Journal of Visualized Experiments

Generation of 3D Printed Biological iMolds for Optically Transparent Tissue Specimens --Manuscript Draft--

Article Type:	Methods Article - JoVE Produced Video
Manuscript Number:	JoVE57347R2
Full Title:	Generation of 3D Printed Biological iMolds for Optically Transparent Tissue Specimens
Keywords:	3D Printer, iMolds, Multiphoton Microscopy, Confocal Microscopy, Cleared Tissue, innovative Molds, Astrocytes, Astroglia
Corresponding Author:	jeffrey david rothstein, MD, PhD Johns Hopkins University Baltimore, MD UNITED STATES
Corresponding Author's Institution:	Johns Hopkins University
Corresponding Author E-Mail:	jrothstein@jhmi.edu
First Author:	jeffrey david rothstein, MD, PhD
Other Authors:	Sean J. Miller
Author Comments:	Invitation to submit this by Rachel Service <rachel.service@jove.com></rachel.service@jove.com>
Additional Information:	
Question	Response
If this article needs to be "in-press" by a certain date, please indicate the date below and explain in your cover letter.	

5

1

TITLE:

- 2 Generation of Three-dimensional Printed Biological Innovative Mold for Optically Transparent
- 3 Tissue Specimens
 - **AUTHORS AND AFFILIATIONS:**
- 6 Sean J. Miller^{1,2,3} and Jeffrey D. Rothstein^{1,2,3}
- 7
- 8 ¹Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- 9 ²The Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- 10 ³Cellular & Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD,
- 11 USA

12 13

CORRESPONDING AUTHOR:

14 Jeffrey D. Rothstein (jrothstein@jhmi.edu)

15 16

EMAIL ADDRESS OF CO-AUTHORS:

17 Sean J. Miller (smill150@jhmi.edu)

18

19 **KEYWORDS**:

- 3D Printer, iMolds, Multiphoton Microscopy, Confocal Microscopy, Cleared Tissue, Innovative
- 21 Molds, Astrocytes, Astroglia

2223

24

25

SUMMARY:

- Tissue innovative Molds (iMolds) have been developed to reduce specimen movement, structurally support the specimen being imaged, and allow for repeated imaging on precise
- anatomical locations using optically-transparent samples.

2728

29

30

31 32

33

34

35

36

37

38

39

40

41

42

43

44

ABSTRACT:

Histology continues to evolve in modern day experimentation. Recently, groups have been able to make tissue and bones transparent by removing lipids and other biological species that prevent deep tissue imaging. Now, groups can robustly "clear" the tissue or specimen and perform a wide array of microscopy such as single-photon, multiphoton, and light-sheet to evaluate their biological target of interest. This has eliminated the need to freeze, cyro-slice, and cyro-preserve tissue, greatly limiting human prone error. However, current tissue clearing methods still lack a robust system to mount and structurally support unique specimens. This leads to issues with tissue movement during imaging, the lack of reliability when re-staining and reevaluating specimens, and working with abnormally shaped specimens such as tumors. To overcome these obstacles, the innovative Mold (iMold) was generated. iMolds are first created from images of the specimen followed by three-dimensional (3D) printed molds that support the unique tissue structure being imaged and re-imaged. This leads to a dramatic reduction in tissue movement while imaging and allows for scientists to robustly re-evaluate areas of interest that have been re-stained or need to be re-imaged. Furthermore, iMolds can be created in a short time period and generated for multiple samples in any imaging format (i.e. slide, cell culture plate). This allows users to scan multiple organs or specimens on one slide or cell culture dish. In closing, iMolds can be utilized by any research laboratory studying cleared specimens while also reducing costs, time, and tissue movement compared to other current methodologies.

INTRODUCTION:

Whole tissue clearing methods have recently become a widely-used method in histology. First the tissue and organ are cleared resulting in the specimen becoming optically-transparent, then this is followed by staining and imaging. With these techniques scientists are able to image at high resolution entire organs and thick specimens. In addition, many tissue clearing methodologies allow for repeated staining. This provides users the ability to develop 3D renderings of structural and functional relationships across a large volume of area.

