Journal of Visualized Experiments

Genetic and Biochemical Approaches for in vivo and in vitro Assessment of Protein Oligomerization: the Ryanodine Receptor Case Study --Manuscript Draft--

Manuscript Number:	JoVE54271R2	
Full Title:	Genetic and Biochemical Approaches for in vivo and in vitro Assessment of Protein Oligomerization: the Ryanodine Receptor Case Study	
Article Type:	Invited Methods Article - JoVE Produced Video	
Keywords:	chemical cross-linking; co-immnoprecipitation; mammalian cell transfection; oligomerization; ryanodine receptor; self-association; yeast two-hybrid	
Manuscript Classifications:	4.12.776.157.530: Membrane Transport Proteins; 4.12.776.210.500.800: Ryanodine Receptor Calcium Release Channel; 7.2.111.87.800.800.100: Calcium Signaling; 7.4.299.880.199: Excitation Contraction Coupling; 8.1.158.201: Biochemistry	
Corresponding Author:	Spyros Zissimopoulos Cardiff University Cardiff, Wales UNITED KINGDOM	
Corresponding Author Secondary Information:		
Corresponding Author E-Mail:	ZissimopoulosS@cardiff.ac.uk	
Corresponding Author's Institution:	Cardiff University	
Corresponding Author's Secondary Institution:		
First Author:	Paulina J. Stanczyk	
First Author Secondary Information:		
Other Authors:	Paulina J. Stanczyk	
	F. Anthony Lai	
Order of Authors Secondary Information:		
Abstract:	Oligomerization is often a structural requirement for proteins to accomplish their specific cellular function. For instance, tetramerization of the ryanodine receptor (RyR) is necessary for the formation of a functional Ca2+ release channel pore. Here, we describe detailed protocols for the assessment of protein self-association including yeast two-hybrid (Y2H), co-immunoprecipitation (co-IP) and chemical cross-linking assays. In the Y2H system, protein self-interaction is detected by β -galactosidase assay in yeast co-expressing GAL4 bait and target fusions of the test protein. Protein self-interaction is further assessed by co-IP using HA- and cMyc-tagged fusions of the test protein co-expressed in mammalian HEK293 cells. The precise stoichiometry of the protein homo-oligomer is examined by cross-linking and SDS-PAGE analysis following expression in HEK293 cells. Using these different but complementary techniques, we have consistently observed the self-association of the RyR N-terminal domain and demonstrated its intrinsic ability to form tetramers. These methods can be applied to protein-protein interaction and homo-oligomerization studies of other mammalian integral membrane proteins.	
Author Comments:		
Additional Information:		
Question	Response	
If this article needs to be "in-press" by a certain date to satisfy grant requirements, please indicate the date below and explain in your cover letter.		

Dear Editor,

we wish to submit the enclosed manuscript entitled "Genetic and Biochemical Approaches for *in vivo* and *in vitro* Assessment of Protein Oligomerization: the Ryanodine Receptor Case Study" for consideration for publication in the Journal of Visualized Experiments. Our manuscript submission follows an initial invitation by Alexandria Kury, past JoVE editor, and the subsequent assistance of current JoVE editor, Malani Sundaram.

Our manuscript contains detailed protocols, tips and troubleshooting for the use of three different but complementary experimental techniques for the study of protein homo-oligomerization, a fundamental biological process that regulates the activity of transcription factors, enzymes, ion channels and receptors. We believe that the Journal of Visualized Experiments is the ideal platform to present these methodologies because it combines descriptive text with video presentation. This will enable other researchers to confidently and successfully apply these experimental procedures in their own field.

We look forward to receiving your comments on the suitability of this manuscript for publication in the Journal of Visualized Experiments.

Sincerely,

Spyros Zissimopoulos et al.

