Journal of Visualized Experiments

Printed Glycan Array: a sensitive technique for the analysis of the repertoire of circulating anti-carbohydrate antibodies in small animals. --Manuscript Draft--

Article Type:	Invited Methods Article - JoVE Produced Video
Manuscript Number:	JoVE57662R3
Full Title:	Printed Glycan Array: a sensitive technique for the analysis of the repertoire of circulating anti-carbohydrate antibodies in small animals.
Keywords:	Pattern of natural antibodies; circulating anti-glycan antibodies; glycan specificities; glycochips; Printed Glycan Array; PGA; mice.
Corresponding Author:	Daniel Bello-Gil Institut d'Investigacio Biomedica de Bellvitge Hospitalet de Llobregat, Barcelona SPAIN
Corresponding Author's Institution:	Institut d'Investigacio Biomedica de Bellvitge
Corresponding Author E-Mail:	dbello@idibell.cat
First Author:	Daniel Bello-Gil
Other Authors:	Sara Olivera-Ardid
	Nailya Khasbiullina
	Alexey Nokel
	Andrey Formanovsky
	Inna Popova
	Tatiana Tyrtysh
	Roman Kunetskiy
	Nadezhda Shilova
	Nicolai Bovin
	Rafael Mañez
Author Comments:	This work claims to expand the use of PGA technology to investigate repertoire (specificities) and levels of circulating anti-carbohydrates antibodies, both in health and during any pathological condition. This kind of study can be extrapolated to different species (rat, primates, chickens, humans). We anticipate the potentiality that this approach may bring in the early diagnosis and derived treatment in some of the pathological conditions where antibodies seem to play an important role. As JoVE is a leading video journal, we consider it the perfect platform to disseminate the mentioned methodology to the scientific community.
Additional Information:	
Question	Response
If this article needs to be "in-press" by a certain date, please indicate the date below and explain in your cover letter.	

- 2 Printed Glycan Array: A Sensitive Technique for the Analysis of the Repertoire of Circulating
- 3 Anti-Carbohydrate Antibodies in Small Animals

4 5

AUTHORS & AFFILIATIONS:

- 6 Sara Olivera-Ardid^{1*}, Nailya Khasbiullina^{2,3*}, Alexey Nokel³, Andrey Formanovsky², Inna Popova²,
- 7 Tatiana Tyrtysh², Roman Kunetskiy², Nadezhda Shilova², Nicolai Bovin^{2,4}, Daniel Bello-Gil¹,
- 8 Rafael Mañez^{1,5}
- 9 ¹Infectious Pathology and Transplantation Division, Bellvitge Biomedical Research Institute
- 10 (IDIBELL), Hospitalet de Llobregat, Spain
- 11 ²Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (IBCh), Russian Academy of
- 12 Sciences, Moscow, Russia
- 13 ³Semiotik LLC, Moscow, Russia
- 14 ⁴Auckland University of Technology, Auckland, New Zealand
- 15 ⁵Intensive Care Department, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
- 16 *These authors have equal contribution to this work.

17

18 **E-MAIL ADDRESSES:**

- 19 Sara Olivera-Ardid: sara.oa.21@gmail.com
- 20 Nailya Khasbiullina: crosbreed@list.ru
- 21 Alexey Nokel: anokel@gmx.com
- 22 Andrey Formanovsky: formanovsky@yandex.ru
- 23 Inna Popova: innussik.popova@gmail.com
- 24 Tatiana Tyrtysh: ttyrtysh@gmail.com
- 25 Roman Kunetskiy: roman.kunetskiy@googlemail.com
- 26 Nadezhda Shilova: pumatnv@gmail.com
- 27 Nicolai Bovin: professorbovin@yandex.ru
- 28 Daniel Bello-Gil: dbello@idibell.cat
- 29 Rafael Mañez: rmanez@bellvitgehospital.cat

30

31 **CORRESPONDING AUTHOR:**

- 32 Daniel Bello-Gil
- 33 Phone: +34 692 644 959

34 35

KEYWORDS:

- Pattern of natural antibodies, circulating anti-glycan antibodies, glycan specificities, glycochips,
- 37 printed glycan array, PGA, mice

38

39 **SHORT ABSTRACT:**

This work shows the potential of printed glycan array (PGA) technology for the analysis of

41 circulating anti-carbohydrate antibodies in small animals.

42 43

LONG ABSTRACT:

44 The repertoire of circulating anti-carbohydrate antibodies of a given individual is often

associated with its immunological status. Not only the individual immune condition determines the success in combating internal and external potential threat signals, but also the existence of a particular pattern of circulating anti-glycan antibodies (and their serological level variation) could be a significant marker of the onset and progression of certain pathological conditions. Here, we describe a PGA-based methodology that offers the opportunity to measure hundreds of glycan targets with very high sensitivity; using a minimal amount of sample, which is a common restriction present when small animals (rats, mice, hamster, *etc.*) are used as models to address aspects of human diseases. As a representative example of this approach, we show the results obtained from the analysis of the repertoire of natural anti-glycan antibodies in BALB/c mice. We demonstrate that each BALB/c mouse involved in the study, despite being genetically identical and maintained under the same conditions, develops a particular pattern of natural anti-carbohydrate antibodies. This work claims to expand the use of PGA technology to investigate repertoire (specificities) and the levels of circulating anti-carbohydrates antibodies, both in health and during any pathological condition.

INTRODUCTION:

Antibodies play a central role in our defense against invading pathogens by directly neutralizing viruses^{1,2} and bacteria^{2,3}, by activating the complement system^{4,5} and the enhancement of phagocytosis⁶. Additionally, they are essential elements in cancer targeting and elimination of malignant cells⁷, and homeostasis maintenance^{8,9}.

Disorders of the immune system can result in autoimmune and inflammatory diseases¹⁰ and cancer¹¹. All these pathological conditions ideally demand a prompt diagnosis for an efficient treatment. In the case of autoimmune disorders, the serological presence of autoantibodies in most of the cases is a predictor for diagnostic of autoimmunity^{10,12}. These antibodies react with the cell surface and extracellular autoantigens and, they are often present for many years before the presentation of autoimmune disease^{10,12}. Immune deficiencies and cancer are also diagnosed with blood tests that either measure the level of immune elements such as antibodies, or their functional activity¹¹.

The identification of the repertoire of circulating antibodies and their serological levels are paramount to set a prognosis and evaluate the progression of all of the mentioned pathological conditions. We have previously demonstrated the potential of PGA technique for the analysis of circulating antibodies in different animal species¹³⁻¹⁶, minimizing the use of large volumes of serological samples, avoiding the problem associated with antibodies cross-reactivity¹⁷ and allowing high-throughput profiling of an extensive repertoire of antibodies¹⁵.

Glycan-based immunoassays are mainly conditioned, among other factors, by the origin and production of carbohydrates, which determine the affinity and binding of ligands^{15,18-21}. Glycan-based immunoassays can be developed in suspension (microspheres)^{15,21,22} or in flat-activated surfaces^{15,21,23,24}. The last include ELISA (the most conventional of these methods) and PGA. There is not much data comparing these methodologies in the same experimental setting^{15,25-27}. We have previously compared the efficacy and selectivity of these immunoassays to profile anti-glycan antibodies in individual human plasma samples¹⁵. For some antibodies such as those

targeting anti-A/B blood group, all the immunoassays could detect them with statistical significance and they positively correlated with each other 15,18,21. Meanwhile, anti-P1 antibodies were primarily detected by PGA with the highest discriminative power, and there was no correlation in the determinations made by the different glycan-based immunoassays 15,18,21. These differences between methods were mainly related to the antibody/antigen ratio and glycan orientation 15. ELISA and suspension arrays are more susceptible to unspecific binding than PGA because there is an excess of antigen over antibodies in these methods 15. Additionally, the orientation of glycans in the PGA is more restricted than in ELISA and suspension arrays 15. ELISA is convenient when the study includes a limited panel of glycans. Along with suspension arrays, ELISA offers broader flexibility regarding assay reconfiguration. PGA is exceptionally convenient for discovery approaches 15,18,21,28. Despite these clear advantages and disadvantages, the three mentioned immunoassays could be used to study different aspects of glycan-antibody interactions. The final goal of the study is the one will guide the selection of the more suitable methodology.

The present work aims to extend the use of PGA technology for the analysis of the repertoire of circulating anti-glycan antibodies in small animals. As a representative result, we present here a detailed protocol to assess the repertoire of natural anti-carbohydrate antibodies in adult BALB/c mice by PGA.

PROTOCOL:

1. Glycochips Production

1.1. Microarray preparation

1.1.1. Print the glycans (50 mM) and polysaccharides (10 μ g/mL) in 300 mM phosphate buffered saline (PBS, pH 8.5) at 6 replicates onto N-hydroxysuccinimide-derivatized glass slides, using non-contact robotic arrayer (drop volume ~ 900 pL). Each slide contains 4 different blocks of sub-arrays (**Figure 1A**, in colors) repeated 6 times. Every single sub-array is formed by 112 different glycan spots, including controls (8 rows × 14 columns) (**Figure 1B**).

Note: Glycan-related information is provided in the **Supplementary Table 1**. The glycan library used for printing microchips is the result of a long-term synthetic effort of the IBCh team; examples of synthesis are described in related publications²⁹⁻³⁸. The glycan library included blood group antigens and some of the most frequently occurring terminal oligosaccharides, as well as core motifs of mammalian N- and O-linked glycoproteins and glycolipids, tumor-associated carbohydrate antigens, and polysaccharides from pathogenic bacteria.

1.1.2. Incubate the slides in moisture box (relative humidity \sim 70%) at room temperature (25 $^{\circ}$ C) for 1 h.

131 1.1.3. Blocking microarrays: incubate the slides for 1.5 h with blocking buffer at room temperature (100 mM boric acid, 25 mM ethanolamine, 0.2% (v/v) Tween-20 in ultrapure water).

134

135 1.1.4. Wash the glycochip with ultrapure water and dry it by air.

136

137 1.2. Glycochip quality control

138

1.2.1. Analyze two microarrays from each batch using 1mg/mL solution of complex immunoglobulin preparation (CIP, containing IgG, IgM and IgA), 10 μ g/mL solution of biotinylated goat anti-human immunoglobulins as a secondary antibody (IgM + IgG + IgA), followed by 1 μ g/mL solution of the corresponding fluorescent streptavidin conjugate (via protocol described below, see step 2).

144

145 1.2.2. Scan and analyze the glycochips (see step 3, analysis of glycan array).

146

147 1.2.3. Use microarray batches with intra- and inter-chip correlation higher than 0.9.

148 149

2. Glycan array technique

150 151

2.1. Prepare the following aqueous solutions (in ultrapure water) and store them at room temperature (25 °C):

152153154

 Buffer-1: 1% (w/v) bovine serum albumin (BSA) in PBS, 1% (v/v) Tween-20 and 0.01% (w/v) NaN₃

155

Buffer-2: 1% (w/v) BSA in PBS, 0.1% (v/v) Tween-20 and 0.01% (w/v) NaN₃.

156 157

Buffer-3: 0.1% (v/v) Tween-20 in PBS.
Buffer-4: 0.001% (v/v) Tween-20 in PBS.

158159

2.2. Glycochip and sample preparation

160

2.2.1. Put the storage box with the slides on the table until they reach room temperature (25 °C).

163164

165

Note: Use powder-free latex gloves. The glycochip must be manipulated by the bottom part of the glass slide, where the barcode is located. The barcode will help you to identify the right side, avoiding the contact with the surface where the glycans are printed.

