. The obtained data is presented in **Table 1**.

The time course of the static and dynamic tests is presented in **Figures 7** and **8**. The dependences of weight loses presented in these figures are related to the surface area of the tested metallic sample. These weight losses can be recalculated to the course of corrosion rate according to the procedure presented in **step 4**. This is shown for the contaminated E85 fuel in **Figures 7** and **8**. From both figures, it is obvious that the time periods of 1200 h and 340 h were sufficient enough to achieve the stabilization of the mild steel-E10 (E85) fuel systems for static and dynamic tests, respectively. Also, the efficiency of the corrosion inhibitor is evident in both fuels, as substantially lower material losses were observed when the inhibitor was applied. The inhibitor efficiencies, see **Table 1**, were calculated after the experiment and after the pickling of the sample surface in the solution of chelaton III, see **step 5.1**. The removal of the surface corrosion products by pickling enables us to obtain real material losses that are important for the calculation of the efficiency of corrosion inhibitors. Pickling causes an increase of the real corrosion rate as documented by the results presented in **Table 1**. This can be observed especially for the dynamic test with the circulation of the corrosive environment, where the metal-environment system is

much more stressed and the material resistance is significantly decreased. According to the conditions of the test and the corrosion environment, the metal is evenly coated by a thick layer of corrosion products, see **Figure 9**.

Some samples of the corrosion environments cannot be tested by the dynamic test due to their high viscosity. Such samples (*e.g.*, engine oil contaminated with an unburned E100 fuel) can be tested by a static test under a reflux cooler at elevated temperatures, see **Step 3**. **Table 2** presents the obtained results of the corrosion rates of mild steel and two samples of brass that were tested in the oxidized engine oil (artificially aged oil in an oxygen atmosphere at 650 kPa and 160 °C) with a total acid number (TAN) of 3.5 mg KOH·g⁻¹ containing 15 vol. % of an azeotropic, aggressive E100 fuel (containing 6 vol. % of water and trace amounts of contaminants, see the fuel aggressiveness above).

Nowadays, electrochemical methods like electrochemical impedance, measurements of polarization characteristics, corrosion potential, *etc.* have a great potential and can inform one not only about the properties of environments (permittivity, resistivity), but also about the electrode properties such as polarization resistance and the capacity of a double-layer. Also, electrochemical methods have a great importance for the measurements in non-aqueous environments. Due to low conductivity of non-aqueous environments, conductivity salts can be applied to reduce the resistivity and increase the conductivity of an environment so that electrode properties (corrosion data) can be measured also. However, conductivity salts do not often only change the properties of corrosion environments, but they can also have negative impacts on the obtained corrosion data, *e.g.*, they can have corrosive or inhibitive properties. These effects can be avoided by performing the measurements without these salts in special cells with a modified geometry, see **steps 6** and **7**, so that the distances between the electrodes are as small as possible.

Figures 10 and 11 show impedance spectra measured in the two-electrode arrangement. The shape of impedance spectra is dependent on the conductivity of a used environment (fuel). When the conductivity of an environment is low (gasoline, EGBs containing up to 10 vol. % of ethanol) the spectrum consists of only one half-circle (the high-frequency part). This half-circle makes it possible to evaluate the properties that characterize the used environment only (resistivity, high-frequency capacity for the calculation of permittivity). The low-frequency part characterizing the electrode properties is completely missing. When the conductivity of an environment is high enough, the spectra consist of both high- and low-frequency parts that form two relatively well separated half circles, see Figure 11. Again, the high-frequency part informs one about the properties of an environment, whereas the low-frequency capacitive loop is associated with the response of an electrical double layer on the phase interface and parallel polarization resistance, which is the main corrosion quantity and characterizes the instantaneous corrosion rate. The spectrum can be evaluated according to the equivalent circuit that is presented in Figure 11. The measured and evaluated results for mild steel in a planar electrode arrangement are presented in Table 1.

 The three-electrode arrangement enables us to measure the polarization characteristics presented in Table 1 (i.e., polarization resistance, corrosion potential, corrosion current density and Tafel constants of the cathodic and anodic parts of the Tafel polarization curve). These characteristics can be used to calculate the instantaneous corrosion rate from Stern-Geary equation, see step 7.5. The measurement of the polarization characteristics is difficult, especially in environments with low conductivity, as the measured data is substantially loaded by a potential loss (iR drop) that is strongly dependent on the resistivity of an environment and the distance of the working and reference electrodes. This potential loss can be minimized, estimated and subtracted from the polarization data based on the impedance spectroscopy performed before the measurement of the polarization curve or from the impedance spectroscopy after the measurement of the polarization curve. The evaluated polarization resistance from the previous impedance spectrum is important for the calculation of the corrosion rate and the resistivity for the calculation of the iR drop. Figure 12 presents the Tafel curve of mild steel in the environment of the aggressive E85 fuel without the inhibitor before and after the iR drop compensation (blue and red, respectively). Also, this figure shows the linear areas of the cathode and anode parts that are used to obtain the Tafel coefficients. Figure 11 also compares the Tafel curve of the mild steel measured in the environment of the aggressive E85 fuel containing an amine-based inhibitor, where the entire curve is shifted more toward cathode potentials (to more negative values) and lower current densities that lead to a lower instantaneous corrosion rate of the mild steel.

FIGURE & TABLE LEGENDS

Figure 1: Exposure of mild steel in the aggressive E85 fuel during the static test.