TITLE:

Genetic and Biochemical Approaches for *in vivo* and *in vitro* Assessment of Protein Oligomerization: the Ryanodine Receptor Case Study

AUTHORS:

Stanczyk, Paulina J., Lai, F. Anthony, Zissimopoulos, Spyros

AUTHOR AFFILIATION:

Stanczyk, Paulina J., Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK StanczykPJ@cardiff.ac.uk

Lai, F. Anthony
Wales Heart Research Institute,
Cardiff University School of Medicine,
Cardiff CF14 4XN, UK
LaiT@cardiff.ac.uk

Zissimopoulos, Spyros Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK Email: <u>ZissimopoulosS@cardiff.ac.uk</u> Tel: +44 2920744519

Tel: +44 2920744519 Fax: +44 2920743500

CORRESPONDING AUTHOR:

Zissimopoulos, Spyros Wales Heart Research Institute, Cardiff University School of Medicine, Cardiff CF14 4XN, UK Email: ZissimopoulosS@cardiff.ac.uk

Tel: +44 2920744519 Fax: +44 2920743500

KEYWORDS:

chemical cross-linking, co-immnoprecipitation, mammalian cell transfection, oligomerization, ryanodine receptor, self-association, yeast two-hybrid

SHORT ABSTRACT:

Oligomerization of the ryanodine receptor, a homo-tetrameric ion channel mediating Ca²⁺ release from intracellular stores, is critical for skeletal and cardiac muscle contraction. Here, we present complementary *in vivo* and *in vitro* methods to detect protein self-association and determine homo-oligomer stoichiometry.

LONG ABSTRACT:

Oligomerization is often a structural requirement for proteins to accomplish their specific cellular function. For instance, tetramerization of the ryanodine receptor (RyR) is necessary

for the formation of a functional Ca^{2+} release channel pore. Here, we describe detailed protocols for the assessment of protein self-association, including yeast two-hybrid (Y2H), co-immunoprecipitation (co-IP) and chemical cross-linking assays. In the Y2H system, protein self-interaction is detected by β -galactosidase assay in yeast co-expressing GAL4 bait and target fusions of the test protein. Protein self-interaction is further assessed by co-IP using HA- and cMyc-tagged fusions of the test protein co-expressed in mammalian HEK293 cells. The precise stoichiometry of the protein homo-oligomer is examined by cross-linking and SDS-PAGE analysis following expression in HEK293 cells. Using these different but complementary techniques, we have consistently observed the self-association of the RyR N-terminal domain and demonstrated its intrinsic ability to form tetramers. These methods can be applied to protein-protein interaction and homo-oligomerization studies of other mammalian integral membrane proteins.

INTRODUCTION:

Skeletal and cardiac muscle contraction is triggered by sarcoplasmic reticulum Ca²⁺ release mediated by RyR. There are three mammalian RyR isoforms with the functional channel composed of four identical subunits. Each RyR subunit consists of a large cytoplasmic regulatory N-terminal portion and a small C-terminal part containing the transmembrane domains that form a high-conductance Ca²⁺ pore. Abnormal intra- and inter-subunit interactions underlie RyR channel dysfunction and result in neuromuscular and cardiac disorders¹. The identification and characterization of specific domains involved in RyR structure:function relationship is therefore crucial for the understanding of RyR pathophysiology.

Traditional biochemical protein-protein interaction techniques require substantial quantities of purified protein, often produced in bacteria. This is not feasible in the case of the RyR, a very large membrane protein composed of ~5000 amino acids, whereas its recombinant fragments are not easily amenable to bacterial expression and purification. Thus, alternative expression systems involving eukaryotic host cells are required for mammalian integral membrane proteins. We have previously employed Y2H, co-IP and cross-linking assays to collectively demonstrate that N-terminus tetramerization is a structural feature that is conserved across the three mammalian RyR isoforms^{2,3}. Importantly, he have found that a single point mutation associated with arrhythmogenic cardiac disease disrupts N-terminus self-association and results in a dysfunctional RyR channel⁴. We have also applied these techniques to oligomerization studies of the RyR cytoplasmic C-terminal tail⁵ as well as the N-terminus of the homologous intracellular Ca²⁺ release channel, the inositol 1,4,5 trisphosphate receptor².