166 167

2.2.2. Open the box, take the glycochip and place it in the incubation chamber (25 °C), already
 conditioned with wet filter paper to keep humidity constant inside the chamber.

170

2.2.3. Meanwhile, dilute the mice serum with Buffer-1 (1:20) in 1.5 mL tubes. Homogenize the serum solution (5 s) with a vortex mixer.

173 174

Note: The volume needed to totally cover a single glycochip surface is approximately 1 mL.

2.2.4. After the homogenization, incubate the diluted serum at 37 °C for 10 min in a water bath to avoid immunoglobulin aggregation. Centrifuge the tubes for 3 min at 10,000 x g and 25 °C, collect the supernatant and discard any precipitated material.

2.2.5. Place the glycochip carefully in the incubation chamber. Incubate it for 15 min at 25 °C with 1 mL of Buffer-3 to eliminate any residual material on the surface of the glycochip.

2.2.6. Hold the glycochip in a vertical position and rewash it with some drops of Buffer-3 using a plastic Pasteur pipette. Carefully remove the buffer from the glycochip surface using filter paper.

2.3. Reaction: antibodies binding

2.3.1. Place the glycochip in the incubation chamber. Spread the diluted serum sample over the glycochip surface using a micropipette. Incubate with orbital agitation (30 rpm) at 37 °C for 1.5 h. Ensure that all dry area of the glycochip surface is covered by the diluted serum sample using the tip of the pipette.

2.3.2. Remove any excess sample and immerse the glycochip for 5 min in Buffer-3 at 25 °C. Then, pass the glycochip to a container with Buffer-4 (5 min) and finally wash (5 min) the glycochip with ultrapure water. Centrifuge the glycochip for 1 min at 175 x g and 25 °C to remove the liquid.

2.4. Detection: secondary antibody

2.4.1. Place the glycochip in the incubation chamber. Spread over the glycochip surface a solution (5 μ g/mL) of goat anti-mouse (IgG + IgM) conjugated to biotin in Buffer-2. Incubate with orbital agitation (30 rpm) at 37 °C for 1 h.

2.4.2. Remove the unbound fraction and repeat the washing steps.

2.4.3. After the centrifugation, incubate the glycochip in darkness at 25 °C for 45 min (30 rpm) with 2 µg/mL of the corresponding fluorochrome-labeled streptavidin solution (in Buffer-2).

2.4.4. In darkness, remove the unbound fraction and repeat the washing steps.

212 2.4.5. Dry the glycochip by air.

Note: Glycochip should be scanned as soon as possible. But if it's impossible to do scan immediately after staining, glycochips can be stored in a cool and dry place in darkness.

3. Analysis of Glycan Array

219 220	3.1.	Scan the array
221	3.1.1.	Leave the glycochip on the table until it reaches room temperature in dark. At the same
222	<mark>time, t</mark>	urn on the slide scanner and the laser (excitation wavelength of 633 nm).
223		
224	3.1.2.	Holding the microarray, slide the glycochip into the slot until it touches the back.
225		
226	<mark>3.1.3.</mark>	Scan the glycochip (run easy scan), and save the scan as a ".TIFF" file.
227		
228	3.2.	Array quantification
229		
230	<mark>3.2.1.</mark>	Quantify the array using a ScanArray Analysis System. Open previously scanned images,

3.2.2. Load the corresponding array file template in GAL format (disposition of printed glycans
on the glass slide) (Figure 1C).

3.2.3. Adjust GAL template by carefully aligning the array (grids) with the spots in the image and initiate quantification (**Figure 1D**).

3.2.4. Select the quantification parameters:

231

232

235236

237

238239

240

241

242243

244

245246

247

248249

250

251

252253

254

255

258259

260

261

262

Quantification type: Run Easy Quant.

by clicking File in the Configure & File group on the Main Window (Figure 1B-D)

- Quantification method: Fixed Circle
- Auto find Spots: unclick all options
- Normalization Method: LOWESS (Locally Weighted Scatter Plot Smoothing).

3.2.5. Save the quantified data as ".CSV" file (**Figure 1D**). Transfer this data into a common spreadsheet file using Microsoft Excel or another appropriate application.

3.2.6. Use the interquartile range (IQR) as the main statistical method: calculation of the median (Quartile 2) of all signals for each ligand and the interquartile deviation (75th and 25th percentiles, or upper and lower quartiles Q3 and Q1, respectively).

3.2.7. Perform interactive exploration of data by using a Hierarchical Clustering Explorer application.

3.2.8. Use clustering parameters: Average Linkage (UPGMA) and Euclidean distance as similarity distance measure. Perform hierarchical clustering by rows without normalization.

REPRESENTATIVE RESULTS:

Here, we present a summary of representative results obtained from the quantification of the repertoire of natural anti-glycan antibodies in a population of 20 BALB/c mice. The glycochips used in this study contained 419 different glycan structures. Most glycans were synthesized as —

CH₂CH₂NH₂ spacer-armed *O*-glycosides, in several cases as $-\text{CH}_2\text{CH}_2\text{NH}_2$ or $-\text{NHCOCH}_2\text{NH}_2$ glycosides. All glycan structures were characterized by high resolution (700- or 800 MHz) NMR spectroscopy, purified and tested by HPLC, indicating their >95% purity. We have simultaneously determined IgM + IgG anti-glycan antibodies due to a restriction in the amount of mouse serum. In the PGA, we considered values above 4,000 RFU as a positive signal of antibody binding (this value is ~10% of the top glycans RFU). The results presented in this work follow most of the guidelines for reporting glycan microarray-based data³⁹. Only 17% of carbohydrate structures demonstrated \geq 4,000 RFU in the PGA (**Figure 2**, in red). Most of the glycan structures exposed in the glycochips were not recognized by the repertoire of circulating anti-glycan antibodies of BALB/c mice (**Figure 2**, in blue and white)²⁸. The conserved pattern of natural anti-carbohydrate antibodies of BALB/c included 12 different glycan specificities, with very high median signal intensities of antibodies binding (\geq 10,000 RFU **Table 1**)²⁸.

Figure 1. Schematic representation (not at scale) of the glycan array configuration, printing, and analysis. (A) Printed microchips are developed with a library of 419 different glycan structures, followed by the detection with an appropriate fluorescently labeled secondary antibody. Each slide contains 4 different blocks of sub-arrays (in colors), repeated 6 times. Every single sub-array is formed by 112 different glycan spots (8 rows × 14 columns), including controls. (B) A representative example of the images obtained from microchip scanning using a fluorescence scanner (third part of the image). (C) The process of aligning the "grid" to spots in every single sub-array (template adjustment during quantification). (D) The fluorescence is detected for each spot and results are transferred into a common spreadsheet file.

Figure 2. Repertoire of natural circulating anti-carbohydrate antibodies of BALB/c mice. Mouse serum (1:20) was incubated with the glycochips and scanned using a ScanArray reader. Data were analyzed with a microarray analysis system and results were expressed in relative fluorescence units (RFU) as the median \pm median absolute deviation (MAD). Blue and white colors represent binding signals lower than 4,000 RFU (background); red color represents signals \geq 4,000 RFU (positive binding). F, female; M, male (n = 20). This figure has been reproduced from Bello-Gil, D. *et al.*²⁸.

Table 1. Top rank glycan structures recognized by natural antibodies of BALB/c mice. Glycans with binding signals above 4,000 RFU in at least 80% of examined mice (n = 20). ^bsp means aminoethyl, aminopropyl or glycyl spacer. ^cfuranose; all other monosaccharides are in a pyranose form; Fuc residue has L-configuration, all other monosaccharides - D-configuration. This table has been modified from Bello-Gil, D. *et al.*²⁸.

Supplementary Table 1. List of glycans, their binding to natural circulating antibodies (IgM + IgG) of BALB/c mice (n=20), expressed in relative fluorescence units (RFU) as median \pm MAD, and the number of animals exceeding *cut off* (\geq 4000 RFU). This table has been reproduced from Bello-Gil, D. *et al*.²⁸.

DISCUSSION:

Glycan microarrays have become indispensable tools for studying protein-glycan interactions⁴⁰.

The present work describes a protocol based on PGA technology to study the repertoire of circulating of anti-carbohydrate antibodies in BALB/c mice. Since PGA offers the possibility to screen large numbers of biologically unknown glycans, it is an exceptionally convenient discovery tool 13,15,28 . The proposed method offers the possibility to measure, in the same experimental setting, hundreds of glycan structures using a reduced amount of serological sample (50 μ L). This is especially critical in the case of small animals (little circulating blood volume), or when it's necessary to extract blood several times from the same experimental animal.

We demonstrated, as representative results, that genetically identical mice should not be considered as immunological equivalents; because they develop different patterns of natural anti-carbohydrate antibodies (only 12 glycan specificities were conserved). Serological levels for the rest of the repertoire of natural anti-carbohydrate antibodies varied considerably among the examined animals. Analysis of the gut microbiota of inbred animals⁴¹ could explain this heterogeneity⁴²⁻⁴⁶. If the production of natural anti-glycan antibodies is mediated by the antigenic stimulation of microbiota, and this is different among inbred mice⁴¹, fine specificity of these antibodies will not be identical.

The main drawback for PGA development is the access to well-defined glycan structures^{40,47}. Glycans produced in biological systems are heterogeneous^{40,47,48}, and their biosynthesis relies on the differential expression of carbohydrate enzymes, resulting in heterogeneous mixtures of glycoforms, each with a distinct physiological activity⁴⁷. The complex composition and configuration of the glycans present in the biological systems make their productions challenging^{40,47,48}. Along with chemo-enzymatic synthesis, glycans isolated from natural sources will continue to be the major source of glycans for arrays development⁴⁰. Low synthetic yields and the complex purification process from glycoproteins and glycosphingolipids make the efficient production of glycans at large scale difficult^{40,47,48}. Hence, the availability and the prices of glycans continue being a very limiting condition to expand the use of PGA as a discovery tool.

Additionally, within the protocol, critical steps mostly relating to the correct distribution of solutions (serum, secondary antibodies) over the glycochip surface must be executed with caution. The methodology requires, at least, 1 mL of these solutions, to homogenously soak all dry areas of the glycochip surface. This is crucial to obtain minimal differences between glycan replicates and also to avoid excessive background during quantification.

Despite the mentioned limitations, PGA is a very sensitive tool for approaches related to study protein-glycan interactions⁴⁰, or to study the repertoire of anti-glycan antibodies in a particular experimental setting or condition^{13,15,28}. This study can be extrapolated to different species (including human samples) ^{13,15,23,28}, providing a versatile methodology for identifying the repertoire of circulating anti-carbohydrate antibodies.

We also anticipate the potentiality that this approach may bring in the early diagnosis and derived treatment in some of the pathological conditions where antibodies directed to glycan structures seem to play an important role.