The 3D renderings that are produced have application in many fields of science. For example, scientists can now clear and generate a 3D model of a tumor at cellular and subcellular resolution¹. This allows scientists the ability to study the heterogeneity of cells, create 3D renderings of entire organs to examine cell interactions, vascularization, and environment niches. Furthermore, using systems like this also allows a whole organ evaluation after drug screenings and other therapeutic interventions. The benefits of tissue clearing make it imperative that there is a rapid and reliable method to structurally support any specimen being imaged to the micron level and also provide a method to place multiple organs on one imaging platform, to allow for screening of multiple specimens.

For these reasons, the tissue iMold has been generated². iMolds are made to be utilized by researchers evaluating large tissue specimens that are optically transparent. The iMold restricts all tissue movement during prolonged and repeated imaging. Current methodologies lead to specimen movement during imaging and re-imaging³. In addition, current methods make it near impossible for sequential staining of the same cellular environment, due to relocating precise anatomical locations. These caveats are resolved with the generation of the tissue specific iMolds.

iMolds can be generated by almost all 3D printers and used by any research laboratory. First, they are generated at the micron level with the material of choice, such as PLA plastic. Then the iMold is mounted and can be used for repeated imaging. iMolds also allow the user to image multiple organs on one imaging platform during one imaging session, or repeated sessions. They are inexpensive to generate and reliable to use. The development of the iMold and representative results are detailed in this protocol.

PROTOCOL:

1. Clear the Tissue or Bone Specimens Following Established Clearing Methods

1.1. Follow this protocol or another established tissue-clearing method: for passive CLARITY begin by making hydrogel monomer (HM) solution included of 1% (wt/vol) acrylamide, 0.0125-0.05% (wt/vol) bisacrylamide, 4% paraformaldehyde, 1x PBS, deionized water, and 0.25% of the thermal initiator into a 50-mL tube³.

1.2. Perform a trans-cardial perfusion with HM and incubate the tissue overnight or 2 days at 4 °C with the HM solution in a 50-mL tube³.

91 92

Note: Add enough HM solution to completely incubate the tissue, typically 10-15 mL is sufficient.

93

94 1.3. De-gas the tissue in the 50-mL tube to replace the oxygen with nitrogen, followed by incubation at 37 °C for 3-4 h for hydrogel polymerization.

96 97

98

Note: De-gas following the established protocol³. Remove the oxygen by placing an aspirator into the 50-mL tube. With the aspirator in place, put a line of nitrogen gas directly into the solution, causing it to bubble. Perform this action for 5 min followed by polymerization.

99 100 101

102

103

104

1.4. Clear the tissue in a 37 °C shaking incubator with a buffered clearing solution consisting of 4% (wt/vol) sodium dodecyl sulfate and 0.2 M boric acid (pH 8.5) with solution replacement every one to two days. After this step, wash off the clearing solution with a 0.2 M boric acid buffer (pH 8.5)/0.1% Triton X-100. Typically, 10-15 mL of solution is sufficient, ensure the tissue is completely submerged.

105106

107 1.5. For storage, place specimens in 1X PBS or imaging solution until it is time to image.

108109

2. Generate the Tissue iMold Image File

110

2.1. Place the specimen onto a flat surface (*i.e.* lab bench).

112

113 2.2. Measure the length, width, and thickness of the specimen.

114115

Note: Measuring the samples before clearing the specimen is preferred, as cleared tissue may be challenging to measure due to its transparency. However, measuring after clearing should also be performed, if the user notices tissue structure deformations post-tissue clearing.

117118

116

119 2.3. Take a photo of the specimen with the measurements (e.g. cell phone camera).

120

2.4. Double-click to open a sterolithography (.STL) file creator.

122

123 2.5. Upload the current photo into the software by selecting "file" and select "open".

124

125 2.6. Now with the uploaded image, click and hold to select the image and drag the current
 126 image onto the current z-plane.

127

2.7. Click the image and scroll towards the image corner to shrink or outwards to maximize the image.

130

Note: It is easier for measurements if the user makes the initial imported photo small and then proceed to adjust it after tracing.