Figure 2: Scheme of laboratory flow apparatus for dynamic testing: (1) tempering silicon bath, frit for air supply, (3) preheating spiral, (4) air inlet, (5) sample hanger, (6) overflow into the storage flask, (7) storage flask, (8) cooler, (9) cryostat, (10) peristaltic pump, (11) thermometer. Adapted with permission from ref¹⁴. Copyright 2013. Faculty of Environmental Technology, University of Chemistry and Technology Prague.

Figure 3: Scheme of apparatus for testing of corrosion effects of oils on construction materials in the presence of oxygen at constant temperature. (1) frit with the tube for gas (air) supply, (2) thermostat, (3) sample with a hanger, (4) oxygen supply, (5) cooling, (6) thermometer, (7) reflux, spiral cooler with a ground glass joint and a hook for sample hanging, (8) flask with a ground glass joint containing sample.¹⁵

Figure 4: Geometry of a planar two-electrode arrangement with the distance of electrodes of about 1 mm and a cell constant of about 0.8·10⁻³ cm⁻¹. Adapted with permission from ref¹⁰. Copyright 2009. Faculty of Environmental Technology, University of Chemistry and Technology Prague.

Figure 5: Geometrical arrangement of electrodes in the measuring cell: (a) connection of the measuring cell to potentiostat, (b) working electrode (WE), reference electrode (RE), counter (auxiliary) electrode (CE).

Figure 6: The construction of the working electrode: (1) working (measuring) part, (2) Teflon seal with a Teflon tape, (3) extension for connection of the electrode with a thread isolated on both ends by a glass tube, (4) nut for pulling the electrode and pressing the tube to the working electrode through a seal.

Figure 7: The time evolution of corrosion rate of mild steel in the contaminated E85 fuel and corrosion losses of mild steel in the contaminated E10 and E85 fuels before the addition of a corrosion inhibitor during the static test.

Figure 8: The time evolution of corrosion rate of mild steel in the contaminated E85 fuel and corrosion losses of mild steel in the contaminated E10 and E85 fuels before the addition of a corrosion inhibitor during the dynamic test.

Figure 9: The surface of mild steel tested in the environment of the aggressive E85 fuel without the corrosion inhibitor (A, C) and with the inhibitor (B, D) during the static (A, B) and dynamic test (C, D).

Figure 10: Impedance spectrum measured in the contaminated E10 fuel for mild steel in a planar, two-electrode arrangement after 30 min of exposure and the equivalent circuit used for evaluation (right upper corner). R_{fuel} is the resistance of the environment and CPE_{fuel} is the spatial capacitance of the environment.

Figure 11: Impedance spectrum measured in the contaminated E85 fuel for mild steel in a planar, two-electrode arrangement after 30 min of exposure and the equivalent circuit used for evaluation (right upper corner). R_{fuel} is the resistance of the environment, CPE_{fuel} is the spatial capacitance of the environment, R_p is the polarization resistance and CPE_{dl} is the capacitance loss of the double layer.

Figure 12: Polarization curves of mild steel in the environment of the contaminated E85 fuel measured in a three-electrode arrangement.

Table 1: Corrosion data of mild steel and efficiency of an inhibitor determined by five different methods.

Table 2: Corrosion rates (after pickling) of brass and steel samples exposed in the environment of the engine oil contaminated with an aggressive E100 fuel (15 vol. %) within 14 days of the static test under a reflux cooler.

DISCUSSION:

The basic principle of the dynamic test and both static tests is the evaluation of weight losses of metallic samples in metal-corrosion environment (fuel) systems depending on time until equilibrium is achieved (*i.e.*, no further weight loss occurs). The corrosion rate of the metal in the corrosion environment is calculated from the weight loss and time. The advantage of the long-

term static corrosion test (**Step 1**) is the reliability of the obtained results, the simplicity and low requirements on material and instrumental equipment. On the other hand, it is a time-consuming method, as much time is needed to achieve equilibrium of the metal-fuel system to evaluate the corrosion rates.

The main advantage of the presented dynamic test in comparison with the static test is a significant shortening of the measurement times to achieve equilibrium in the metal-fuel system. The apparatus is designed so that it is simple to operate and handle with the tested materials. The testing can be performed in an oxidative (air) or an inert (nitrogen) atmosphere. Another advantage is the possibility to test metal-fuel systems at different test conditions (temperature, flowrate of corrosion environments and gaseous media). Also, the apparatus allows for the prediction of fuel aging, the testing of fuel quality or the testing of fuel influence on metallic and non-metallic materials. Metals and environments are tested at substantially more severe conditions than in comparison with the static test. The main disadvantage of the methods are higher demands on material and instrumental equipment and energy consumption.

The static test under a reflux cooler (**Step 3**) allows for the testing of materials in an environment of viscous liquids (*e.g.*, an engine oil after the expiry of its shelf life or contaminated with biofuels) at elevated temperatures and in the presence of an oxidative or an inert atmosphere. The disadvantages are similar as those for the dynamic test.

The presented electrochemical methods can inform one about the time course of the corrosion potentials, the instantaneous corrosion rates, the processes occurring at the metal-environment interfaces and also about the transmission properties of the corrosion environments, such as permittivity and environmental resistance (conductivity). These methods are relatively simple, fast and give reliable and reproducible results. On the other hand, they have higher demands on instrumental equipment (potentiostat, galvanostat) that allows for measurement in non-aqueous environments.