ACKNOWLEDGMENTS:

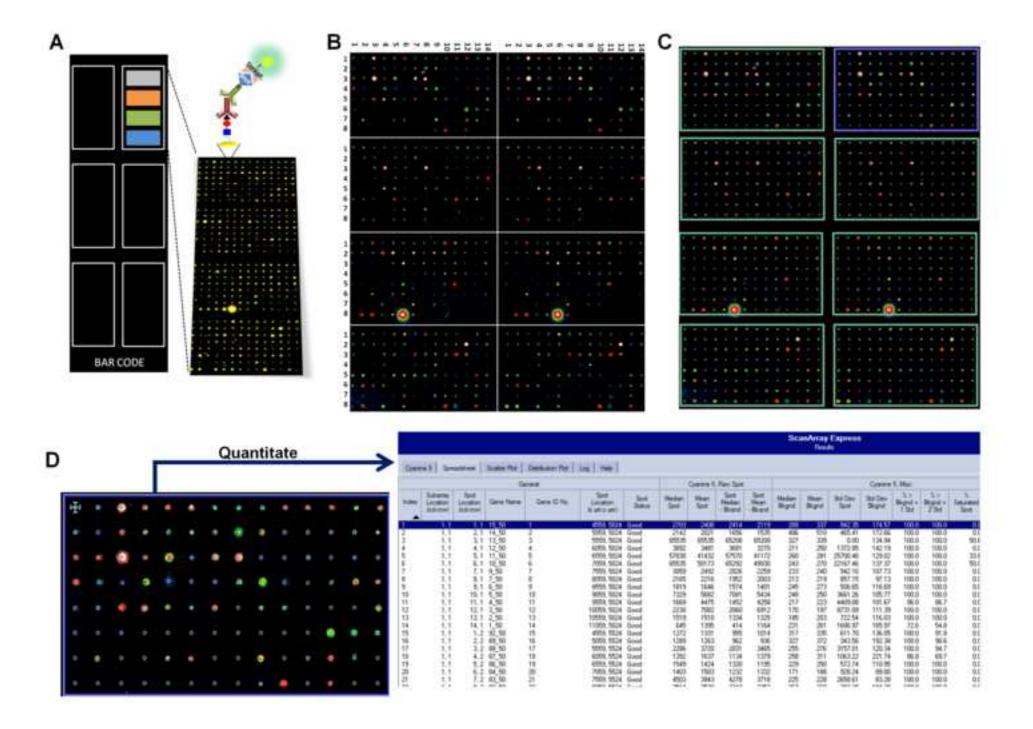
- 353 This work was supported by "Fondo de Investigaciones Sanitarias" (FIS) grant PI13/01098 from
- 354 Carlos III Health Institute, Spanish Ministry of Health. DB-G was benefited from a post-doctoral
- research position funded by the European Union Seventh Framework Programme (FP7/2007-
- 356 2013) under the Grant Agreement 603049 (TRANSLINK). Work of NK, NS, and NB was supported
- by grant #14-50-00131 of Russian Science Foundation. DB-G wants to express his gratitude to
- 358 Marta Broto, J. Pablo Salvador and Ana Sanchis for excellent technical assistance, and
- 359 Alexander Rakitko for assistance in statistical analysis.

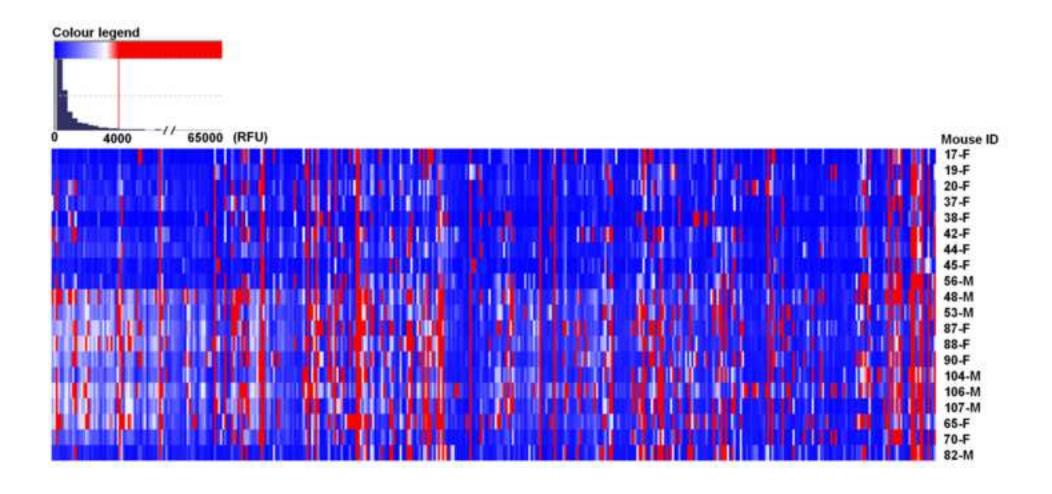
360 361

DISCLOSURES:

Nailya Khasbiullina and Alexey Nokel are employees of Semiotik LLC, who is the supplier of the glycochips used in this study.

364 365


REFERENCES:


- 366 1. Karlsson, G.B., Fouchier, R.A., Phogat, S., Burton, D.R., Sodroski, J., Wyatt, R.T. The
- 367 challenges of eliciting neutralizing antibodies to HIV-1 and to influenza virus. *Nat Rev Microbiol*.
- 368 **6**(2), 143-55, doi: 10.1038/nrmicro1819 (2008).
- 369 2. Lu, L.L., Suscovich, T.J., Fortune, S.M., Alter, G. Beyond binding: antibody effector
- 370 functions in infectious diseases. *Nat Rev Immunol.* **18**(1), 46-61, doi: 10.1038/nri.2017.106
- 371 (2017).
- 372 3. Bebbington, C., Yarranton, G. Antibodies for the treatment of bacterial infections:
- 373 current experience and future prospects. Curr Opin Biotech. 19(6), 613-9, doi:
- 374 10.1016/j.copbio.2008.10.002 (2008).
- 375 4. Murphy, K., Travers. P., Walport, M. Janeway's Immunobiology. 7th. Garland Science;
- 376 New York and London. The complement system and innate immunity, 61-80 (2008).
- 377 5. Botto, M., Kirschfink, M., Macor, P., Pickering, M.C., Wurzner, R., Tedesco, F.
- 378 Complement in human diseases: lessons from complement deficiencies. Mol Immunol. 46(14),
- 379 2774-83, doi: 10.1016/j.molimm.2009.04.029 (2009).
- 380 6. Borrok, M.J., et al. Enhancement of antibody-dependent cell-mediated cytotoxicity by
- 381 endowing IgG with FcαRI (CD89) binding. MAbs. **7**(4), 743-51, doi:
- 382 10.1080/19420862.2015.1047570 (2015)
- 383 7. Weiner, L.M., Murray, J.C., Shuptrine, C.W. Antibody-based immunotherapy of cancer.
- 384 *Cell.* **148**(6), 1081-4, doi: 10.1016/j.cell.2012.02.034 (2012).
- 385 8. Ricklin, D., Hajishengallis, G., Yang, K., Lambris, J.D. Complement: a key system for
- immune surveillance and homeostasis. *Nat Immunol.* **11**(9), 785-97, doi: 10.1038/ni.1923
- 387 (2010).
- 388 9. Prechl, J. A generalized quantitative antibody homeostasis model: antigen saturation,
- natural antibodies and a quantitative antibody network. Clin Transl Immunology. 6(2), e131,
- 390 doi: 10.1038/cti.2016.90 (2017).
- 391 10. Vojdani, A. Antibodies as predictors of complex autoimmune diseases. *Int J Immunopath*
- 392 *Ph.* **21**(2), 267-78, doi: 10.1177/039463200802100203 (2008).
- 393 11. Liu, W., Peng, B., Lu, Y., Xu, W., Qian, W., Zhang, J.Y. Autoantibodies to tumor-associated
- 394 antigens as biomarkers in cancer immunodiagnosis. Autoimmun Rev. 10(6), 331-5, doi:

- 395 10.1016/j.autrev.2010.12.002 (2011).
- 396 12. Suurmond, J., Diamond, B. Autoantibodies in systemic autoimmune diseases: specificity
- and pathogenicity. *J Clin Invest.* **125**(6), 2194-202, doi: 10.1172/JCI78084 (2015).
- 398 13. Bovin, N., et al. Repertoire of human natural anti-glycan immunoglobulins. Do we have
- 399 auto-antibodies? *Biochim Biophys Acta*. **1820**(9), 1373-82, doi: 10.1016/j.bbagen.2012.02.005
- 400 (2012).
- 401 14. de los Rios, M., Criscitiello, M.F., Smider, V.V. Structural and genetic diversity in
- 402 antibody repertoires from diverse species. Curr Opin Struc Biol. 33, 27-41, doi:
- 403 10.1016/j.sbi.2015.06.002 (2015).
- 404 15. Pochechueva, T., et al. Comparison of printed glycan array, suspension array and ELISA
- in the detection of human anti-glycan antibodies. Glycoconjugate J. 28(8-9), 507-17, doi:
- 406 10.1007/s10719-011-9349-y (2011).
- 407 16. Shilova, N., Navakouski, M., Khasbiullina, N., Blixt, O., Bovin, N. Printed glycan array:
- antibodies as probed in undiluted serum and effects of dilution. Glycoconjugate J. 29(2-3), 87-
- 409 91, doi: 10.1007/s10719-011-9368-8 (2012).
- 410 17. Manimala, J.C., Roach, T.A., Li, Z., Gildersleeve, J.C. High-throughput carbohydrate
- 411 microarray profiling of 27 antibodies demonstrates widespread specificity problems.
- 412 *Glycobiology.* **17**(8), 17C-23C, doi: 10.1093/glycob/cwm047 (2007).
- 413 18. Jacob, F., et al. Serum anti-glycan antibody detection of non-mucinous ovarian cancers
- 414 by using a printed glycan array. *Int. J. Cancer.* **130**(1), 138-46, doi: 10.1002/ijc.26002 (2012).
- 415 19. Lewallen, D.M., Siler, D., Iyer, S.S. Factors affecting protein-glycan specificity: effect of
- 416 spacers and incubation time. *ChemBioChem.* **10**(9), 1486-1489, doi: 10.1002/cbic.200900211
- 417 (2009).
- 418 20. Oyelaran, O., Li, Q., Farnsworth, D., Gildersleeve, J.C. Microarrays with varying
- carbohydrate density reveal distinct subpopulations of serum antibodies. J. Proteome Res. 8(7),
- 420 3529-3538, doi: 10.1021/pr9002245 (2009).
- 421 21. Pochechueva, T. Multiplex suspension array for human anti-carbohydrate antibody
- 422 profiling. *Analyst.* **136**(3), 560-569, doi: 10.1039/c0an00758g (2011).
- 423 22. Chinarev, A.A., Galanina, O.E., Bovin, N.V. Biotinylated multivalent glycoconjugates for
- 424 surface coating. *Methods Mol Biol.* **600**, 67-78, doi: 10.1007/978-1-60761-454-8 5 (2010).
- 425 23. Huflejt, M.E. Anti-carbohydrate antibodies of normal sera: findings, surprises and
- 426 challenges. *Mol Immunol.* **46**(15), 3037-3049, doi: 10.1016/j.molimm.2009.06.010 (2009).
- 427 24. Buchs, J.P., Nydegger, U.E. Development of an ABO-ELISA for the quantitation of human
- 428 blood group anti-A and anti-B IgM and IgG antibodies. J Immunol Methods. 118(1), 37-46
- 429 (1989).
- 430 25. de Jager, W., Rijkers, G.T. Solid-phase and bead-based cytokine immunoassay: a
- 431 comparison. *Methods*. **38**(4), 294-303, doi: 10.1016/j.ymeth.2005.11.008 (2006).
- 432 26. Galanina, O.E., Mecklenburg, M., Nifantiev, N.E., Pazynina, G.V., Bovin, N.V. GlycoChip:
- 433 multiarray for the study of carbohydrate binding proteins. Lab Chip. 3(4), 260-265, doi:
- 434 10.1039/b305963d (2003).
- 435 27. Willats, W.G., Rasmussen, S.E., Kristensen, T., Mikkelsen, J.D., Knox, J.P. Sugar-coated
- 436 microarrays: a novel slide surface for the high-throughput analysis of glycans. *Proteomics*. **2**(12),
- 437 1666-1671, doi: 10.1002/1615-9861(200212)2:12<1666::AID-PROT1666>3.0.CO;2-E (2002).
- 438 28. Bello-Gil, D., Khasbiullina, N., Shilova, N., Bovin, N., Mañez, R. Repertoire of BALB/c mice