2.8. On the toolbar select the "freehand" drawing tool. 2.9. With the freehand tool draw around the region or specimen of interest. Note: Write down the current dimensions to be used to speed up the process of making the current image. 2.10. Click the "pointer" button on the toolbar and select the image that was just traced. 2.11. Press "delete" on the keyboard and delete the original image (now there is a sketch of the specimen). 2.12. Select the "pointer" button on the toolbar and click the original image face. 2.13. Select the "scale" tool in the toolbar. 2.14. Select the specimen image face with the scale tool. Type in the proper width or length into the scale measurement box at the bottom right corner of the screen. 2.15. Repeat the prior step to complete both the width and the length of the specimen. Note: Now there will be an image face file of the exact same dimensions of the specimen being traced and used. 2.16. Click and select a region outside of the specimen face. 2.17. Click and select the "rectangle" tool. 2.18. With the rectangle tool draw a rectangle or square of the size of the slide or plate that is planned to be imaged on. Note: Slides are commonly used and are 25 mm × 75 mm. However, if the imaging platform is designed for cell culture plates, then design based on those measurements. 2.19. Select the "pointer" button on the toolbar and click and select the face of the specimen image. 2.20. Click and select the "move" tool from the toolbar. 2.21. Click the specimen and move the specimen face onto the face of the rectangle (same zplane) by dragging the image.

- Note: Place the specimen in the innermost area of the iMold to allow for the gluing step to be 176 177 performed without mixing of imaging medium and glue. 178 179 2.22. Select the "pointer" button on the toolbar and re-select the specimen face. 180 2.23. Press "delete" on the keyboard to remove the specimen face. 181 182 183 Note: Now the rectangle will have an empty space for where the specimen will be placed. 184 185 2.24. In the toolbar select the "push/pull" tool. 186 2.25. Click and select the rectangle face with the specimen area previously deleted. 187 188 189 2.26. In the button left hand corner type in the measurement to be the thickness of the 190 rectangle (i.e. the thickness of the tissue). 191 192 Note: Now there will be a rectangle the size of a slide or cell culture plate to be imaged with a 193 missing place for the specimen to be placed within. However, it is suggested to add 0.5 mm to 194 each side of the specimen to allow for imaging media to be placed with the specimen, but this is 195 not required. 196 197 2.27. In the "file" tab select the file and export it as a .STL. 198 199 **Printing the .STL file iMold** 200 201 Open the saved .STL file in the 3D printer software. Go to the "file" tab and select "open". 3.1. 202 203 3.2. Select "print" from library on the button of the screen. 204 205 3.3. Select the .STL file. 206 207 3.4. Print the file at optimal resolution (i.e. 150 μM) with the highest quality setting. 208 209 Note: It typically takes between 1-4 h depending on the specimen and imaging platform. PLA is 210 commonly used for its flexibility but other plastics such as ABS also work for iMold generation. 211 3D printers with heated stages are preferred for improved printing results. 212 213 4. Using the .STL iMold 214
- 4.2. Place a few lines of super glue around the specimen area.

Place the printed iMold on the working lab bench.

215

216

4.1.

Note: Glue the outermost area of the iMold to avoid mixing of superglue with the specimen. In addition, using superglue that can be purchased in a pen style to allow a finer width to be applied.

221222

4.3. Place coverglass onto the superglue.

223

Note: Allow sufficient time for the glue to dry, if using an upright microscope then super glue must be applied to both sides with coverglass once the specimen and liquid has been placed in the iMold.

227

228 4.4. Place the specimen into the iMold.

229

4.5. Add the appropriate amount of liquid of clearing solution to fill the chamber of the iMold but do not add excess as this will mix with the superglue.

232

Note: The clearing solution refractive index should match the refractive index of the objective being used to image for optimal imaging results.

235

236 4.6. Proceed to imaging (step 5).

237238

Note: If re-staining, remove the specimen, clear the prior antibodies following the previously established protocols, re-stain, and replace the specimen into the iMold and re-image. If the iMold becomes structurally altered, then re-print a new iMold from the saved .STL file.

240241242

239

5. Imaging the iMold

243244

245

5.1. Place the tissue iMold into the appropriate microscope (*i.e.* single-photon confocal or multi-photon) platform (*i.e.* plate holder, slide holder). Add imaging solution until the entire iMold chamber is filled, typically less than 200 µL is needed.

246247248

5.2. Find the location of interest and image using the ideal microscope settings.

249

Note: Imaging using the z-stack tile allows for a large area to be imaged through multiple z-planes. In addition, ensure proper controls when using new antibodies.