The presented two-electrode electrochemical system (**Step 6**) is very simple and easily demountable, which allows for the easy control of the electrode surface and its treatment by grinding and polishing before measurements. Other advantages are the large surface of both electrodes, which allows for an even spread of the corrosion density, and also the small distance between both electrodes, which makes it possible to perform measurements even in less conductive environments, such as gasolines without base electrolytes. The system design allows for the measurement of electrode properties for the evaluation of instantaneous corrosion rates of metallic materials even for contaminated or oxidized E10 fuels after longer exposure times^{22,23}. It was found that the main limiting factors for the corrosion data measurements using EIS in a two-electrode arrangement are resistivity of 4.7 M Ω ·m and relative permittivity of fuel of 2.69^{22,23}.

The presented three-electrode electrochemical system (**Step 7**) makes it possible to measure the polarization characteristics that cannot be measured in the two-electrode system. Due to the

suitable cell geometry, it is possible to measure the polarization characteristics in less conductive, non-aqueous environments such as uncontaminated EGBs containing 40 vol. % of ethanol^{22,23}.

In order to compare data obtained from the presented methods to each other, it is necessary to keep the ratio of the liquid (fuel) vs. metal surface area the same for each method. If not, only the trends of the results obtained by individual methods can be compared to each other as presented in our previous publications^{22,23}, where different trends in the results of electrochemical methods and static tests (different ratios of metal sample area and corrosive environment) are compared depending on the ethanol content of the fuel, the contamination and the degree of oxidation (water content, acidic substances, peroxides, *etc.*).

For all presented methods, it is necessary to pay attention to the treatment of the metallic samples. The sample treatment must always be performed in the same manner, otherwise measurements can be loaded by an error. It is crucial to always use sandpaper with the same grain size and the used sandpapers must be disposable, *i.e.*, one piece of sandpaper for each sample and measurement. The surface must be adjusted evenly, it cannot contain any surface defect such as scratches, pits, *etc*.

For electrochemical methods, it is important to pay attention to the electrodes against overflow, especially for the working electrode in a three-electrode arrangement. For the working electrode, it is also important to pay attention to the contact between the working part of the electrode and the attachment for attaching of potentiostat. Electrodes should not touch each other. It is desirable that the bridge of the reference electrode is as close as possible to the working electrode. It is desirable to evenly arrange the auxiliary electrode around the working electrode so that the current density between them is evenly distributed.

ACKNOWLEDGMENTS:

This research was funded from the institutional support for the long-term conceptual development of the research organization (company registration number CZ60461373) provided by the Ministry of Education, Youth and Sports, the Czech Republic, the Operational Programme Prague – Competitiveness (CZ.2.16/3.1.00/24501) and "National Programme of Sustainability" (NPU I LO1613) MSMT-43760/2015).

DISCLOSURES:

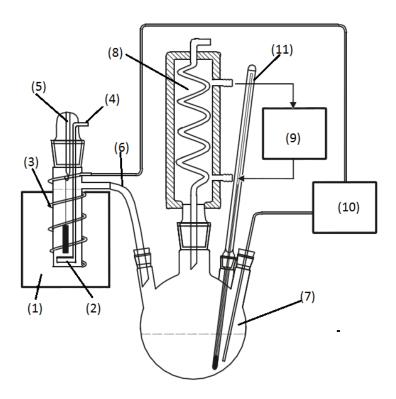
The authors have nothing to disclose.

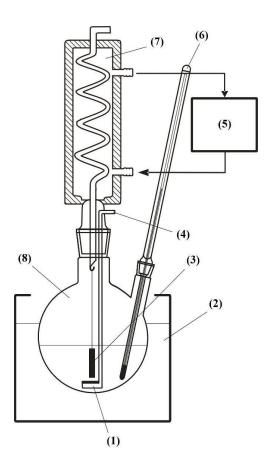
REFERENCES

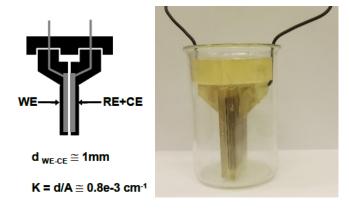
- 1 Revie, R. W. and Uhlig, H. H. *Corrosion and corrosion control: An Introduction to corrosion science and engineering, 4th edition*. Wiley. Hoboken, USA (2008).
- Edwards, R., Mahieu, V., Griesemann, J.-C., Larivé, J.-F. and Rickeard, D. J. Well-to-wheels analysis of future automotive fuels and powertrains in the European context. Report No. 0148-7191, SAE Technical Paper, https://doi.org/10.4271/2004-01-1924 (2004).
- European Union. Directive 2009/28/ES. On the promotion of the use of energy from renewable rources and amending and subsequently repealing Directives 2001/77/EC and

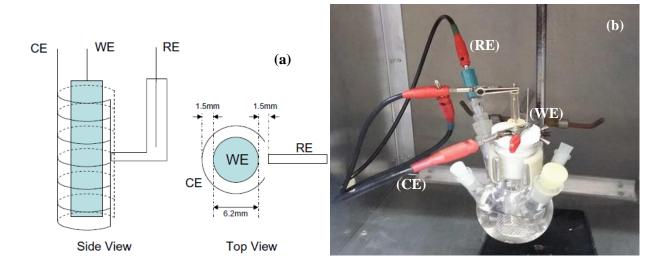
- 645 2003/77/EC (2009).
- Tshiteya, R. *Properties of alcohol transportation fuels; Alcohol Fuel Reference Work 1*.