- 439 natural anti-Carbohydrate antibodies: mice vs. humans difference, and otherness of individual
- animals. Front Immunol. 8, 1449, doi: 10.3389/fimmu.2017.01449 (2017).
- 441 29. Pazynina, G., et al. Synthetic glyco-O-sulfatome for profiling of human natural
- 442 antibodies. *Carbohydr Res.* **445**, 23-31, doi: 10.1016/j.carres.2017.03.015 (2017).
- 443 30. Ryzhov, I.M., Korchagina, E.Y., Popova, I.S., Tyrtysh, T.V., Paramonov, A.S., Bovin, N.V.
- Block synthesis of A (type 2) and B (type 2) tetrasaccharides related to the human ABO blood
- group system. *Carbohydr Res.* **430**, 59-71, doi: 10.1016/j.carres.2016.04.029 (2016).
- 446 31. Ryzhov, I.M., et al. Function-spacer-lipid constructs of Lewis and chimeric Lewis/ABH
- 447 glycans. Synthesis and use in serological studies. Carbohyd Res. 435, 83-96, doi:
- 448 10.1016/j.carres.2016.09.016 (2016).
- 449 32. Pazynina, G.V., Tsygankova, S.V., Sablina, M.A., Paramonov, A.S., Tuzikov, A.B., Bovin,
- 450 N.V. Stereo- and regio-selective synthesis of spacer armed $\alpha 2$ -6 sialooligosaccharides.
- 451 *Mendeleev Commun.* **26**(5), 380-382, doi: 10.1016/j.mencom.2016.09.004 (2016).
- 452 33. Pazynina, G.V., Tsygankova, S.V., Sablina, M.A., Paramonov, A.S., Formanovsky, A.A.,
- 453 Bovin, N.V. Synthesis of blood group pentasaccharides ALe^y, BLe^y and related tri- and
- 454 tetrasaccharides. *Mendeleev Commun.* **26**(2), 103-105, doi: 10.1016/j.mencom.2016.03.005
- 455 (2016).
- 456 34. Severov, V.V., Pazynina, G.V., Ovchinnikova, T.V., Bovin, N.V. The synthesis of
- 457 oligosaccharides containing internal and terminal Galβ1-3GlcNAcβ fragments. Russian J.
- 458 Bioorgan. Chem. **41**(2), 147-60, doi: 10.1134/S1068162015020120 (2015).
- 459 35. Pazynina, G.V., Tsygankova, S.V., Bovin, N.V. Synthesis of glycoprotein N-chain core
- 460 fragment GlcNAcβ1-4(Fucα1-6)GlcNAc. *Mendeleev Commun.* **25**(4), 250-251, doi:
- 461 10.1016/j.mencom.2015.07.004 (2015).
- 462 36. Solís, D., et al. A guide into glycosciences: How chemistry, biochemistry and biology
- 463 cooperate to crack the sugar code. Biochim Biophys Acta. 1850(1), 186-235, doi:
- 464 10.1016/j.bbagen.2014.03.016 (2015).
- 465 37. Pazynina, G.V., et al. Divergent strategy for the synthesis of α2-3-Linked sialo-
- oligosaccharide libraries using a Neu5TFA-(α 2-3)-Gal building block. Synlett. **24**(02), 226-230,
- 467 doi: 10.1055/s-0032-1317961 (2013).
- 468 38. Blixt, O., et al. Printed covalent glycan array for ligand profiling of diverse glycan binding
- 469 proteins. P Natl Acad Sci USA. **101**(49), 17033-8, doi: 10.1073/pnas.0407902101 (2004).
- 470 39. Liu, Y., et al. The minimum information required for a glycomics experiment (MIRAGE)
- 471 project: improving the standards for reporting glycan microarray-based data. Glycobiology.
- 472 **27**(4), 280-284, doi: 10.1093/glycob/cww118 (2017).
- 473 40. Song, X., Heimburg-Molinaro, J., Cummings, R.D., Smith, D.F. Chemistry of natural glycan
- 474 microarrays. Curr Opin Chem Biol. 18, 70-7, doi: 10.1016/j.cbpa.2014.01.001 (2014).
- 475 41. Hoy, Y.E., et al. Variation in taxonomic composition of the fecal microbiota in an inbred
- 476 mouse strain across individuals and time. PLoS One. 10(11), e0142825, doi:
- 477 10.1371/journal.pone.0142825 (2015).
- 478 42. D'Argenio, V., Salvatore, F. The role of the gut microbiome in the healthy adult status.
- 479 *Clin Chim Acta*. **451**(Pt A), 97-102, doi: 10.1016/j.cca.2015.01.003 (2015).
- 480 43. Khasbiullina, N.R., Bovin, N.V. Hypotheses of the origin of natural antibodies: a
- 481 glycobiologist's opinion. *Biochemistry (Mosc).* **80**(7), 820-35, doi: 10.1134/S0006297915070032
- 482 (2015).

- 483 44. Butler, J.E., Sun, J., Weber, P., Navarro, P., Francis, D. Antibody repertoire development
- in fetal and newborn piglets, III. Colonization of the gastrointestinal tract selectively diversifies
- 485 the preimmune repertoire in mucosal lymphoid tissues. *Immunology*. **100**(1), 119-30, doi:
- 486 10.1046/j.1365-2567.2000.00013.x (2000).
- 487 45. Bos, N.A., et al. Serum immunoglobulin levels and naturally occurring antibodies against
- 488 carbohydrate antigens in germ-free BALB/c mice fed chemically defined ultrafiltered diet. Eur J
- 489 *Immunol.* **19**(12), 2335-9, doi: 10.1002/eji.1830191223 (1980).
- 490 46. van der Heijden, P.J., Bianchi, A.T., Heidt, P.J., Stok, W., Bokhout, B.A. Background
- 491 (spontaneous) immunoglobulin production in the murine small intestine before and after
- 492 weaning. *J Reprod Immunol.* **15**(3), 217-27, doi: 10.1016/0165-0378(89)90013-2 (1989).
- 493 47. Krasnova, L., Wong, C.H. Understanding the chemistry and biology of glycosylation with
- 494 glycan synthesis. Annu Rev Biochem. 85, 599-630, doi: 10.1146/annurev-biochem-060614-
- 495 034420 (2016).
- 496 48. Overkleeft, H.S., Seeberger, P.H. Chemoenzymatic synthesis of glycans and
- 497 glycoconjugates. In: Varki, A., et al., editors. Essentials of Glycobiology [Internet]. 3rd edition.
- 498 Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2015-2017, Chapter 54 (2017).

Glycan	Structure	
ID (#)		
60	6-O-Su-Galβ-sp ^b	
271	Galβ1-6Galβ1-4Glcβ-sp	
802	Galβ1-3GalNAc(fur ^c)β-sp	
176	3-O-Su-Galβ1-4(6-O-Su)Glcβ-sp	
166	GlcAβ1-6Galβ-sp	
150	3-O-Su-Gal eta 1-3Gal $NAclpha$ -sp	
437	GalNAc α 1-3(Fuc α 1-2)Gal β 1-3GalNAc β -sp	
125	6-Bn-Galβ1-4GlcNAcβ-sp	
154	3-O-Su-Galβ1-3GlcNAcβ-sp	
177	3-O-Su-Galβ1-4(6-O-Su)GlcNAcβ-sp	
287	3-O-Su-Gal $β$ 1-3(Fuc $α$ 1-4)GlcNAc $β$ -sp	
234	Galβ1-4(Fucα1-3)GlcNAcβ-sp	

Common name		nd MAD as FU	Number of mice showing RFU ≥ 4000 (%)
	61113	1156	100
	53622	1934	100
	51348	2324	100
	43008	9342	100
	39105	2993	85
	37943	3232	100
A(type 4)	33886	3193	90
	32674	5389	95
	32651	3954	100
	32496	7215	100
SuLe ^a	20063	4962	95
Le ^x	13573	2635	80

MATERIAL/ EQUIPMENT Antibodies biotinylated goat anti-human Igs biotinylated goat anti-mouse IgM + IgG Equipment Robotic Arrayer sciFLEXARRAYER S5 Stain Tray (slide incubation chamber) Centrifuge Pipettes Slide Scanner Shaking incubator **Biological samples** BALB/c mice sera Complex Immunoglobulin Preparation (CIP) Chemicals, Reagents and Glycans Glycan library Bovine serum albumin (BSA) Ethanolamine Tween-20 Phospahte buffered saline (PBS) Sodium azide Streptavidin Alexa Fluor 555 conjugate Streptavidin Cy5 conjugate Materials N-hydroxysuccinimide-derivatized glass slides H Whatman filter paper 1.5 mL tubes Software and algorithms ScanArray Express Microarray Analysis System Hierarchical Clustering Explorer application

N/ A: not applicable

S			

Thermo Fisher Scientific, Waltham, MA, USA
Thermo Fisher Scientific

Scienion AG, Berlin, Germany
Simport, Beloeil, QC, Canada
Eppendorf, Hamburg, Germany
Gilson, Middleton, WI, USA
PerkinElmer, Waltham, MA, USA
Cole-Parmer, Staffordshire, UK

This paper Immuno-Gem, Moscow, Russia

Institute of Bioorganic Chemistry (IBCh), Moscow, Russia
Sigma-Aldrich, St. Louis, MO,
Sigma-Aldrich
Merck Chemicals & Life Science S.A., Madrid, Spain
VWR International Eurolab S.L, Barcelona, Spain
Sigma-Aldrich
Thermo Fisher Scientific
GE Healthcare, Little Chalfont, Buckinghamshire, UK

Schott-Nexterion, Jena, Germany Sigma-Aldrich Eppendorf

Perkin Elmer

University of Maryland, MD, USA

IDENTIFIER

Ref. #: 31782 Ref. #: 31807

http://www.scienion.com/products/sciflexarrayer/

Ref. #: M920-2

Ref. #: 5810 R

http://www.gilson.com/en/Pipette/ ScanArray G_X Plus

Ref. #: SI50

N/A

http://www.biomedservice.ru/price/goods/1/17531

N/A

Ref. #: A9418

Ref. #: 411000

Ref. #: 655204

Ref. #: E404

Ref. #: S2002

Ref. #: S21381

Ref. #: PA45001

Ref. #: 1070936

Ref. #: WHA10347509

ΝΕΙ. π. ΟΟΟΟΙΖΟΟΟΟ

http://www.per kinelmer.com/microarray

http://www.cs.umd.edu/hcil/hce/

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Analysis of the reperiods of ordinaring and on both
Author(s):	Sara Olivera-Ardid, Nallya Khasbiullina, Alexey Nokel, Andrey Formanovsky, Inna Popova, Tatlana Tyrtysh, Roman Kunetskiy, Nadezhda Shilova, Nicolal Bovin, Daniel Bello-Gil, Rafael Mañez
	box): The Author elects to have the Materials be made available (as described at ove.com/author) via: Standard Access Open Access
Item 2 (check one bo	x):
X The Auth	or is NOT a United States government employee.
	hor is a United States government employee and the Materials were prepared in the or her duties as a United States government employee.
	nor is a United States government employee but the Materials were NOT prepared in the or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.love.com

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. <u>Grant of Rights in Video Standard Access</u>. This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JOVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's

expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law.</u> This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDING AUTHOR:

Name:

Department:
Institution:

Article Title:

Department:

Institution:

Analysis of the repertoire of circulating anti-carbohydrate antibodies in small animals by printed glycan array technology

Date:

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- 2) Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

Bing Wu, Ph.D. Review EditorJournal of Visualized Experiments (JoVE)

Barcelona, January 23th, 2018

Dear Dr. Wu,

Please find enclosed the reviewed version of the manuscript entitled "Printed Glycan Array: a sensitive technique for the analysis of the repertoire of circulating anti-carbohydrate antibodies in small animals" by Olivera-Ardid *et al.*, which we are submitting to consider for publication in JoVE.