252253

REPRESENTATIVE RESULTS:

The benefits of this method, in combination with tissue clearing methods is the ability to control movement of tissue to avoid shifting during long term imaging and/or the re-staining of tissue. Therefore, it is critical that the user designs a properly fitted iMold, have proper tissue-clearing, and have the validation of the immunofluorescent target (*i.e.* RNA, Protein). Other methods include using putty or iSpacers to maintain the tissue, however this leads to the issues previously discussed (*i.e.* tissue movement, relocation of targets of interest in the specimen).

260

For this experiment, the brain was used from the BAC-Glt1-eGFP mouse model, which labels all grey-matter astroglia with eGFP (**Figure 1A**). The eGFP reporter is strongly expressed throughout

all astroglia soma and major astroglial processes and with minor eGFP-fluorescence distributed on the minor processes in the neuropil⁴. To achieve detailed images of these minor processes would require the usage of higher magnified objectives during imaging, and have been previously shown with super resolution⁵. **Supplemental Figure 1** illustrates taking a specimen and designing an iMold for imaging.

After clearing a thick coronal section of the brain, the mouse cerebral cortex was imaged using single photon with 40x objective and numerical aperture of 0.8 (**Figure 1B**, **1C**, **Movie 1**). Imaging results display highly abundant astroglia distribution throughout the entire cortical column imaged (**Figure 1B**, **1C**). Next, using prior published method that allows users to transform fluorescence signal into voxels. Each voxel represents a cell body. Using this method, the software calculated a total of 463 astroglia in the 0.9-mm tall section (**Figure 1B**)⁵.

Next, astroglia are known to physical connect with other astroglia⁶. In support of this, representative images found astroglia in direct connection with neighboring astroglia (**Figure 2A**). Furthermore, astroglia are highly important in the maintenance of the blood-brain-barrier and extend major processes that connect with the cerebral arteries, known as endfeet⁷. Using the same microscopy parameters as before, it is shown that astroglia are harnessing a cerebral artery around 500 μ m deep (**Figure 2B, 2C**).

Studies of the central nervous system using tissue clearing methods are continuing to advance the understanding of cellular and molecular biology. With the current study, it is shown that astroglia can be automatically counted using iMolds and can be imaged during an extended time period without movement. Furthermore, it is shown that a cellular interface between astroglia with other astroglia and cerebral arteries can be imaged and investigated with this methodology. Lastly, the representative data show that minor processes in neuropil can also be imaged with the eGFP signal, as it can be seen distributed throughout the neuropil, appearing as fragmented eGFP-fluorescence (Movie 1, Figure 2A-2C).

FIGURE AND MOVIE LEGENDS:

Figure 1: Z-stack section of the entire volume imaged displaying the abundance of astroglia. (A) iMold with coronal section. (B) Each astroglia was replaced as a cylindrical voxel and computationally counted. (C) the tissue section imaged with single-photon microscopy top view.

Figure 2: Cellular interactions of astroglia in the cerebral cortex. (A) z-slice image of astroglia physically connecting. (B) z-slice image of astroglia harnessing a cerebral artery. (C) End-foot processes on a cerebral artery of Glt1-eGFP positive astroglia. Arrows represent arrows of contact. Red dots represent an astroglia soma. Images were taken around 500 μ m deep.

Movie 1: Imaging processing through each z-slice. A video of one imaging session of an entire section of mouse cerebral cortex from pia to corpus callosum.

Supplemental Figure 1: iMold generation for a specimen, measurements, computational modeling of the iMold, and result of 3D printing the iMold for imaging. Modified from Miller S.J. and Rothstein J.D.²

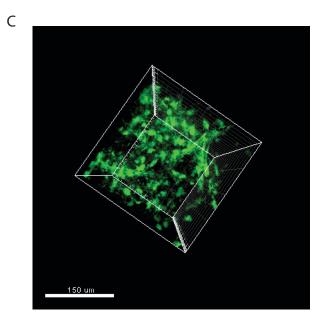
DISCUSSION:

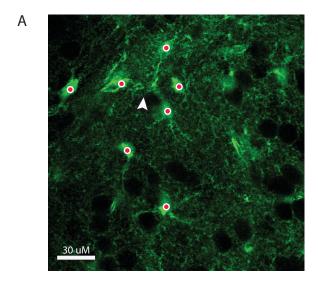
Optical clearing methods are continuing to increase the understanding of environmental niches and cellular heterogeneity. The tissue is maintained and stored in a hydrogel complex that allows biomacromolecules to permeate the matrix. This allows for groups to study immunofluorescence of proteins and nucleic acids either by endogenous fluorescence or post-hoc labeling, across large volumes of tissue.