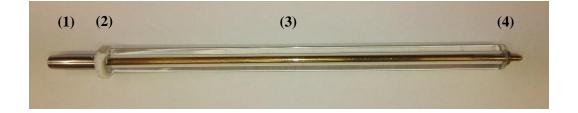
 Meridian Corporation. Alexandria, VA (1991).
- Battino, R., Rettich, T. R. and Tominaga, T. The solubility of oxygen and ozone in liquids.

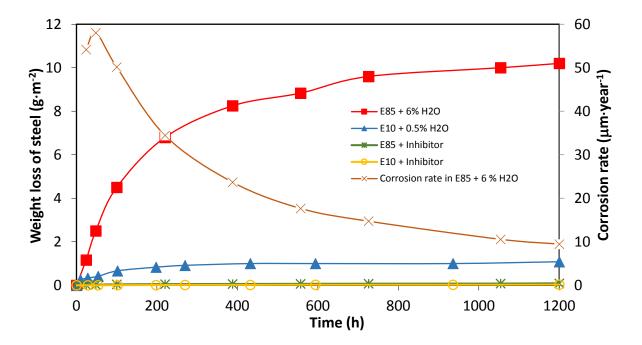

 Journal of Physical and Chemical Reference Data. 12 (2), 163-178 (1983).
- 650 6 Hsieh, W.-D., Chen, R.-H., Wu, T.-L. and Lin, T.-H. Engine performance and pollutant 651 emission of an SI engine using ethanol—gasoline blended fuels. *Atmospheric Environment*. 652 **36** (3), 403-410 (2002).
- Pereira, R. C. and Pasa, V. M. Effect of mono-olefins and diolefins on the stability of automotive gasoline. *Fuel.* **85** (12), 1860-1865 (2006).
- Schweitzer, P. A. *Fundamentals of corrosion: mechanisms, causes, and preventative methods.* CRC Press, Taylor & Francis Group. Boca Raton, USA (2009).
- 657 9 Migahed, M. and Al-Sabagh, A. Beneficial role of surfactants as corrosion inhibitors in 658 petroleum industry: a review article. *Chemical Engineering Communications.* **196** (9), 659 1054-1075 (2009).
- 660 10 Macák, J., Černoušek, T., Jiříček, I., Baroš, P., Tomášek, J. and Pospíšil, M. Elektrochemické 661 korozní testy v kapalných biopalivech (Electrochemical Corrosion Tests in Liquid Biofuels) 662 (in Czech). *Paliva*. **1** (1), 1-4 (2009).
- Nesic, S., Schubert, A. and Brown, B. Thin channel corrosion flow cell. International patent. International Patent WO2009/015318A1 (2009).
- Blum, S. C., Sartori, G., Robbins, W. K., Monette, L. M.-A., Vogel, A. and Yeganeh, M. S. Process for assessing inhibition of petroleum corrosion. International Patent WO2004/044094A1 (2003).
- 668 13 Ochrana proti korozi. Inhibitory koroze kovů a slitin v neutrálních vodních prostředích. 669 Laboratorní metody stanovení ochranné účinnosti (in Czech). Standard ČSN 03 8452 670 (038452) (1990).
- 671 14 Matějovský, L., Baroš, P., Pospíšil, M., Macák, J., Straka, P. and Maxa, D. Testování 672 korozních vlastností lihobenzínových směsí na oceli, hliníku mědi a mosazi (Testing of 673 Corrosion Properties of Ethanol-Gasoline Blends on Steel, Aluminum, Copper and Brass) 674 (in Czech). *Paliva*. **5** (2), 54-62 (2013).
- 675 15 Cempirkova, D., Hadas, R., Matějovský, L., Sauerstein, R. and Ruh, M. Impact of E100 Fuel 676 on Bearing Materials Selection and Lubricating Oil Properties. *SAE Technical Paper*. 677 https://doi.org/10.4271/2016-01-1025 (2016).
- Yoo, Y., Park, I., Kim, J., Kwak, D. and Ji, W. Corrosion characteristics of aluminum alloy in bio-ethanol blended gasoline fuel: Part 1. The corrosion properties of aluminum alloy in high temperature fuels. *Fuel.* **90** (3), 1208-1214 (2011).
- Bhola, S. M., Bhola, R., Jain, L., Mishra, B. and Olson, D. L. Corrosion behavior of mild carbon steel in ethanolic solutions. *Journal of Materials Engineering and Performance*. **20** (3), 409-416 (2011).
- Jafari, H., Idris, M. H., Ourdjini, A., Rahimi, H. and Ghobadian, B. EIS study of corrosion behavior of metallic materials in ethanol blended gasoline containing water as a contaminant. *Fuel.* **90** (3), 1181-1187 (2011).
- Traldi, S., Costa, I. and Rossi, J. Corrosion of spray formed Al-Si-Cu alloys in ethanol automobile fue. *Key Engineering Materials.* **189-191** 352-357 (2001).