In the Y2H assay, the interaction between two proteins (X and Y) is measured by the reconstitution of a functional transcription factor (GAL4) and the ensuing activation of reporter genes⁶⁻⁹. Two different cloning vectors are used to generate fusions of the two tested proteins with the two physically separable, independent domains of GAL4: DNA-Binding Domain (DNA-BD)/protein X fusion (bait) and Activation Domain (AD)/protein Y fusion (target). The Y2H can be used to test whether a protein interacts with itself by generating GAL4 DNA-BD and AD fusions of the same protein. Genetically modified Y2H strains are *GAL4* and *GAL80* deficient (the GAL80 protein is a repressor of GAL4), as well as *TRP1* and *LEU2* deficient (to provide nutritional selection for bait and prey plasmids, respectively). In the yeast nucleus, the recombinant DNA-BD and AD peptides are brought into close physical proximity to produce a hybrid GAL4 transcription factor only through their fusions' X:Y interaction. This approach enables rapid genetic screening to detect protein-protein

interactions through the parallel transcriptional activation of prototrophic (*HIS3* encoding for an enzyme necessary for histidine biosynthesis) and chromogenic (*LacZ* encoding for β -galactosidase (β -Gal)) reporter genes. The main advantage of the Y2H is that it is an *in vivo* assay that detects even weak or transient protein-protein interactions. Moreover, detection involves the simple use of growth selection (in media lacking histidine) or of a colorimetric (β -Gal) assay with no need for purification of the bait and target proteins or the generation of specific antibodies. Additionally, the Y2H can be used to screen a collection of random unknown clones (cDNA library clones fused to GAL4 AD) for novel binding partners of a bait protein, also giving direct access to the cDNA of the library protein.

To extend the Y2H observations, independent biochemical techniques can be employed. Co-IP and cross-linking assays combined with immunoblotting are methods used to detect protein associations in complex sample mixtures, e.g. whole cell lysates¹⁰. Their main advantage is that they report on protein-protein interactions from native tissue, unlike other methods that require the use of recombinant proteins. Recombinant proteins can also be used, typically expressed in a mammalian cell line, where they are likely to have their correct conformation and post-translational modifications, as well as subcellular localization. However, since co-IP and cross-linking are *in vitro* assays making use of homogenized cells, it is necessary to confirm whether the two protein partners are co-localized in the intact cell¹¹. We routinely use transfection of mammalian HEK293 cells to transiently express mammalian integral membrane and cytosolic proteins using the calcium phosphate precipitation method^{2-4,12-14}, described here in detail. This is an inexpensive way to efficiently deliver the plasmid DNA inside cells but it is dependent on the particular cell line used and cell confluence, as well as the purity of the plasmid DNA^{11,15}.

The co-IP assay involves the isolation of the native or recombinant protein of interest from cell lysates under non-denaturing conditions enabling the co-purification of putative interaction partners ^{10,16}. It requires the use of two independent antibodies, the immunoprecipitating antibody for isolation of protein X, and the immunoblotting antibody for detection of protein partner Y. It can be used to test whether a protein interacts with itself by generating two different fusions with two different epitope tags (e.g. HA and cMyc). The immunoprecipitating antibody is bound through its Fc region on Protein-A (or Protein-G, depending on the animal species where the antibody was raised), which is conjugated to agarose (or sepharose) resin. Protein X is precipitated by the antibody:Protein-A resin following incubation with the cell lysate, namely the detergent-soluble fraction of homogenized cells. Protein immuno-complexes are eluted with SDS-containing buffer and subsequently analyzed by SDS-PAGE and immunoblotting using an antibody to detect the presence of protein Y¹⁷. Co-IP should be carried out with detergent-soluble proteins to avoid excessive non-specific binding. The choice of detergent and its concentration, as well as the number of washes, should be optimized for each X:Y pair ^{10,16,18}.