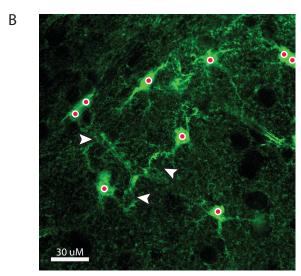
However, a major caveat in the system comes when attempting to image the tissue. In current methods, the tissue is placed onto a slide and surrounded by an adhesive material such as putty. Then the tissue is imaged and removed. Next time the user images, they have to generate a new putty structure to maintain the tissue, leaving large gaps between each imaging session³. Another caveat is that during long imaging sessions the tissue is likely to move, due to being imaged in a semi-aqueous optical solution. These are variables that make CLARITY and other tissue clearing methods challenging to re-image and generate additional 3D renderings on the same cellular microenvironment.

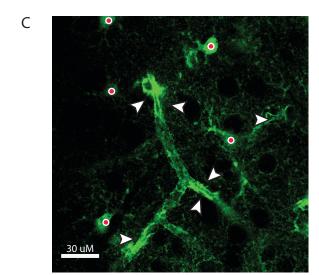
With the generation of the iMold, users can stop movement of the tissue being imaged by using an optical slide or plate which is 3D printed and allow for re-imaging of the same environment with the same parameters as the original imaging session. This allows for groups to essentially, setup their imaging parameters and walk away from the system while it images. This can be done by combining multiple organs or tissue onto one slide or plate. This allows screening of multiple organs much easier.

Additionally, iMolds do allow for storage of the tissue or specimen. Please note that each iMold will vary slightly based on gluing for how long tissue can be kept inside before leaking. iMolds have lasted for months in the same iMold for storage but note that the medium must be changed every week to preserve tissue integrity. In addition, when imaging tissue or specimens that are not flat on the glass surface, simply adjust your z-plane until you acquire fluorescent signal then proceed with z-stack tiling.


In the future, iMolds can be used to study tissue in all fields of medicine and biology. In tumor studies, groups can reconstruct the entire tumor with multiple stainings to generate a true 3D picture of the cellular and subcellular environment. For neuroscience, the entire central nervous system can be imaged and reconstructed, evaluating neural circuitry and cellular and subcellular changes. An additional approach is investigating bone, which can be cleared as previously shown, to be able to study metastasized cancer cells or microenvironments. The usage of using tissue clearing methods with iMolds is endless and will provide scientists with the ability to quickly evaluate their tissue of interest thoroughly without being concerned about movement or reimaging or being unable to identify exact anatomical locations. For these reasons, the iMold


provides a perfect, affordable, user-friendly approach to use in combination with tissue clearing methodologies.


351 **REFERENCES**:


350

- Lagerweij, T., et al. Optical clearing and fluorescence deep-tissue imaging for 3D quantitative analysis of the brain tumor microenvironment. *Angiogenesis* **20**, 533-546 (2017).
- 355 2. Miller, S.J. & Rothstein, J.D. 3D Printer Generated Tissue iMolds for Cleared Tissue Using Single- and Multi-Photon Microscopy for Deep Tissue Evaluation. *Biol Proced Online* **19**, 7 (2017).
- 358 3. Tomer, R., Ye, L., Hsueh, B. & Deisseroth, K. Advanced CLARITY for rapid and highresolution imaging of intact tissues. *Nat Protoc* **9**, 1682-1697 (2014).
- 4. Yang, Y., et al. Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. *Glia* **59**, 200-207 (2011).
- Miller, S.J. & Rothstein, J.D. Astroglia in Thick Tissue with Super Resolution and Cellular
 Reconstruction. *PLoS One* 11, e0160391 (2016).
- Theis, M. & Giaume, C. Connexin-based intercellular communication and astrocyte heterogeneity. *Brain Res* **1487**, 88-98 (2012).
- Cabezas, R., et al. Astrocytic modulation of blood brain barrier: perspectives on
 Parkinson's disease. Front Cell Neurosci 8, 211 (2014).