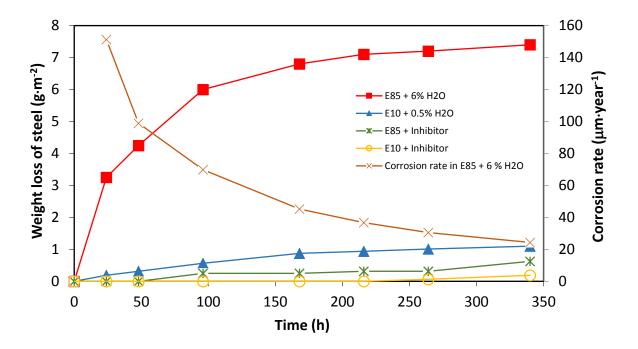

689	20	Nie, X., Li, X. and Northwood, D. O. Corrosion Behavior of metallic materials in ethanol-
690		gasoline alternative fuels. Material Science Forum. 546 1093-1100 (2007).

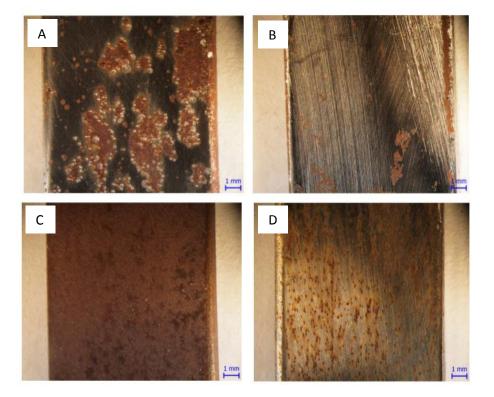

- 591 Sridhar, N., Price, K., Buckingham, J. and Dante, J. Stress corrosion cracking of carbon steel in ethanol. *Corrosion.* **62** (8), 687-702 (2006).
- 693 22 Matějovský, L., Macák, J., Pospíšil, M., Baroš, P., Staš, M. and Krausová, A. Study of 694 Corrosion of Metallic Materials in Ethanol–Gasoline Blends: Application of 695 Electrochemical Methods. *Energy & Fuels.* **31** (10), 10880-10889 (2017).
- 696 23 Matějovský, L., Macák, J., Pospíšil, M., Staš, M., Baroš, P. and Krausová, A. Study of 697 Corrosion Effects of Oxidized Ethanol–Gasoline Blends on Metallic Materials. 698 Energy & Fuels. **32** (4), 5145-5156 (2018).

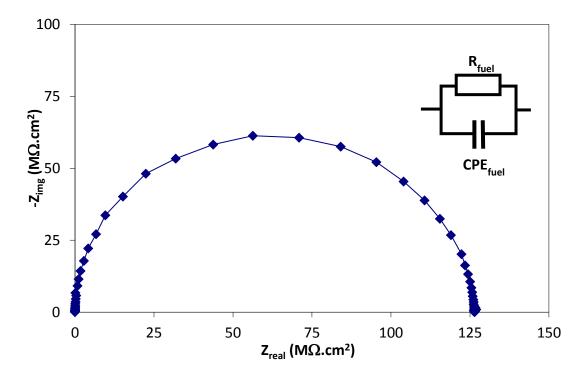

699

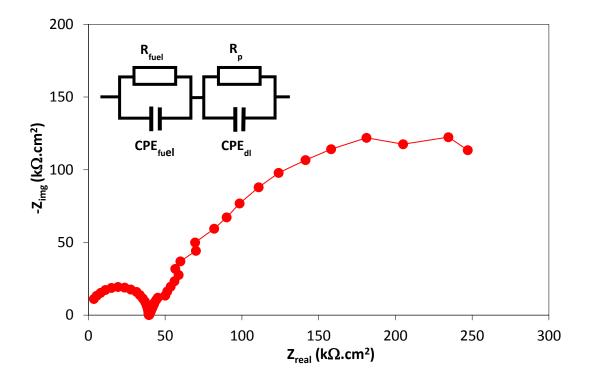












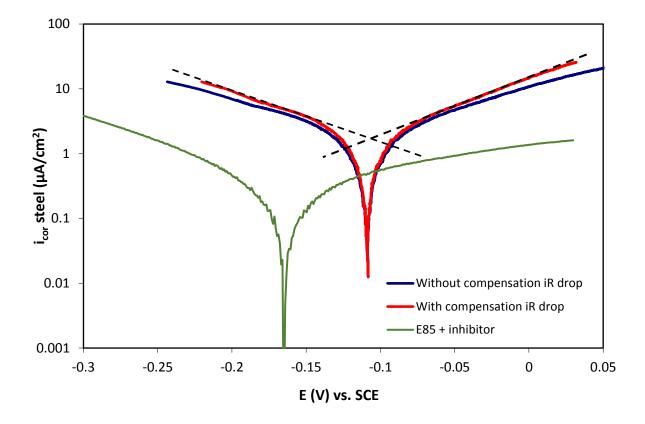


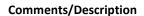
Table 1: Corrosion data of mild steel and efficiency of an inhil