Cross-linking is employed to determine the stoichiometry of the oligomeric protein complex. It is based on a chemical reaction to create covalent bonds between adjacent interacting protomers, and therefore, it enables preservation of the protein's oligomeric status during SDS-PAGE separation. There are numerous cross-linking reagents of various lengths and chemistry targeting different reactive groups on proteins, typically primary amines, carboxylic or thiol groups. Here, we describe the use of glutaraldehyde (OHC(CH₂)₃CHO), an homo-bi-functional cross-linker with two aldehyde groups on either end that react with free amino groups present in lysine residues^{19,20}. Cross-linking is followed in a concentration-or time-dependent manner resulting in adduct formation. Glutaraldehyde reaction is stopped

with hydrazine (H₂NNH₂) and protein samples are then analyzed by SDS-PAGE and immunoblotting¹⁷ to evaluate their oligomerization state. We should note that cross-linking does not induce oligomerization but merely creates stable bridges between pre-existing protein complexes. Important considerations when carrying out cross-linking experiments include the choice of cross-linker, its concentration and reaction time^{19,20}.

PROTOCOL:

1. Yeast two-hybrid

- 1.1) Yeast transformation
- 1.1.1) Prepare the following media and buffers:
- 1.1.1.1) Prepare yeast complete yeast extract-peptone-dextrose (YPD) medium by mixing 20 g/L peptone, 10 g/L yeast extract, 2% w/v glucose (added after autoclaving) and 20 g/L agar (for plates only); sterilize by autoclaving and use fresh on the day of the experiment.
- 1.1.1.2) Prepare yeast minimal synthetic defined (SD) medium (lacking leucine and tryptophan to keep selective pressure on both bait and target plasmids) by mixing 6.7 g/L of Yeast Nitrogen Base, 1.6 g/L Dropout supplement lacking leucine and tryptophan, 2% w/v glucose (added after autoclaving) and 20 g/L agar (for plates only); sterilize by autoclaving and use fresh on the day of the experiment.
- 1.1.13) Prepare 50% w/v PEG (polyethylene glycol) 3350; sterilize through a 0.2 μ m filter and store at room temperature. Prepare 100 mM Tris/10 mM EDTA (10x TE), adjust the pH to 7.5, sterilize through a 0.2 μ m filter and store at room temperature.
- 1.1.1.4) Prepare 1 M lithium acetate (10x LiAc); adjust the pH to 7.5 with CH₃COOH, sterilize through a $0.2~\mu m$ filter and store at room temperature.
- 1.1.2) Revive the Y2H strain (e.g. Y190) by streaking a small amount of the frozen glycerol stock onto a YPD plate. Incubate at 30°C until yeast colonies reach ~2 mm in diameter (usually 3-5 days, depending on the yeast strain).
- 1.1.3) Inoculate 0.5 ml of YPD (in a 1.5 ml tube) with a single, large (2-3 mm in diameter) colony. Vortex vigorously for ~2 min to disperse any clumps.
- 1.1.4) Transfer cell suspension into a 500 ml flask containing 50 ml YPD medium. Incubate at 30°C for 16-18 hr with shaking at 250 rpm for yeast to reach stationary phase.
- 1.1.5) Transfer 4-5 ml of the overnight culture into 200 ml of YPD (in a 1 L conical flask) to produce an optical density at 600 nm (OD_{600} , measured using a spectrophotometer) of 0.2-0.3 (200 ml will be enough for 20 transformations).
- 1.1.6) Incubate at 30°C with shaking at 250 rpm until cells are in mid-log phase, i.e. $OD_{600} = 0.5-0.6$ (usually 2-3 hr).
- 1.1.7) Harvest yeast by centrifugation (in 50 ml tubes) at 1,500 x g for 5 min at room temperature. Discard the supernatant, resuspend each pellet in 5 ml of sterile H_2O and pool together.
- 1.1.8) Re-centrifuge at 1,500 x g for 5 min at room temperature and discard the supernatant. Resuspend yeast pellet in 1 ml of freshly prepared, sterile 1x LiAc/TE. NOTE: Use

competent yeast cells within 1 hr of preparation.