First of all, thank you so much for your time and useful contribution. We appreciated the inputs the editorial team has given, which helped to improve our manuscript significantly.

Specific comments from the editorial team included:

1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues.

Many thanks.

2. Please provide a title for Supplementary Table in Figure and Table Legends.

Thanks. (see line 299).

3. Milli-Q, Streptavidin Alexa Fluor 555 conjugate, commercial language.

Thanks. It was removed and substituted by:

- Ultrapure water.
- Fluorescent streptavidin conjugate.
- 4. Protocol step 2.1.1: Please write this step in imperative tense.

Thanks. It was corrected (line 150).

5. 2.2.2: What's the temperature of the incubation chamber?

25 °C (line 166).

6. 2.2.4: How is homogenization performed?

Homogenize the serum solution (5 s) with a vortex mixer (line 169).

Daniel Bello-Gil, PhD

Institut d'Investigació Biomédica de Bellvitge (IDIBELL), Barcelona, Spain. Infectious Pathology and Transplantation Division,

Phone: +34 692 644 959 Fax: +34 932607426 E-mail: dbello@idibell.cat

7. Pleas	se revise the Discussion to explicitly cover the following in detail in 3-6 paragraphs with citations:
a)	Critical steps within the protocol
	Discussion line 335.
b)	Any modifications and troubleshooting of the technique
	Please see the notes in the protocol.
c)	Any limitations of the technique
	Discussion line 324.
d)	The significance with respect to existing methods
	Introduction line 82-102. Discussion line 305, 341.
e)	Any future applications of the technique
	Discussion line 347
further	We look forward to hearing from you regarding our resubmission. We would be glad to respond to any questions and comments that you may have.
Sincere	ely,
Daniel.	

Phone: +34 692 644 959 Fax: +34 932607426 E-mail: dbello@idibell.cat

Supplementary Material

Printed Glycan Array: a sensitive technique for the analysis of the repertoire of circulating anti-carbohydrate antibodies in small animals.

Sara Olivera-Ardid^{1,*}, Nailya Khasbiullina^{2,3,*}, Alexey Nokel³, Andrey Formanovsky², Inna Popova², Tatiana Tyrtysh², Roman Kunetskiy², Nadezhda Shilova², Nicolai Bovin^{2,4}, Daniel Bello-Gil¹, Rafael Mañez^{1,5}

Table S1. List of glycans, their binding to natural circulating antibodies (IgM+IgG) of BALB/c mice (n=20), expressed in relative fluorescence units (RFU) as median \pm median absolute deviation (MAD), and the number of animals exceeding *cut off* (\geq 4000 RFU). This table has been reproduced from [28].

Glycan ID (#)	Structure	Common Name	Common Name Median and MAD as RFU		Animals showing RFU ≥ 4000
001	Fucα-sp3		1590	342	1
002	Galα-sp3		1522	316	0
003	Galβ-sp3		11858	1420	12
004	GalNAcα1-OSer	T_n Ser	2145	395	2
005	GalNAcα-sp3	T_n	1642	192	2
006	GalNAcβ-sp3		1001	250	0
007	Glcα-sp3		1242	222	0
009	Glcβ-sp3		1576	325	0
010	GlcNAcβ-sp3		4124	471	1
011	GlcNAcβ-sp2		4634	607	2
012	GlcNAcβ-sp7		2068	523	2
013	GlcNAcβ-sp8		7267	1117	9
014	GlcN(Gc)β-sp4		914	203	0
015	HOCH ₂ (HOCH) ₄ CH ₂ NH ₂	aminoglucitol	1374	316	0
016	Manα-sp3		1164	263	0
017	Manα-sp4		1567	369	0
018	Manβ-sp4		1842	319	2
019	ManNAcβ-sp4		4752	390	4
020	Rhaα-sp3		970	308	0
021	Galβ-sp4		1338	269	0
022	GlcNAcβ-sp4		932	230	0
023	GalNAcβ-sp4		1246	271	0
024	GlcNAcα-sp3		1463	260	2
025	GalNAcβ-sp10		848	209	0
026	Rhaβ-sp4		1098	227	0

^{*} Correspondence: dbello@idibell.cat

027	3,6-Me2Glc	DMG	673	123	0
028	Xylβ-sp4		1411	302	0
029	Fucβ-sp4		1139	301	0
030	Glcβ-sp4		1449	429	1
031	L-Araα-sp4		1099	369	0
032	GalNGcβ-sp3		483	119	0
037	3-O-Su-Galβ-sp3		2317	503	3
038	3-O-Su-GalNAcβ-sp3		3657	689	7
041	6-O-Su-GalNAcα-sp3		5504	1443	7
043	6-O-Su-GlcNAcβ-sp3		1040	253	1
044	GlcAα-sp3	α-glucuronic acid	1275	327	0
045	GlcAβ-sp3	β-glucuronic acid	1671	335	1
046	6-H ₂ PO ₃ Glcβ-sp4	β-Glc6P	1369	316	0
047	6-H ₂ PO ₃ Manα-sp3	α-Man6P	1300	322	0
048	Neu5Acα-sp3		583	131	0
049	Neu5Acα-sp9		1349	334	3
050	Neu5Acβ-sp3		2184	526	3
051	Neu5Acβ-sp9		1698	609	3
052	Neu5Gcα-sp3		847	286	0
053	Neu5Gcβ-sp3		1202	307	0
054	9-NAc-Neu5Acα-sp3		256	77	0
055	3-O-Su-GlcNAcβ-sp3		840	214	0
056	Galα-sp7		1016	263	0
057	Rib -sp4		1153	248	0
058	Fucβ-sp3		2266	422	1
059	Crypted	Crypted	1360	389	0
060	6-O-Su-Galβ-sp3		61113	1156	20
061	3-OSu-GalNAcα-sp3		2692	622	3
071	Fucα1-2Galβ-sp3	H_{di}	1077	245	1
072	Fucα1-3GlcNAcβ-sp3		1424	300	2
073	Fucα1-4GlcNAcβ-sp3	Le	755	217	0
074	Fucβ1-3GlcNAcβ-sp3		533	130	0
075	Galα1-2Galβ-sp3		790	184	0
076	Galα1-3Galβ-sp3	$\mathbf{B}_{ ext{di}}$	775	192	0
077	Galα1-3GalNAcβ-sp3	$\mathrm{T}_{lphaeta}$	668	155	0
078	$Gal\alpha 1-3GalNAc\alpha$ -sp3	$T_{lphalpha}$	581	113	0
080	Galα1-3GlcNAcβ-sp3		384	76	0
081	Galα1-4GlcNAcβ-sp3	α-LN	815	183	1
082	Galα1-4GlcNAcβ-sp8	α-LN	713	144	1
083	Galα1-6Glcβ-sp4	melibiose	2285	348	2
084	Galβ1-2Galβ-sp3		1332	301	1

086	Galβ1-3GlcNAcβ-sp2	Le ^C	609	130	0
087	Galβ1-3Galβ-sp3		1488	282	1
088	Galβ1-3GalNAcβ-sp3	${ m T}_{etaeta}$	1468	174	2
089	Galβ1-3GalNAcα-sp3	TF	297	59	0
092	Galβ1-4Glcβ-sp2	Lactose, Lac	889	182	0
093	Galβ1-4Glcβ-sp4	Lactose, Lac	1089	290	0
094	Galβ1-4Galβ-sp4		1124	278	0
096	Galβ1-4GlcNAcβ-sp2	N-acetyllactosamine, LN	2604	893	1
097	Galβ1-4GlcNAcβ-sp3	N-acetyllactosamine, LN	491	103	0
098	Galβ1-4GlcNAcβ-sp5	N-acetyllactosamine, LN	341	65	0
099	Galβ1-4GlcNAcβ-sp8	N-acetyllactosamine, LN	357	65	1
100	Galβ1-6Galβ-sp4		18406	2396	15
101	GalNAcα1-3GalNAcβ-sp3	Fs-2	1158	307	1
102	GalNAcα1-3Galβ-sp3	$A_{ m di}$	1199	295	1
103	GalNAcα1-3GalNAcα-sp3	core 5	451	87	0
104	GalNAcβ1-3Galβ-sp3		603	144	0
105	GalNAcβ1-3GalNAcβ-sp3	para-Fs	5975	1065	11
106	GalNAcβ1-4GlcNAcβ-sp3	LacdiNAc	332	79	0
107	GalNAcβ1-4GlcNAcβ-sp2	LacdiNAc	390	95	0
110	Glcα1-4Glcβ-sp3	maltose	10870	2172	10
111	Glcβ1-4Glcβ-sp4	cellobiose	3363	407	3
112	Glcβ1-6Glcβ-sp4	gentiobiose	6968	1229	5
113	GlcNAcβ1-3GalNAcα-sp3	core 3	4852	620	3
114	GlcNAcβ1-3Manβ-sp4		1474	423	2
115	GlcNAcβ1-4GlcNAcβ-Asn	chitobiose-Asn	12575	2669	14
116	GlcNAcβ1-4GlcNAcβ-sp3	chitobiose	1040	186	1
117	GlcNAcβ1-4GlcNAcβ-sp4	chitobiose	8585	1418	11
118	GlcNAcβ1-6GalNAcα-sp3	core 6	7860	714	4
119	$Man\alpha 1-2Man\beta-sp4$		1200	259	0
120	$Man\alpha 1-3Man\beta-sp4$		1224	338	0
121	$Man\alpha 1-4Man\beta-sp4$		1064	328	0
122	$Man\alpha 1$ -6 $Man\beta$ -sp4		1484	380	0
123	Manβ1-4GlcNAcβ-sp4		2103	428	2
125	6-Bn-Galβ1-4GlcNAcβ-sp2		32674	5389	19
126	6 -Bn-Gal α 1-4(6 -Bn)GlcNAc β -sp3		15410	3185	15
127	$Gal\beta 1-4Glc\beta$ -dipeptide		559	105	0
128	$Gal\beta 1-4Glc\beta$ -dipeptide		1181	263	0
129	$Gal\beta 1\text{-}3 (6\text{-}O\text{-}Bn)GlcNAc\beta\text{-}sp3$		683	184	0
130	$(6-O-Bn-Gal\beta 1)-3GlcNAc\beta-sp3$		378	104	0
131	$(6\text{-O-Bn-Gal}\beta1)\text{-}3(6\text{-O-Bn})GlcNAc\beta\text{-sp3}$		1908	494	2
132	Galb1-3GalNAca-sp5	TF	376	72	0