Method	Parameter		
	Corrosion rate before pickling (µm·year ⁻¹)		
Static test	Corrosion rate after pickling (μm·year ⁻¹)		
	Inhibitor efficiency (%)		
	Corrosion rate before pickling (µm·year ⁻¹)		
Dynamic test	Corrosion rate after pickling (µm·year ⁻¹)		
	Inhibitor efficiency (%)		
	Resistivity (k Ω ·m)		
Electrochemistry in	Permittivity		
a planar, two-	Polarization resistance		
electrode arrangement	$(k\Omega \cdot cm^2)$		
	Capacity of electrical double-layer (μF·cm ⁻²)		
	Inhibitor efficiency (%)		
	Polarization resistance (kΩ·cm²)		
	Tafel <i>b</i> _k (mV)		
Electrochemistry in a three-electrode arrangement	Tafel b_a (mV)		
	Corrosion potential (mV)		
	Current density (μA·cm ⁻²)		
	Instantaneous corrosion rate (μm·year ⁻¹)		
	Inhibitor efficiency (%)		

bitor determined by five different methods

E10 + 0.5 % of H ₂ O		E85 + 6 % of H ₂ O	
0.1	0,03	9.5	1.2
5.5	1,3	17.9	3.4
76	.3	80	.7
1	0,6	24.3	0.1
13.5	4,9	56.5	17.9
63	3.4	68	.4
6440	6180	2.83	2.79
2.9	3,0	21.8	21.5
-	-	287.5	851.3
-	-	20.4	8.1
-	-	66.3	
-	-	20.4	49.6
-	-	132.5	105
-	-	325.1	213.6
-	-	-109.5	-165.1
-	-	2	0.6
	-	15.5	4.8
	-	69	.2

Table 2: Corrosion rates (after pickling) of brass and steel sample:


Material	Initial weight (g)	Weight after pickling (g)
Steel	7.8025	7.8012
Brass 1	11.8687	11.8619
Brass 2	10.5686	10.5645

s exposed in the environment of the engine oil contaminated with an aggressive E100 fuel (15 vol. %) within 14 days of tl

Sample area (m²)	Corrosion rate (µm·year ⁻¹)
0.001	2.5
0.0012	9.9
0.002	3.6

he static test under a reflux cooler

Name of Material/ Equipment sulfuric acid acetic acid sodium sulphate anhydrous sodium chlorate demineralized water	Company Penta s.r.o., Czech Republic Penta s.r.o., Czech Republic Penta s.r.o., Czech Republic Penta s.r.o., Czech Republic	http://www.pentachemicals.eu/	Catalog Number 20450-11000 20000-11000 25770-31000	CAS 7664-93-9 64-19-7 7757-82-6 7681-52-9
ethanol	Penta s.r.o., Czech Republic Česká rafinerská a.s., Kralupy nad	http://www.pentachemicals.eu/	71250-11000	64-17-5
gasoline fractions	Vltavou, Czech Republic			
Aceton	Penta s.r.o., Czech Republic			
Toluen	Penta s.r.o., Czech Republic			
Potenciostat/Galvanostat/ZRA				
Reference 600	Gamry Instruments, USA	https://www.gamry.com/		
1250 Frequency Response Analyser	Solarthrone			
SI 1287 Elecrtochemical Interference	Solarthrone			
Software				
Framework 5.68	Gamry Instruments, USA	https://www.gamry.com/		
Echem Analyst 5.68	Gamry Instruments, USA	iittps.//www.gaiiiy.com/		
Corrware 2.5b	Scribner			
CView 2.5b	Scribner	http://www.scribner.com/		
Zview 3.2c	Scribner			
MS Excel 365	Microsoft			
Grinder				
Kompak 1031	MTH (Materials Testing Hrazdil)			

p.a. 99,9 %

p.a. 99,9 %

p.a. 99 %

in compliance with EN 228 (57.4 vol. % of saturated hydrocarbons, 13.9 vol. % of olefins, 28.7 vol. % of aromatic hydrocarbons, and 1 mg/kg of sulfur)

pure 99 %

pure 99 %

ARTICLE AND VIDEO LICENSE AGREEMENT

or is a United States government employee but the Materials were NOT prepared in the	The Autho
his or her duties as a United States government employee.	to esruoo
or is a United States government employee and the Materials were prepared in the	HThe Auth
or is NOT a United States government employee.	AtuA edT
ect one of the following items:	les əssəlq :2 mətl
Secretary Markets	
	Standard
Author elects to nave the Materials be made available (as described at com/publish) via:	
Author elects to have the Materials be made available (as described at	/ ədT :1 mətl
WAS MATELIOUS CY, JAN MACAK, OLGA PLEYER, MARTIN STAS	
OF CORROSION INHIBITORS IN LESS CONDUCTIVE HEALA	Author(s):
EVERNEW OF METHODS FOR CORROSION STUDY OF METALS AND STUDY OF EFFICIENCY	Title of Article:
	,

ARTICLE AND VIDEO LICENSE AGREEMENT

course of his or her duties as a United States government employee.

Background. The Author, who is the author of the appear.

of the Article, and in which the Author may or may not

Grant of Rights in Article. In consideration of JoVE to the Article and the Video. in this Agreement the respective rights of each Party in and furtherance of such goals, the Parties desire to memorialize and create and transmit videos based on the Article. In of the Article, desires to have the JoVE publish the Article Article, in order to ensure the dissemination and protection