1.1.9) Prepare plasmid samples (in 1.5 ml tubes) by adding 200 ng of plasmid DNA for single transformations, or 0.5-1 µg of each plasmid DNA for co-transformations, and 100 µg of herring testes carrier DNA (boiled for 20 min and cooled on ice just prior to use).

NOTE: Include a positive control, e.g. yeast co-transformed with pVA3 (encoding for GAL4 DNA-BD fusion with p53 protein) and pTD1 (encoding for GAL4 AD fusion with SV40 large T antigen).

- 1.1.10) Add 100 µl of the freshly prepared, competent yeast suspension (step 1.1.8) and 600 µl of 1x LiAc/PEG solution (8 ml of stock PEG 3350, 1 ml of stock TE, 1 ml of stock LiAc), and vortex for ~30 sec. Incubate at 30°C for 30 min with shaking at 200 rpm.
- 1.1.11) Add 80 µl of dimethyl sulfoxide (10% v/v final concentration) and mix well by gentle inversion. Heat shock for 15 min in a 42°C water bath while mixing every 2-3 min.
- 1.1.12) Chill cell suspension on ice for 2 min and centrifuge at 14,000 x g for 15 sec at room temperature to recover yeast.
- 1.1.13) Resuspend cell pellet in 100 µl of 1x TE and plate on appropriate minimal SD medium plates for selective growth (medium lacking leucine and tryptophan to keep selective pressure on both bait and target plasmids).
- 1.1.14) Incubate plates up-side-down at 30°C until colonies are ~2 mm in diameter (usually 4-5 days). Plates can be stored at 4°C for 2-3 weeks; for longer storage make glycerol stocks and store at -80°C.

NOTE: Verify that bait and target proteins are expressed in yeast by immunoblotting 17 , and that they do not have autonomous reporter gene activation when separately expressed in yeast (by β -Gal assay as described in Section 1.3).

1.2) Colony-lift filter paper β-Gal assay

- 1.2.1) Prepare the following buffers:
- 1.2.1.1) Prepare Z buffer containing 100 mM Na₂HPO₄, 40 mM NaH₂PO₄, 10 mM KCl, 1 mM MgSO₄; adjust the pH to 7.4. Sterilize by autoclaving and store at room temperature.
- 1.2.1.2) Prepare X-Gal buffer by dissolving 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside at 20 mg/ml in N,N-dimethylformamide and store in the dark at -20°C. Prepare Z buffer/X-Gal solution. Make buffer prior to use by mixing X-Gal at 0.33 mg/ml and β -mercaptoethanol at 0.27% v/v in Z buffer. Use 2.5 ml per sample.
- 1.2.2) Add 2.5 ml of freshly prepared Z buffer/X-Gal solution in a clean 100 mm plate and place inside a cellulose filter paper.
- 1.2.3) Place a new filter paper over the surface of the plate with the yeast colonies to be assayed. Gently rub the filter paper onto the plate with forceps and let for ~5 min for colonies to attach.

NOTE: Process the positive control in parallel, i.e. yeast co-transformed with pVA3 and

pTD1.

- 1.2.4) Lift the filter paper and submerge it (with forceps) into a pool of liquid nitrogen for 30 sec (liquid nitrogen should be handled with care; always wear thick gloves and goggles). Let the frozen filter paper thaw at room temperature for ~2 min.
- 1.2.5) Place the filter paper (colony side up) on top of the pre-soaked filter paper inside the 100 mm plate, and incubate at 30°C.
- 1.2.6) Check periodically (every ~30 min) for the appearance of blue colonies. Yeast Y190 co-transformed with the positive control plasmids (pVA3 + pTD1) will turn blue within 60 min (unpublished observations).