133	Col0.1 4Clo0 dinantida		6816	465	4
134	Galβ1-4Glcβ-dipeptide		1197	271	0
135	Galβ1-4Glcβ-dipeptide		941	330	
136	Galβ1-4Glcβ-dipeptide				0
	Galβ1-4Glcβ-dipeptide		476	98	0
137	Galβ1-4Glcβ-dipeptide		589	88	0
138	Galβ1-4Glcβ-dipeptide		571	130	0
139	Galβ1-4Glcα-sp3		395	65	0
140	Galα1-3GalNAc(fur)β-sp3		608	117	0
142	GlcNAcα1-3GalNAcβ-sp3		4523	1339	4
143 144	Fucα1-2(3-O-Su)Galβ-sp3		468	138	0
	Galβ1-3(6-O-Su)GlcNAcβ-sp2		297	73	0
145	Galβ1-3(6-O-Su)GlcNAcβ-sp3		388	76	0
146	Galβ1-4(6-O-Su)Glcβ-sp2		2044	469	2
149	GlcNAcβ1-4(6-O-Su)GlcNAcβ-sp2		2569	475	5
150	3-O-Su-Galβ1-3GalNAcα-sp3		37943	3232	20
151	6-O-Su-Galβ1-3GalNAcα-sp3		1840	250	2
152	3-O-Su-Galβ1-4Glcβ-sp2	SM3	2564	413	2
153	6-O-Su-Galβ1-4Glcβ-sp2		1796	504	2
154	3-O-Su-Galβ1-3GlcNAcβ-sp3		32651	3954	20
156	3-O-Su-Galβ1-4GlcNAcβ-sp2		2305	458	1
158	4-O-Su-Galβ1-4GlcNAcβ-sp2		2927	860	2
159	4-O-Su-Galβ1-4GlcNAcβ-sp3		1656	736	2
160	6-O-Su-Galβ1-3GlcNAcβ-sp2		346	142	0
161	6-O-Su-Galβ1-3GlcNAcβ-sp3		536	141	0
162	6-O-Su-Galβ1-4GlcNAcβ-sp2		5615	1540	7
164	GlcAβ1-3GlcNAcβ-sp3		979	218	1
165	GlcAβ1-3Galβ-sp3		1035	308	1
166	GlcAβ1-6Galβ-sp3		39105	2993	17
167	$GlcNAc\beta 1\text{-}4\text{-}[HOOC(CH_3)CH]\text{-}3\text{-}O\text{-}GlcNAc\beta\text{-}sp4$	GlcNAc-Mur	1012	269	1
168	GlcNAcβ1-4Mur-L-Ala-D-i-Gln-Lys	GMDP-Lys	3668	152	1
169	Neu5Acα2-3Galβ-sp3	GM4	2305	596	3
170	Neu5Acα2-6Galβ-sp3		4157	633	3
171	Neu5Acα2-3GalNAcα-sp3	3 -Sia T_n	844	168	1
172	Neu5Acα2-6GalNAcα-sp3	$SiaT_n$	3250	124	1
173	Neu5Acβ2-6GalNAcα-sp3	b-SiaTn	3221	855	5
174	Neu5Gcα2-6GalNAcα-sp3	Neu5Gc-T _n	1596	178	1
175	Neu5Gcβ2-6GalNAcα-sp3		1453	451	2
176	3-O-Su-Galβ1-4(6-O-Su)Glcβ-sp2		43008	9342	20
177	3-O-Su-Galβ1-4(6-O-Su)GlcNAcβ-sp3		32496	7215	20
178	6-O-Su-Galβ1-4(6-O-Su)Glcβ-sp2		3506	763	5
179			1 '		

180	6-O-Su-Galβ1-4(6-O-Su)GlcNAcβ-sp2		2991	832	4
181	3,4-O-Su ₂ -Galβ1-4GlcNAcβ-sp3		2993	820	5
182	3,6-O-Su ₂ -Galβ1-4GlcNAcβ-sp2		487	151	0
183	4,6-O-Su ₂ -Galβ1-4GlcNAcβ-sp2		4401	944	4
184	4,6-O-Su ₂ -Galβ1-4GlcNAcβ-sp3		1945	649	2
186	Neu5Acα2-8Neu5Acα2-sp3	(Sia) ₂	190	64	0
187	3-O-Su-Galβ1-4(6-O-Su)Glcβ-sp2		290	91	0
188	Neu5Acα2-8Neu5Acβ-sp9		1162	382	2
189	$3,6\text{-O-Su}_2\text{-Gal}\beta1\text{-}4(6\text{-O-Su})GlcNAc\beta\text{-sp}2$		2054	543	3
190	Galβ1-4-(6-P)GlcNAcβ-sp2		1217	347	1
191	6-P-Galβ1-4GlcNAcβ-sp2		926	194	1
192	GalNAcβ1-4(6-O-Su)GlcNAcβ-sp3		483	106	0
193	3-O-Su-GalNAcβ1-4GlcNAcβ-sp3		3103	626	4
194	6-O-Su-GalNAcβ1-4GlcNAcβ-sp3		2884	455	4
195	6-O-Su-GalNAcβ1-4-(3-O-Ac)GlcNAcβ-sp3		589	122	0
196	$3\text{-O-Su-GalNAc}\beta 1\text{-}4(3\text{-O-Su})\text{-GlcNAc}\beta\text{-sp3}$		605	123	1
197	$3,6\text{-O-Su}_2\text{-GalNAc}\beta 1\text{-}4\text{-GlcNAc}\beta\text{-sp3}$		287	54	0
198	$4,6\text{-O-Su}_2\text{-GalNAc}\beta 1\text{-}4\text{GlcNAc}\beta\text{-sp3}$		2251	407	1
199	$4,6\text{-O-Su}_2\text{-GalNAc}\beta 1\text{-}4\text{-}(3\text{-O-Ac})GlcNAc\beta\text{-sp3}$		690	178	0
200	4-O-Su-GalNAcβ1-4GlcNAcβ-sp3		466	134	0
201	$3,4\text{-O-Su}_2\text{-GalNAc}\beta 1\text{-}4\text{-GlcNAc}\beta\text{-sp3}$		3790	859	6
202	6-O-Su-GalNAcβ1-4(6-O-Su)GlcNAcβ-sp3		4471	933	8
203	Galβ1-4(6-O-Su)GlcNAcβ-sp2		5424	1203	8
204	4-O-Su-GalNAcβ1-4GlcNAcβ-sp2		753	120	1
205	Neu5Acα2-6GalNAcβ-sp3		606	111	1
206	Neu5Gcα2-3Gal-sp3		1295	371	0
207	Neu5Acβ2-6GalNAcβ-sp3		2913	646	3
208	Galβ1-3GlcNAcβ-sp4	Le ^C	658	172	0
209	Crypted	Crypted	6503	1331	9
210	Crypted	Crypted	1743	558	1
211	Crypted	Crypted	8440	1533	13
212	Crypted	Crypted	2129	530	3
213	Neu5Acβ2-6Galβ-sp3		2672	827	3
214	$\Delta GlcA\beta1-3Gal\beta-sp3$	deltaGlcAβ3Gal	589	161	0
215	Fuc α 1-2Gal β 1-3GlcNAc β -sp3	Le ^d , H (type 1)	2727	444	3
216	$Fuc\alpha 1-2Gal\beta 1-4GlcNAc\beta-sp3$	H (type 2)	10845	2895	15
217	$Fuc\alpha 1-2Gal\beta 1-3GalNAc\alpha-sp3$	H (type 3)	3108	468	6
219	Fucα1-2Galβ1-4Glcβ-sp4	H (type 6)-Gly	8251	1687	10
220	$Gal\alpha 1-3Gal\beta 1-4Glc\beta-sp2$		901	275	0
221	$Gal\alpha 1-3Gal\beta 1-4Glc\beta-sp4$		1230	393	2
222	$Gal\alpha 1\text{-}3Gal\beta 1\text{-}4GlcNAc\beta\text{-}sp3$	Galili (tri)	254	106	0
223	$Gal\alpha 1\text{-}4Gal\beta 1\text{-}4Glc\beta\text{-}sp2$	Pk, Gb3, GbOse3	756	247	0

225	Galα1-4Galβ1-4GlcNAcβ-sp2	P_1	573	165	0
226	Galα1-3(Fucα1-2)Galβ-sp3	\mathbf{B}_{tri}	1227	312	1
227	Galα1-3(Fucα1-2)Galβ-sp5	B _{tri} -C8	1044	248	1
228	Galβ1-2Galα1-3GlcNAcβ-sp3		321	87	0
229	Galβ1-3Galβ1-4GlcNAcβ-sp4		323	81	0
230	Galβ1-4Galβ1-4Glcβ-sp2	Mc3	248	84	0
232	Galβ1-4GlcNAcβ1-6GalNAcα–sp3		624	81	1
233	Galβ1-3(Fucα1-4)GlcNAcβ-sp3	Le ^A	210	58	0
234	Galβ1-4(Fucα1-3)GlcNAcβ-sp3	Le ^X	13573	2635	16
235	GalNAcα1-3(Fucα1-2)Galβ-sp3	$A_{ m tri}$	586	306	1
236	GalNAcα1-3(Fucα1-2)Galβ-sp5	$A_{ m tri}$	498	262	1
237	GalNHα1-3				
237	Galβ-OCH ₂ CH ₂ CH ₂ NHAc Fucα1-2		357	135	0
239	GalNAcβ1-3(Fucα1-2)Galβ-sp3		849	654	1
240	(Glcα1-4) ₃ β-sp4	maltotriose	11233	1567	6
241	(Glcα1-6) ₃ β-sp4	isomaltotriose	520	163	0
242	GlcNAcα1-3Galβ1-4GlcNAcβ-sp2		278	90	0
243	GlcNAcα1-3Galβ1-4GlcNAcβ-sp3		215	61	0
245	GlcNAcα1-6Galβ1-4GlcNAcβ-sp2		3394	1053	3
246	GlcNAcβ1-2Galβ1-3GalNAcα-sp3		434	94	0
247	GlcNAcβ1-3Galβ1-3GalNAcα-sp3		321	63	0
248	GlcNAcβ1-3Galβ1-4Glcβ-sp2		822	179	0
249	GlcNAcβ1-3Galβ1-4GlcNAcβ-sp2		1652	322	2
250	GlcNAcβ1-3Galβ1-4GlcNAcβ-sp3		1942	488	2
251	GlcNAcβ1-4Galβ1-4GlcNAcβ-sp2		1067	216	1
252	GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ-sp4	chitotriose	1111	206	2
253	GlcNAcβ1-6Galβ1-4GlcNAcβ-sp2		2877	653	3
254	GlcNAcβ1-6(Galβ1-3)GalNAcα-sp3	core 2	2499	525	4
255	GlcNAcβ1-6(GlcNAcβ1-3)GalNAcα-sp3	core 4	5853	425	4
256	GlcNAcβ1-6(GlcNAcβ1-4)GalNAcα-sp3		5020	613	8
258	Manα1-6(Manα1-3)Manβ-sp4	Man ₃	743	160	0
259	Galβ1-4(Galβ1-3)GlcNAcβ-sp3		372	58	0
260	Fucβ1-4				
	GlcNAcβ-sp3		663	140	0
	Galβ1-3				
261	Fucβ1-3				
	GlcNAcβ-sp3		299	62	0
	Galβ1-4				
262	Galβ1-3GalNAcβ1-3Gal-sp4		437	120	0
263	(GalNAcβ-PEG2)3-β-DD		657	114	0
264	Galβ1-4Galβ1-4GlcNAcβ-sp3		461	87	0