Animated Figure (video and/or .ai figure files)

Click here to access/download

Animated Figure (video and/or .ai figure files)

iMold JoVE Movie 1.wmv

Name of Reagent/ Equipment	Company	Catalog Number	Comments/Description
Acrylamide	Sigma	A9099	
bisacrylamide	VWR	0172-50G	
	Electron		
	Microscopy		
paraformaldehyde	Sciences	15714-S	
	Quality		
PBS	Biological	119-069-131	
thermal initiator	Wako Chemica	ls VA-044	
sodium dodecyl sulfate	Bio-Rad	161-0302	
boric acid	Sigma	B-7660	
Triton X-100	Sigma	X100	
focus clear	CEDARLANE	F101-KIT	
Google Sketchup			
Camera			we used an iPhone 7 camera
3D Printer	M3D	Micro +	
PLA plastic roll for 3D Printer	M3D	3D Ink	no catalog number listed, we use black PLA filament

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Generation of 3D Printed Biological IMolds for Optically Transparent Specimens
Author(s):	Sean J. Miller, Jeffrey D. Rothstein
·	box): The Author elects to have the Materials be made available (as described at ove.com/author) via: Standard Access Open Access
Item 2 (check one box	x):
The Autl	or is NOT a United States government employee. nor is a United States government employee and the Materials were prepared in the or her duties as a United States government employee.
	or is a United States government employee but the Materials were NOT prepared in the or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts. Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. <u>Grant of Rights in Video Standard Access</u>. This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. <u>Government Employees.</u> If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. <u>JoVE Discretion</u>. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law</u>. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDING AUTHOR:

Name:	Jeffrey D. Rothstein				
Department:	Neurology				
Institution:	Johns Hopkins University School of Medicine				
Article Title:	Generation of 3D Printed Biological iMolds for Optically Transparent Specimens				
Signature:	Date: 09/16/2017				

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- 2) Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

Dear Dr. Alaghemandi,

Thank you for your editorial comments, we have now modified the original article and addressed your concerns, listed in bold lettering. Please let us know if there is anything you need from our behalf.

Very Best,

Sean and Jeff

Dear Dr. Rothstein,

Your manuscript JoVE57347R1 "Generation of 3D Printed Biological iMolds for Optically Transparent Tissue Specimens" has been again editorially reviewed and the following comments need to be addressed. Please track the changes to identify all of the manuscript edits. After revising the submission, please also upload a separate document that addresses each of the editorial comments individually with the revised manuscript.

Your revision is due by Jan 11, 2018.

To submit a revision, go to the <u>JoVE submission site</u> and log in as an author. You will find your submission under the heading "Submission Needing Revision".

Best,

Mohammad Alaghemandi, Ph.D. Review Editor JoVE 617.674.1888

Follow us: <u>Facebook</u> | <u>Twitter</u> | <u>LinkedIn</u>

About JoVE

Editorial comments:

1. The manuscript has been modified. Please read it carefully and revise if necessary. Enclosed please find the top copy. Please apply your changes on the top copy. Please do not change the current format/font.

We have modified the manuscript to address your concerns and kept the formatting the same.

2. Please avoid using any abbreviation in the Title.

We have now changed the total to remove the abbreviation, thank you.

- 3. Please revise the Introduction to include all of the following:
- a) A clear statement of the overall goal of this method
- b) The rationale behind the development and/or use of this technique
- c) The advantages over alternative techniques with applicable references to previous studies
- d) A description of the context of the technique in the wider body of literature
- e) Information to help readers to determine whether the method is appropriate for their application

Thank you for allowing us to improve the introduction. We have now modified it to address the concerns by including additional sentences and paragraph.

4. Please ensure that all text in the protocol section is written in the imperative tense as if telling someone how to do the technique (e.g., "Do this," "Ensure that," etc.).

We thoroughly went through the manuscript to ensure everything is in the imperative tense.

5. Please ensure you answer the "how" question, i.e., how is the step performed? Alternatively, add references to published material specifying how to perform the protocol action.

We have added the "how" question and also added additional references for the users to be able to refer to.

6. For steps that involve software, please make sure to provide all the details such as "click this", "select that", "observe this", etc. Please mention all the steps that are necessary to execute the action item. Please provide details so a reader may replicate your analysis including buttons clicked, inputs, screenshots, etc. This is the level of detail we're looking for. Please keep in mind that software steps without a graphical user interface cannot be filmed.