CKC LICense. subject to all limitations and requirements set forth in, the to the public all such rights in the Article as provided in, but checked in Item 1 above, JoVE and the Author hereby grant media and formats. If the "Open Access" box has been as are technically necessary to exercise the rights in other devised, and include the right to make such modifications all media and formats, whether now known or hereafter or all of the above. The foregoing rights may be exercised in Works or Collective Works and (c) to license others to do any translations, adaptations, summaries, extracts, Derivative and exercise all of the rights set forth in (a) above in such or Collective Works based on all or any portion of the Article Derivative Works (including, without limitation, the Video) adaptations, summaries or extracts of the Article or other translate the Article into other languages, create digital and electronic form) throughout the world, (b) to hereafter developed (including without limitation in print, in all forms, formats and media whether now known or publish, reproduce, distribute, display and store the Article Article, including any extensions thereto) license (a) to royalty-free, perpetual (for the full term of copyright in the JoVE, subject to Sections 4 and 7 below, the exclusive, agreeing to publish the Article, the Author hereby grants to

nd/3.0/legalcode; "Derivative Work" means a work based http://creativecommons.org/licenses/by-ncterms and conditions of which can be found at: Non Commercial-No Derivs 3.0 Unported Agreement, the "CRC License" means the Creative Commons Attributionworks in themselves, are assembled into a collective whole; contributions, constituting separate and independent entirety in unmodified form, along with a number of other anthology or encyclopedia, in which the Materials in their "Collective Work" means a work, such as a periodical issue, means the author who is a signatory to this Agreement; abstracts, or summaries contained therein; "Author" associated materials such as texts, figures, tables, artwork, specified on the last page of this Agreement, including any Video License Agreement; "Article" means the article following meanings: "Agreement" means this Article and License Agreement, the following terms shall have the Defined Terms. As used in this Article and Video

Author or any other parties, incorporating all or any portion affiliates or agents, individually or in collaboration with the in conjunction with any other parties, or by JoVE or its "Video" means any video(s) made by the Author, alone or and / or the Video; "Parties" means the Author and JoVE; of Visualized Experiments; "Materials" means the Article Massachusetts corporation and the publisher of The Journal of the Materials; "Jove" means Mylove Corporation, a which the Author was employed at the time of the creation the institution, listed on the last page of this Agreement, by be recast, transformed, or adapted; "Institution" means condensation, or any other form in which the Materials may sound recording, art reproduction, abridgment, dramatization, fictionalization, motion picture version, existing works, such as a translation, musical arrangement, upon the Materials or upon the Materials and other pre-

For questions, please contact us at submissions@jove.com or +1.617.945.9051. 9.242519

ARTICLE AND VIDEO LICENSE AGREEMENT

rights permitted under such statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to loVE the maximum rights permissible within such statute.

8. **Protection of the Work.** The Author(s) authorize lovE to take steps in the Author(s) name and on their behalf if JoVE believes some third party could be infringing or might infringe the copyright of either the Author's Article and/or Video.

and/or Video.

Likeness, Privacy, Personality. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all applicable privacy, likeness, personality or similar laws.

10. Author Warranties. The Author represents and ending population and warrants that the Author warranties. The Author tepresents and sall applicable privacy, likeness, personality or similar laws.

Author Warrants that the Author becomes and the Author represents and bublished, that the Copyright interest is owned by the published, that the copyright interest is owned by the published, that the copyright interest is owned by the published, that the copyright interest is owned by the published, the the copyright interest is owned by the published, the copyright interest is owned by the published, the the copyright interest is owned by the published, the published the copyright interest is owned by the published.

has been approved by the Author's relevant institutional and that all research involving human and animal subjects laws, procedures or guidelines, applicable to the Materials, animal treatment, privacy, and all other rules, regulations, institutional, laboratory, hospital, ethical, human and other regulations, including, without limitation all continue to comply with all government, institutional and Author represents and warrants that it has and will intellectual property or other rights of any third party. The infringe and/or misappropriate the patent, trademark, portion of the Materials does not and will not violate, performance or display, and/or modification of all or any that the use, reproduction, distribution, public or private had been a party hereto as an Author. The Author warrants respect to the terms of this Agreement as if each of them Agreement on his or her behalf and to bind him or her with authorized by each of the other such authors to execute this represents and warrants that the Author has been Agreement with JoVE relating to the Materials, the Author entered into a separate Article and Video License at the top of this Agreement and if any such author has not authors of the Materials. If more than one author is listed author(s) listed at the top of this Agreement are the only other party. The Author represents and warrants that the been assigned, licensed, or otherwise transferred to any of this Agreement, by such authors collectively) and has not Author (or, if more than one author is listed at the beginning published, that the copyright interest is owned by the warrants that the Article is original, that it has not been

review board.

11. **JOVE** Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole

At the exclusive license granted to JoVE in **Section 3** above, the the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the noncommercial purpose of giving lectures, presentations or hartitution's website or the Author's personal website, in Institution's website or the Author's personal website, in Resch case provided that a link to the Article on the JoVE Article is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.

5. Grant of Rights in Video – Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all lights of any nature, including, without limitation, all the Author is deemed, now or at any time in the future, to the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.

Video as provided in, but subject to all limitations and the Author hereby grant to the public all such rights in the For any Video to which this Section 6 is applicable, JoVE and necessary to exercise the rights in other media and formats. right to make such modifications as are technically whether now known or hereafter devised, and include the foregoing rights may be exercised in all media and formats, and (c) to license others to do any or all of the above. The summaries, extracts, Derivative Works or Collective Works forth in (a) above in such translations, adaptations, any portion of the Video and exercise all of the rights set other Derivative Works or Collective Works based on all or create adaptations, summaries or extracts of the Video or the world, (b) to translate the Video into other languages, limitation in print, digital and electronic form) throughout now known or hereafter developed (including without store the Video in all forms, formats and media whether license (a) to publish, reproduce, distribute, display and copyright in the Article, including any extensions thereto) the exclusive, royalty-free, perpetual (for the full term of Author hereby grants to JoVE, subject to Section 7 below, to produce, display or otherwise assist with the Video, the checked in Item 1 above. In consideration of JoVE agreeing Section 6 applies only if the "Open Access" box has been Grant of Rights in Video - Open Access. This

requirements set forth in, the CRC License.

3. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the hereunder exceed the scope of the 17 U.S.C. 403, then the hereunder scope of the Imited to the maximum

ARTICLE AND VIDEO LICENSE AGREEMENT

the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be undertaken at the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its or in connection with, acts or omissions of JoVE, its employees agents or indemnedate contractors.

employees, agents or independent contractors.

13. Fees. To cover the cost incurred for publication, loVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an invoice. Should the Materials not be published due to an editorial or production decision, these funds will be editorial or production decision, these funds will be submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by loVE. If payment is not received by the completion of filming, production and publication of the completion of filming, production and publication of the

Materials will be suspended until payment is received.

14. Transfer, Governing Law. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement any be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other of this Agreement delivered by facsimile, e-mail or other shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article until such time as it has received complete, executed author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

sterilization, lack of cleanliness or by contamination due to shall hold JoVE harmless from, damages caused by lack of elsewhere by JoVE. The Author shall be responsible for, and JOVE, making of videos by JOVE, or publication in JOVE or damages related in any way to the submission of work to procedures or guidelines, liabilities and other losses or animal treatment, privacy or other rules, regulations, laws, of institutional, laboratory, hospital, ethical, human and experiments, property damage, personal injury, violations facilities, fraud, libel, defamation, research, equipment, rights, damage to the Author's or the Author's institution's allegations or instances of violation of intellectual property any representation or warranty contained herein or from attorney's fees, resulting from the breach by the Author of against any and all claims, costs, and expenses, including agrees to indemnify and hold harmless JoVE from and representations contained herein. The Author further fees, arising out of any breach of any warranty or other and all claims, costs, and expenses, including attorney's JoVE and/or its successors and assigns from and against any Indemnification. The Author agrees to indemnify

A signed copy of this document must be sent with all new submissions. Only one Agreement is required per submission.

СОЯВЕЅРОИДІМЬ АЛТНОЯ

Signature:	Markin Has Date: 21th Mark 2018
:Fitle:	N.C.
nstitution:	UNIVERSITY OF CHEMISTRY AND TECHNOLOGY PRAGUE
Department:	DEORRTHENT OF PETROLEUM TECHNOLOGY AND ALTERNATIVE FUELS
	ZATZ NITAAM

Please submit a **signed** and **dated** copy of this license by one of the following three methods:

- 1. Upload an electronic version on the JoVE submission site
- 2. Fax the document to +1.866.381.2236
- 3. Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02140

Editorial comments:

The manuscript has been modified and the updated manuscript, **57757_R2.docx**, is attached and located in your Editorial Manager account. **Please use the updated version to make your revisions.**

- 1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues.
- We performed a careful proofreading and corrected some detected grammatical issues.
- 2. Please remove all headers from the Introduction.
- We are sorry, but we do not understand this comment. Did the editor mean titles? If so, there are any titles in the Introduction section, but there are some in the Apparatus section. The Apparatus section is an own section and it does not belong to the Introduction. We believe that the Apparatus section should be presented before the Protocol, as some steps in Protocol refer to apparatus schemes.
- 3. For each figure, please provide a title and a short description in the Figure Legends. Please bold the title.
- Titles in bold are provided. We were thinking thoroughly about presenting/non-presenting short descriptions for the figures in the Figure Legends section. We decided not to present short descriptions for the figures as each figure is described in detail in the text. The discussions on the figures can be easily found in the manuscript; for instance, figures 1–6 are discussed in the Apparatus section and figures 7–12 in the Representative results section. The addition of short descriptions for the figures would cause, in our opinion, undesirable repetition and lengthening of the manuscript.
- 4. Step 1.6, 1.7: There are calculation processes in these two steps. These cannot be filmed.
- The calculations presented in these steps were removed from the filmable content.

Maxa Daniel

23. 4. 2018, 12:09 Stas Martin Dear Martin,

In regard to your request to editorial staff of Paliva journal, let me state that

I, Daniel Maxa, an associate editor of Paliva, a journal published by the Faculty of Environmental Technology, University of Chemistry and Technology Prague,

hereby give my consent to Lukáš Matějovský, Jan Macák, Olga Pleyer and Martin Staš, authors of a manuscript entitled "Determination of Corrosion Rate and Efficiency of Corrosion Inhibitors in Biofuels" that is intended to be published in *Journal of Visualized Experiments (JoVE)*,

to reuse all figures and tables previously published in

Matějovský, L., Baroš, P., Pospíšil, M., Macák, J., Straka, P. and Maxa, D. *Testování korozních vlastností lihobenzínových směsí na oceli, hliníku mědi a mosazi (Testing of Corrosion Properties of Ethanol-Gasoline Blends on Steel, Aluminum, Copper and Brass)*, (in Czech). Paliva. 5 (2), 54-62, (2013)

and in

Macák, J., Černoušek, T., Jiříček, I., Baroš, P., Tomášek, J. and Pospíšil, M. Elektrochemické korozní testy v kapalných biopalivech (Electrochemical Corrosion Tests in Liquid Biofuels), (in Czech). Paliva. 1 (1), 1-4, (2009)

in the above mentioned publication and its all revised versions intended to be published in JoVE.

Daniel Maxa, Ph.D.

Department of Petroleum Technology and Alternative Fuels University of Chemistry and Technology Prague Associate Editor of Paliva