266	Galα1-4Galβ1-4GlcNAcβ-sp3	P_1	1017	227	0
267	GlcNAcβ1-3Galβ1-3GlcNAcβ-sp3		718	138	0
268	GlcNAcβ1-4(Fucα1-6)GlcNAcβ-sp3		1291	311	1
269	Galβ1-3Galβ1-4Glcβ-sp4		518	137	0
270	Galβ1-4Galβ1-4Glcβ-sp4		939	202	0
271	Galβ1-6Galβ1-4Glcβ-sp4		53622	1934	20
272	Neu5Acα2-3Galβ1-4Glcβ-sp4-Cit	3'-SL -citrullin	236	60	0
273	Fucβ1-2Galβ1-4GlcNAcβ-sp3		242	60	0
274	GalNAcα1-3Galβ1-4GlcNAc-sp3		426	90	0
275	GalNAcβ1-3Galβ1-4GlcNAc-sp3		403	103	0
276	GlcNAcβ1-4Galβ1-4GlcNAcβ-sp3		1357	456	2
277	GalNGcα1-3(Fucα1-2)Galβ-sp3	N-Gc-A _{tri}	375	99	0
287	3-O-Su-Galβ1-3(Fucα1-4)GlcNAcβ-sp3	3'-OSu-Le ^A	20063	4962	19
288	3-O-Su-Galβ1-4(Fucα1-3)GlcNAcβ-sp3	3'-OSu-Le ^X	593	146	0
289	Neu5Acα2-6(Galβ1-3)GalNAcα-sp3		296	88	0
290	Neu5Acα2-6(Galα1-3)GalNAcα-sp3		262	68	0
291	Neu5Acβ2-6(Galβ1-3)GalNAcα-sp3		1887	727	3
292	Neu5Acα2-3Galβ1-3GalNAcα-sp3		4477	1186	4
293	Neu5Acα2-3Galβ1-4Glcβ-sp3	3'SL	1684	349	1
294	Neu5Acα2-3Galβ1-4Glcβ-sp4	3'SL	363	99	0
295	Neu5Acα2-6Galβ1-4Glcβ-sp2	6'SL	290	66	0
296	Neu5Acα2-6Galβ1-4Glcβ-sp4	6'SL	360	96	0
297	Neu5Acβ2-6Galβ1-4Glcβ-sp2		1645	409	3
298	Neu5Acα2-3Galβ1-4GlcNAcβ-sp3	3'SLN	5486	1855	3
299	Neu5Acα2-3Galβ1-3GlcNAcβ-sp3	3'SiaLe ^C	3968	1266	6
300	Neu5Acα2-6Galβ1-4GlcNAcβ-sp3	6'SLN	936	527	1
302	Neu5Acβ2-6Galβ1-4GlcNAcβ-sp3		1100	368	2
303	Neu5Gcα2-3Galβ1-4GlcNAcβ-sp3		2147	451	1
304	Neu5Gcα2-6Galβ1-4GlcNAcβ-sp3		792	191	0
305	Neu5Gcβ2-6Galβ1-4GlcNAcβ-sp3		601	112	0
306	9-NAc-Neu5Acα2-6Galβ1-4GlcNAcβ-sp3		1431	437	1
307	KDNα2-3Galβ1-3GlcNAcβ-sp2		1441	304	2
308	KDNα2-3Galβ1-4GlcNAcβ-sp2		903	204	0
309	Neu5Acα2-6(Neu5Acα2-3)GalNAcα-sp3		487	107	1
310	3'SiaLacNAcβ-OCH ₂ CH ₂ CH ₂ NH-(3'SiaLacNAc- amide-sp3)		1932	665	1
315	Neu5Acα2-3Galβ1-4-(6-O-Su)GlcNAcβ-sp3		1930	477	3
316	Neu5Acα2-3Galβ1-3-(6-O-Su)GlcNAcβ-sp3		2752	1014	5
318	Neu5Acα2-6Galβ1-4-(6-O-Su)GlcNAcβ-sp3		1004	234	1
319	Neu5Acα2-3-(6-O-Su)Galβ1-4GlcNAcβ-sp3		7963	705	7
320	4-O-Su-Neu5Acα2-3-(6-O-Su)Galβ1-4GlcNAcβ-sp3		9621	1580	10
321	(Neu5Acα2-8) ₃ -sp3	(Sia) ₃	226	57	0

		1			ı
322	$(Neu5Ac\alpha 2-8)3\beta$ -sp3		553	112	0
323	Neu5Ac α 2-6Gal β 1-3GlcNAc-sp3	6'-SiaLe ^c	317	100	0
324	$Neu 5 A c \alpha 2 - 6 Gal \beta 1 - 3 (6 - O - Su) Glc N A c - sp 3$		361	80	0
325	$Neu 5 Ac\alpha 2-3 Gal\beta 1-4 Glc\beta-dipeptide$		275	57	0
326	$Neu 5 Ac\alpha 2-3 Gal\beta 1-4 Glc\beta-dipeptide$		311	65	0
327	$Neu 5 Ac\alpha 2-3 Gal\beta 1-4 Glc\beta-dipeptide$		495	125	0
328	$Neu 5 Ac\alpha 2-3 Gal\beta 1-4 Glc\beta-dipeptide$		298	55	0
329	Neu5Ac α 2-3Gal β 1-4Glc β -dipeptide		586	133	0
331	Neu5Gcα2-3Galβ1-3GlcNAcβ-sp3		2552	467	5
332	$Neu 5 Ac\alpha 2 - 3 Gal\beta 1 - 4 Glc\beta - dipeptide$		381	91	0
333	$Neu5Gc\alpha 2\text{-}3Gal\beta 1\text{-}3\text{-}(6\text{-}O\text{-}Su)GlcNAc\beta\text{-}sp3$		4811	1109	5
334	$Neu5Gc\alpha 2-3Gal\beta 1-4-(6-O-Su)GlcNAc\beta-sp3$		1639	274	2
335	$Neu5Ac\alpha 2-3Gal\beta 1-3-(6-O-Su)GlcNAc\beta-sp3$		6401	1102	6
336	$\alpha Kdo-(2\rightarrow 8)-\alpha Kdo-(2\rightarrow 4)-\alpha Kdo-sp11$		5921	1649	10
337	GalNAcα1-4Galβ1-4GlcNAcβ-sp3		4219	657	7
338	$Neu5Ac\alpha 2-6Gal\beta 1-3GalNAc\alpha-sp3$		306	59	0
339	$Neu 5 Ac \beta 2 - 6 Gal \beta 1 - 3 Gal NAc \alpha - sp3$		1931	365	3
340	$Gal\alpha 1\text{-}3 (Neu 5Ac\beta 2\text{-}6) Gal NAc\beta\text{-}sp3$		2907	760	4
341	$Neu 5Ac\alpha 2-3-(6-Su)Gal\beta 1-4GlcNAc\beta-sp2$		5964	1255	9
359	$Gal\alpha 1\text{-}3(Fuc\alpha 1\text{-}2)Gal\beta 1\text{-}3GlcNAc\beta\text{-}sp3$	B (type 1)	400	112	0
360	$Gal\alpha 13(Fuc\alpha 12)Gal\beta 14GlcNAc\betasp3$	B (type 2)	5071	644	6
362	$Gal\alpha 1\text{-}3(Fuc\alpha 1\text{-}2)Gal\beta 1\text{-}3GalNAc\alpha\text{-}sp3$	B (type 3)	8283	2150	14
363	$Gal\alpha 1\text{-}3(Fuc\alpha 1\text{-}2)Gal\beta 1\text{-}3GalNAc\beta\text{-}sp3$	B (type 4)	2728	589	6
364	$Gal\alpha 1\text{-}3Gal\beta 1\text{-}4(Fuc\alpha 1\text{-}3)GlcNAc\beta\text{-}sp3$	$\alpha GalLe^{X}$	541	116	0
365	$Gal\alpha 1\text{-}4(Fuc\alpha 1\text{-}2)Gal\beta 1\text{-}4GlcNAc\beta\text{-}sp3$		962	361	1
366	$GalNAc\alpha 1 - 3(Fuc\alpha 1 - 2)Gal\beta 1 - 3GlcNAc\beta - sp3$	A (type 1)	351	71	0
368	$GalNAc\alpha 1 - 3(Fuc\alpha 1 - 2)Gal\beta 1 - 4GlcNAc\beta - sp3$	A (type 2)	2621	625	2
369	$GalNAc\alpha 1-4 (Fuc\alpha 1-2)Gal\beta 1-4GlcNAc\beta-sp3$		3246	374	3
370	Crypted	Crypted	2629	835	3
371	$Fuc\alpha 1-2Gal\beta 1-3(Fuc\alpha 1-4)GlcNAc\beta-sp3$	Le ^B	307	107	0
372	$Fuc\alpha 1-2Gal\beta 1-4(Fuc\alpha 1-3)GlcNAc\beta-sp3$	Le ^Y	3936	1040	8
373	$Gal\alpha 1\text{-}3Gal\beta 1\text{-}4GlcNAc\beta 1\text{-}3Gal\beta\text{-}sp3$	Galili (tetra)	777	128	0
374	$Gal\alpha 1\text{-}3(Gal\alpha 1\text{-}4)Gal\beta 1\text{-}4GlcNAc\beta\text{-}sp3$	Galα2-3',4'LN	280	72	0
375	$Gal\alpha 1\text{-}4GlcNAc\beta 1\text{-}3Gal\beta 1\text{-}4GlcNAc\beta\text{-}sp3$		1032	190	1
377	Galβ1-3GlcNAcβ1-3Galβ1-3GlcNAcβ-sp2		827	166	1
378	$Gal\beta 1\text{-}3GlcNAc\alpha 1\text{-}3Gal\beta 1\text{-}4GlcNAc\beta\text{-}sp3$		10106	2009	9
379	Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ-sp3		1304	387	1
380	Galβ1-3GlcNAca1-6Galb1-4GlcNAcb-sp2		2306	344	1
381	Galβ1-3GlcNAcβ1-6Galβ1-4GlcNAcβ-sp2		2581	827	3
382	Galβ1-3GalNAcβ1-4Galβ1-4Glcβ-sp3	GA1, asialo-GM1	642	125	0
383	$Gal\beta 1\text{-}4GlcNAc\beta 1\text{-}3Gal\beta 1\text{-}4Glc\beta\text{-}sp4$	LNnT	280	74	0