NOTE: Weak bait:target interactions may take several hours to produce a positive blue signal (avoid prolonged incubation (>8 hr) that may give false positive results). For best results, use freshly co-transformed colonies, i.e. grown at 30°C for 4-5 days, ~2mm in diameter.

1.3) Liquid culture β-Gal assay

- 1.3.1) Prepare the following buffers:
- 1.3.1.1) Prepare Z buffer containing 100 mM Na₂HPO₄, 40 mM NaH₂PO₄, 10 mM KCl, 1 mM MgSO₄; adjust the pH to 7.4, sterilize by autoclaving and store at room temperature. 1 M Na₂CO₃; store at room temperature.
- 1.3.1.2) Prepare Z buffer/ β -mercaptoethanol. Make buffer prior to use by adding β -mercaptoethanol at 0.27% v/v in Z buffer; use 700 μ l per sample. Prepare Z buffer/ONPG solution. Make buffer prior to use by mixing ONPG (o-nitrophenyl- β -D-galactopyranoside) at 4 mg/ml and β -mercaptoethanol at 0.27% v/v in Z buffer; use 160 μ l per sample.
- 1.3.2) Use a single colony to inoculate 5 ml of minimal SD medium (lacking leucine and tryptophan to keep selective pressure on both bait and target plasmids) and incubate at 30°C for 16-18 hr with shaking at 250 rpm.

NOTE: Assay five separate colonies co-transformed with the same bait and target plasmids.

- 1.3.3) Transfer enough of the overnight culture into 10 ml of fresh SD medium to produce an $OD_{600} = 0.2$ -0.3. Incubate at 30°C with shaking at 250 rpm until the cells are in mid-log phase ($OD_{600} = 0.5$ -0.6).
- 1.3.4) Transfer 0.5 ml of yeast culture into a 1.5 ml tube and centrifuge at 14,000 x g for 2 min at room temperature. Record the exact OD_{600} when harvesting the cells. Resuspend pellet in $100\mu l$ of Z buffer; this will result in a 5-fold concentration factor.
- 1.3.5) Place tube in liquid nitrogen for ~1 min (liquid nitrogen should be handled with care; always wear thick gloves and goggles) and then in a 37°C water bath for 3 min to thaw. Repeat this freeze-thaw cycle twice more to ensure cells are broken open.
- 1.3.6) Set up a blank tube with 100 µl of Z buffer.
- 1.3.7) Add 700 μ l of Z buffer/ β -mercaptoethanol and 160 μ l of Z buffer/ONPG to the sample and blank tubes; start the timer and place in a 30°C incubator.

1.3.8) Check periodically for yellow color to develop. Add 400 µl of 1 M Na₂CO₃ to stop color development and record elapsed time in minutes. Yeast Y190 co-transformed with the positive control plasmids (pVA3 + pTD1) will turn yellow within 60 min..

NOTE: Weak bait:target interactions may take several hours to produce a positive yellow signal For best results, use freshly co-transformed colonies, i.e. grown at 30°C for 4-5 days, ~2mm in diameter.

- 1.3.9) Centrifuge at 14,000 x g for 5 min at room temperature to pellet cell debris and transfer the supernatant into a clean cuvette.
- 1.3.10) Using a spectrophotometer, measure the absorbance at 420 nm (A_{420}) of the samples relative to the blank (values should be between 0.02-1.0).
- 1.3.11) Calculate β -galactosidase units, with 1 unit defined as the amount which hydrolyses 1 μ mol of ONPG to o-nitrophenol and D-galactose per min per cell, according to the following formula:

$$\frac{1000 \times A_{420}}{t \times 0.1 \text{ ml x cf } \times OD_{600}} = \beta \text{-galactosidase units}$$

Where: t: elapsed time of incubation (in minutes); cf: the concentration factor from step 1.4.8, i.e. cf = 5; OD_{600} : when cells were harvested.