We have highlighted all buttons to be clicked in bold with quotations to allow users to easily identify what buttons to be clicked. In addition, the software has a nice user interface that we plan to film.

7. Protocol: 1.1: Please use the imperative tense for all the sentences of the protocol steps.

We have addressed this, thank you.

8. Protocol: 1.2: How much of the solution is roughly enough?

We have added the information to address how much liquid is often used.

9. Protocol: 1.3: "De-gas" how? Using what? Please clearly describe the actions.

We have added a reference that explains thoroughly how to do this, in addition we have added more information.

10. Protocol: 1.4: How much solution is needed for clearing or washing?

We have added how much solution is roughly needed for both clearing and washing of the tissue. In addition, we have provided an additional reference.

11. Protocol: 1.5: How is that done?

We have added more detail to explain how this is performed.

12. Protocol: 2.4: "Open" where? How? Please include all the buttons clicked in the software.

We have added all the information needed to now know what buttons to click, these buttons are now highlighted in bold with quotations.

13. Protocol: 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22, 2.23, 2.26, 2.28, 3.31: How is that done? Please include all the buttons clicked in the software, and all the setting selected.

We have added all the information needed to now know what buttons to click, these buttons are now highlighted in bold with quotations.

14. Protocol: 5.2: Note 2: Please move the second Note to the Discussion.

We have now added this note to the discussion part of the manuscript.

15. After revising the protocol, please highlight 2.75 pages or less of the Protocol (including headings and spacing) that identifies the essential steps of the protocol for the video, i.e., the steps that should be visualized to tell the most cohesive story of the Protocol. Remember that non-highlighted Protocol steps will remain in the manuscript, and therefore will still be available to the reader.

We have highlighted roughly 2.5 pages for filming that we believe are essential components for the users to know how to perform to complete this protocol.

16. Please include all relevant details that are required to perform the step in the highlighting. For example: If step 2.5 is highlighted for filming and the details of how to perform the step are given in steps 2.5.1 and 2.5.2, then the sub-steps where the details are provided must be highlighted.

We have highlighted the sub sections in addition to the steps.

17. Please avoid numbering Figures inside them, e.g., please remove "Figure 1" from Figure 1.

Thank you, we have removed this from the figure.

18. Figure 1: Panels (B) and (C): Please use SI units, please use "μm" instead of "um".

Thank you, we have revised the figure.

19. Figure 2: Please use SI units, please use "μm" instead of "uM".

Thank you we have revised the figure.

Permission to re-print supplemental figure 1: https://creativecommons.org/licenses/by/4.0/

This is a human-readable summary of (and not a substitute for) the license. Disclaimer.

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material

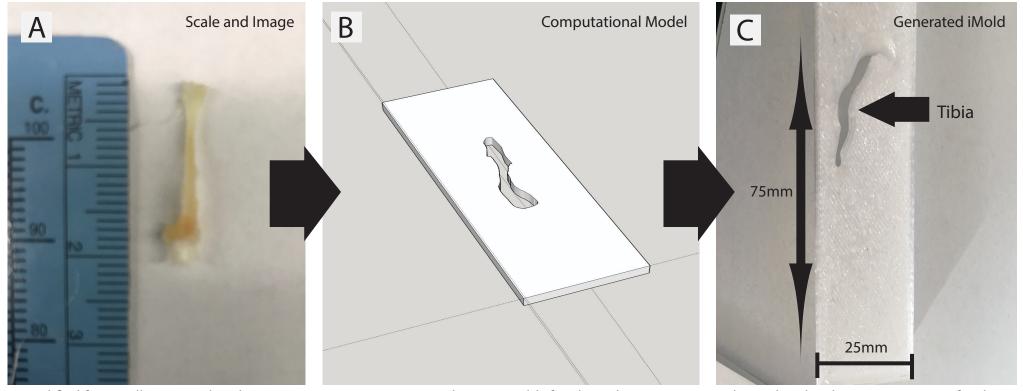
for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

 No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.


Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

Learn more about CC licensing, or use the license for your own material.

Supplemental Figure 1

modified from Miller S.J., and Rothstein. J.D. 3D printer generated tissue iMolds for cleared tissue using single- and multi-photon microscopy for deep tissue evaluation. Biol Proced Online, 2017. doi: 10.1186/s12575-017-0057-2.