384	Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ-sp2	i	290	76	0
386	Galβ1-4GlcNAcα1-6Galβ1-4GlcNAcβ-sp2		3822	638	2
387	Galβ1-4GlcNAcβ1-6Galβ1-4GlcNAcβ-sp2		2719	521	2
388	Galβ1-4GlcNAcβ1-6(Galβ1-3)GalNAcα-sp3		229	77	0
389	GalNAcβ1-3Galα1-4Galβ1-4Glcβ-sp3	Gb4, P	399	90	0
390	(Glcα1-4) ₄ β-sp4	maltotetraose	13504	2947	10
394	GlcNAcβ1-4				
374	Galβ1-4GlcNAcβ-sp2		2286	487	3
	GlcNAcβ1-3				
395	GlcNAcβ1-6(GlcNAcβ1-3)Galβ1-4GlcNAcβ-sp2	T_k	1249	316	0
396	(GlcNAcβ1)3-3,4,6-GalNAcα-sp3		4966	727	4
397	(GlcNAcβ1) ₃ -3,4,6-GalNAcα-sp3		7793	1480	9
398	Galβ1-3GlcN(Fm)β1-3Galβ1-4GlcNAcβ-sp3		557	106	0
399	Galβ1-3GlcNAcα1-3Galβ1-3GlcNAcβ-sp2		6788	1178	10
401	Galβ1-3GlcNAcβ1-3Galβ1-3GlcNAcβ-sp3		717	181	0
402	GalNAcα1-3				
	Galα1-4GlcNAcβ-sp3		175	45	0
	Fucα1-2				
403	Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ-sp2		2047	376	4
404	GalNAcα1-3Galβ1-4(Fucα1-3)GlcNAcβ-sp3	$\alpha GalNAcLe^{X}$	3611	1529	5
405	Galα1-3(Fucα1-2)Galα1-4GlcNAcβ-sp3		2929	227	1
406	GalNAcα1-3(Fucα1-2)Galα1-3GalNAcβ-sp3		304	60	0
419	3-O-SuGalβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ-sp3		2425	448	3
420	4-O-SuGalβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ-sp3		894	183	1
423	Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ-sp3	$SiaLe^{X}$	1673	483	1
425	Neu5Acα2-3Galβ1-4				
	GlcNAcβ-sp3		2164	673	2
	Fucβ1-3				
426	Neu5Acα2-3Galβ1-3(Fucα1-4)GlcNAcβ-sp3	SiaLe ^A	216	60	0
428	Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-Su-)GlcNAcβ-sp3	6-OSu-SLe ^x	429	149	0
429	Neu5Acα2-3(6-O-Su)Galβ1-4(Fucα1-3)GlcNAcβ- sp3	6'-OSu-SiaLe ^x	762	222	2
431	Neu5Acα2-3Galβ1-4(2-O-Su-Fucα1-3)GlcNAcβ-sp3		918	242	2
432	Neu5Acα2-3Galβ1-4				
	GlcNAcβ-sp3		546	207	0
	3-O-Su-Fucα1-3				
433	Neu5Acα2-6(Neu5Acα2-3Galβ1-3)GalNAcα-sp3		203	66	0
434	Neu5Acα2-8Neu5Acα2-3Galβl-4Glcβ-sp4	GD3	287	84	0
435	Neu5Acα2-3Galβ1-4(2-O-Su-Fucα1-3)(6-O-Su-)GlcNAcβ-sp3		425	133	0

436	4-O-Su-Neu5Acα2-3Galβ1-4(Fucα1-3)(6-O-Su-)GlcNAcβ-sp3		963	415	2
437	GalNAcα1-3(Fucα1-2)Galβ1-3GalNAcβ-sp3	A(type 4)	33886	3193	18
438	Fucβ1-2Galβ1-4(Fucα1-3)GlcNAcβ-sp3		460	131	0
439	α Kdo-(2 \rightarrow 4)- α Kdo-(2 \rightarrow 4)- α Kdo-(2 \rightarrow 6)- β GlcNAc-sp11		5179	1212	9
440	Neu5Acβ2-6(Fucα1-2)Galβ1-4GlcNAcβ-sp3		2150	416	3
441	Neu5Acα2-6(Fucα1-2)Galβ1-4GlcNAcβ-sp3		719	160	1
442	Neu5Acα2-3 (GalNAcβ1-4)Galβ1-4Glcβ-sp4	GM2	499	111	0
479	Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ-sp4	LNFP I	512	286	0
480	Fucα1-2Galβ1-3GlcNAcβ1-3Galβ1-4GlcNAcβ-sp2	H(type 1) penta	3826	911	8
481	Galα1-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ-sp4	Galili (penta)	241	60	0
482	Galα1-3(Fucα1-2)Galβ1-3(Fucα1-4)GlcNAcβ-sp3	BLe^{B}	1726	229	3
483	Galα1-3(Fucα1-2)Galβ1-4(Fucα1-3)GlcNAcβ-sp3	BLe^{Y}	2689	293	3
484	GalNAcα1-3(Fucα1-2)Galβ1-3(Fucα1-4)GlcNAcβ-sp3	ALe^{B}	175	49	0
485	Galβ1-4GalNAcα1-3(Fucα1-2)Galβ1-4GlcNAcβ-sp3		2643	642	4
488	Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1- 3)GalNAcα-sp3		284	69	0
489	Galβ1-4GlcNAcβ1-3(GlcNAcβ1-6)Galβ1- 4GlcNAcβ-sp2		541	172	0
490	Galβ1-4GlcNAcβ1-6(GlcNAcβ1-3)Galβ1- 4GlcNAcβ-sp2		527	119	0
491	GalNAcα1-3(Fucα1-2)Galβ1-4(Fucα1-3)GlcNAcβ-sp3	ALe^{Y}	213	65	0
492	(Glcα1-6) ₅ β-sp4	isomaltopentaose	1151	263	2
493	(GlcNAcβ1-4) ₅ β-sp4	chitopentaose	1798	509	1
495	Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ-sp4	Man_5	892	319	1
496	Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1-3Galβ1- 4Glcβ-sp4	Le ^b (hexa)	223	72	0
497	Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ1- 4Glcβ-sp4	Le ^Y (hexa)	2057	212	4
498	Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ1-3Galβ1- 4GlcNAcβ-sp3	$(LN)_3$	201	62	0
499	Galβ1-4GlcNAcβ1-6(Galβ1-4GlcNAcβ1-3)Galβ1- 4GlcNAcβ-sp2	I	200	45	0
501	Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ-sp4	Gb5	1360	254	1
502	(Glcα1-6) ₆ β-sp4	maltohexaose	3033	653	5
503	(GlcNAcβ1-4)6-sp4	chitohexaose	2396	314	1
504	(A-GN-M) ₂ -3,6-M-GN-GNβ-sp4	9-OS	200	57	0
505	(GN-M) ₂ -3,6-M-GN-GNβ-sp4	7-OS	728	195	0
506	Araf6	Ara6	158	37	0
507	GalNAcα1-3GalNAcβ1-3Galα1-4Galβ1-4Glcβ-sp3	Fs-5	2021	988	3

500		1		I 1	
508	GalNAcβ1-3(Fucα1-2)Galβ1-4(Fucα1-3)GlcNAcβ- sp3		402	93	0
509	Galβ1-3GalNAcβ1-4(Neu5Acα2-3)Galβ1-4Glcβ- sp4	GM1	1553	448	3
527	Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ- sp2		179	48	0
528	Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ1-3Galβ- sp3	SiaLe ^x -3Gal	203	49	0
529	Neu5Acα2-6(Galβ1-3)GlcNAcβ1-3Galβ1-4Glcβ- sp4	LSTb	297	70	0
530	(Neu5Acα2-3Galβ1)2-3,4-GlcNAcβ-sp3		1529	352	1
531	Neu5Acα2-8Neu5Acα2-3(GalNAcβ1-4)Galβ1- 4Glcβ-sp2	GD2	434	116	0
534	Neu5Acα2-3Galβ1-4GlcNAcβ1-3Galβ1-4GlcNAcβ- sp3		193	58	0
535	Neu5Acα2-8Neu5Acα2-3(GalNAcβ1-4)Galβ1- 4Glc-sp4	GD2	234	61	0
536	Neu5Aα2-3Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ-sp4	LSTa	342	92	0
537	Neu5Aα2-3Galβ1-4GlcNAcβ1-3Galβ1-4Glcβ-sp4	LSTd	202	61	0
538	Galβ1-4(Fucα1-3)GlcNAcβ1-6(Galβ1-3GlcNAcβ1-3)Galβ1-4Glcβ-sp4	MFLNH III	2473	712	3
539	Galβ1-4GlcNAcβ1-6(Fucα1-2Galβ1-3GlcNAcβ1- 3)Galβ1-4Glcβ-sp4	MFLNH I	780	239	0
540	Galβ1-4(Fucα1-3)GlcNAcβ1-6(Neu5Ac2-6Galβ1- 4GlcNAcβ1-3)Galβ1-4Glcβ-sp4	MSMFLNnH	2262	337	3
541	Galβ1-4(Fucα1-3)GlcNAcβ1-6(Fucα1-2Galβ1- 3GlcNAcβ1-3)Galβ1-4Glcβ-sp4	DFLNH (a)	6347	878	7
542	Galβ1-3GlcNAcβ1-3Galβ1-4(Fucα1-3)GlcNAcβ1-6(Galβ1-3GlcNAcβ1-3)Galβ1-4Glcβ-sp4	MF(1-3)iLNO	2867	344	6
543	Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ1-3[Galβ1- 4(Fucα1-3)GlcNAcβ1-6]Galβ1-4Glcβ-sp4	TFLNH	3573	657	6
545	α Kdo-(2→8)- α Kdo-(2→4)- α Kdo-(2→6)- β GlcNAc-(1→6) α GlcNAc-sp11		3329	757	6
625	(GlcAβ1-4GlcNAcβ1-3) ₁₁₋₁₂ -NH ₂ -ol	hyaluronic acid	776	257	1
627	(Sia2-6A-GN-M) ₂ -3,6-M-GN-GN β -sp4	11-OS, YDS	184	54	0
629	Trehalose-ethanolamine	negative control	323	71	0
630	(GlcAβ1-3GlcNAcβ1-4) ₂₀ -NH(<i>p</i> -C ₆ H ₄)CH ₂ CH ₂ NH ₂	hyaluronic acid , 8kDa	921	236	1
631	(GlcAβ1-3GlcNAcβ1-4) ₃₈ -NH(<i>p</i> -C ₆ H ₄)CH ₂ CH ₂ NH ₂	hyaluronic acid, 15- 30kDa	456	174	1
632	(GlcAβ1-3GlcNAcβ1-4) ₁₃ -NH(<i>p</i> -C ₆ H ₄)CH ₂ CH ₂ NH ₂	hyaluronic acid, 4-8kDa	481	109	0
800	GlcNAcα1-4GlcNAcβ-sp3		1697	257	1
801	GalNAcα1-3GalNAc(fur)β-sp3		3988	289	2
802	Galβ1-3GalNAc(fur)β-sp3		51348	2324	20
804	[Galβ1-4GlcNAcβ-OCH2CH2]2NH	LN dimer	908	252	1
805	GalNAcβ1-4(6-O-Bn)GlcNAcβ-sp3		6754	1034	11
806	Galα1-6Glcα-sp3	α-melibiose	5469	949	4

	•	1		1	
807	GlcNAcβ1-4GlcNAcα-sp4		10158	984	8
808	Galα1-6Glcβ-sp3	melibiose	9724	1131	7
809	GalNAcβ1-3GalNAcα-sp3		8521	1509	13
810	GalNGcα1-3GalNAcα-sp3	core 5(Gc)	328	76	0
850	Galβ1-3(6-O-Su)GalNAcα-sp3	6-SuTF	341	102	0
851	Galα1-3(6-O-Su)GalNAcα-sp3	6 -SuT $_{\alpha\alpha}$	267	86	0
852	GlcNAcβ1-4-[HOOC(CH3)CH]-3-O-GlcNAcα-sp4	GlcNAc-Murα	1056	322	1
900	H-(Gly) ₆ -NH ₂ Gly6-amide, linear	Gly ₆ -amide, linear	25036	2262	16
901	biot-CMG ₂ -NH2	biot-CMG ₂	52213	3728	20
902	Peptide, crypted		5630	1228	6
903	Peptide, crypted		2617	897	4
904	Peptide, crypted		6111	1154	12
905	Suc-LPWYRAPK-NH2	RhD	16175	3630	20
906	Peptide, crypted		475	163	0
907	Peptide, crypted		457	93	0
908	Peptide, crypted		6687	2162	13
909	Peptide, crypted		812	166	1
910	Npentyl-Indol-linked-3-NH2 (AcOH salt)		686	168	0
911	N-C5-indazole-3-CONH-PEG-NH2 (AcOH salt)		6037	1212	11

 $sp2 = -O(CH_2)_2NH_2$

 $sp3 = \text{-O}(CH_2)_3NH_2$

 $sp4 = -NHCOCH_2NH_2$

 $sp5 = -O(CH_2)_3NH-CO(CH_2)_5NH_2$

 $sp8 = \text{-}(OCH_2CH_2)_6NH_2$