2. Protein expression in a mammalian cell line

- 2.1) Mammalian cell transfection
- 2.1.1) Prepare the following media and buffers:
- 2.1.1.1) Prepare growth medium by mixing DMEM with 4.5 g/L glucose, 10% v/v fetal bovine serum and 2 mM L-glutamine; sterilize through a 0.2 µm filter and store at 4°C.
- 2.1.1.2) Prepare 2x Hepes-buffered saline (2x HBS) by mixing 280 mM NaCl, 10 mM KCl, 1.5 mM Na₂HPO₄, 12 mM glucose, 50 mM Hepes; adjust the pH to 7.05, sterilize through a 0.2 μ m filter and store at -20°C. Prepare 2.5 M CaCl₂. Sterilize through a 0.2 μ m filter and store at -20°C.
- 2.1.2) One day before transfection, seed 1-2 x 10^6 HEK293 cells in a 100 mm Petri dish in order to be 60-70% confluent the following day. Culture for 16-18 hr at 37°C in a humidified incubator with 5% CO_2 .
- 2.1.3) On the day of transfection, remove the old medium and feed cells with 10 ml of fresh growth medium. NOTE: Antibiotics are omitted from the culture medium during transfection because they may increase cell death.
- 2.1.4) Dilute 24 µg of plasmid DNA (for co-transfections, an equal molar ratio of the two plasmids) and 60 µl of 2.5 M CaCl₂ in 600 µl total volume (made with sterile deionized H₂O) inside a 1.5 ml tube; vortex to mix. NOTE: For highest transfection efficiency, plasmid DNA should be of the highest purity, i.e. have a Abs_{260}/Abs_{280} ratio = ~1.8.
- 2.1.5) Add the plasmid DNA/calcium solution drop wise into a 50 ml tube containing 600 µl

- of 2x HBS while constantly and vigorously mixing by vortexing. Incubate for 20 min at room temperature to allow formation of calcium phosphate/plasmid DNA complexes.
- 2.1.6) After the 20 min incubation, vortex briefly and add the solution drop wise onto the cells to cover the whole surface area of the 100 mm Petri dish.
- 2.1.7) Incubate the cells at 37°C in 5% CO₂. After ~6 hr change the growth medium and place back in the incubator.
- 2.1.8) Harvest the cells 24 hr post-transfection by centrifugation at 1,000 x g for 3 min at room temperature and discard the supernatant. Cell pellets can be stored at -80°C until needed. NOTE: Expression usually peaks 24-72 hr post-transfection.

2.2) Cell homogenization

- 2.2.1) Prepare the following buffers:
- 2.2.1.1) Prepare Co-IP homogenization buffer by mixing 150 mM NaCl, 20 mM Tris; adjust the pH to 7.4 and store at 4°C. Prepare Cross-linking homogenization buffer by mixing 5 mM Hepes, 0.3 M sucrose; adjust the pH to 7.4 and store at 4°C (filter before use to remove any particulates). Supplement with protease inhibitors prior to use.
- 2.2.2) Add 250 μ l of glass beads (425-600 microns) inside a 1.5 ml tube and wash with 500 μ l of homogenization buffer. Pellet glass beads by a brief centrifugation pulse (1,000 x g for 5 sec) and remove the supernatant. Repeat this wash step once more.
- 2.2.3) Resuspend cell pellet (from step 2.1.8) in 500 µl of ice-cold homogenization buffer and transfer the cell suspension into the glass beads-containing tube.
- 2.2.4) Homogenize cells on ice by 20 passages through a fine needle (23G, 0.6 x 30 mm) attached to a 1 ml syringe. With the tube cap closed, pierce through it with the needle and disperse cell suspension vigorously through the glass beads.
- 2.2.5) Centrifuge at 1,500 x g for 10 min at 4°C to remove nuclei and unbroken cells and discard the pellet. Save the supernatant representing the post-nuclear fraction and proceed directly to co-IP or cross-linking as appropriate.

3. In vitro biochemical methods

3.1) **Co-immunoprecipitation**

- 3.1.1) Prepare the following buffers:
- 3.1.1.1) Prepare Co-IP homogenization buffer as described in section 2.2.1.1. Prepare IP buffer by mixing 20 mM Tris, 150 mM NaCl, 0.5% (w/v) CHAPS, 2 mM dithiothreitol (optional; it can be included to reduce protein aggregates that may have formed due to air oxidation); adjust the pH to 7.4 and store at 4°C.
- 3.1.1.2) Prepare 2% w/v CHAPS in co-IP homogenization buffer; store at 4°C. Prepare Protein-loading buffer by mixing 60 mM Tris, 2% w/v SDS, 10% v/v glycerol, 5 mM EDTA, 0.01% w/v bromophenol blue, 2% v/v β -mercaptoethanol (optional); adjust the pH to 6.8 and store at room temperature.
- 3.1.2) Homogenize the cells from a confluent 100 mm Petri dish (\sim 8 x 10⁶ cells if HEK293, counted with the use of a hemocytometer) as described in Section 2.2.

3.1.3) Solubilize the post-nuclear sub-cellular fraction with 0.5% CHAPS (using the 2% stock) and incubation for ≥ 2 hr at 4°C with constant mixing. Centrifuge at 20,000 x g for 10 min at 4°C to pellet the insoluble material and discard the pellet. Save the supernatant termed cell lysate.

NOTE: The inclusion of a detergent and removal of the insoluble material is absolutely necessary to minimize non-specific binding. Intermediate detergents, e.g. CHAPS or Triton X-100, at a concentration of 0.2-1%, are the most commonly used.

3.1.4) Prepare two separate 1.5 ml tubes and add ~20 μ l (depending on IgG binding capacity) of 6 mg/ml Protein-A or Protein-G agarose (or sepharose) beads. Wash with 200 μ l of IP buffer.

NOTE: Choose the appropriate Ig-binding resin depending on the animal species used to raise the immunoprecipitating antibody. Protein-G binds a broader range of Ig subtypes compared to Protein-A.

- 3.1.5) Recover beads by centrifugation at 1,500 x g for 2 min at 4°C. Repeat wash once more with IP buffer, then resuspend beads in 200 µl of IP buffer.
- 3.1.6) Add 1 µg (5 ng/µl) of the immunoprecipitating antibody or non-immune IgG (to serve as negative control) in the two separate Protein-A/G containing tubes. Incubate for ≥ 2 hr at 4°C with constant mixing.

NOTE: Always process a negative control with the use of non-immune IgG raised in the same animal species as the immunoprecipitating antibody.

- 3.1.7) Recover beads by centrifugation at 1,500 x g for 2 min at 4°C and carefully discard the supernatant by pipetting.
- 3.1.8) Transfer 200 μ l of cell lysate (from step 3.1.3) into each of the two tubes with antibody and Protein-A/G beads. Incubate for ≥ 2 hr at 4°C with constant mixing to allow for antigen-antibody binding.
- 3.1.9) Recover beads and wash with 200 µl of IP buffer; incubate for 10 min at 4°C with mixing. Recover beads and wash twice more (avoid multiple washes which will reduce both the specific and non-specific binding). Carefully discard the supernatant by pipetting.
- 3.1.10) Add 30 µl of protein-loading buffer to elute immunoprecipitated proteins. Centrifuge at 1,500 x g for 2 min at 4°C, discard the beads and save the supernatant containing the eluted co-IP sample.
- 3.1.11) To verify successful protein X precipitation, load a small amount $(1/10^{th}, 3 \mu l)$ of the co-IP sample on an SDS-PAGE gel to be analyzed by immunoblotting ¹⁷ with antibody specific for protein X. Include an aliquot of the cell lysate to verify protein X expression in your sample.
- 3.1.12) To test for the presence of co-precipitated protein Y, load the rest (9/10th, 27 μ l) of the co-IP sample on a separate SDS-PAGE gel to be analyzed by immunoblotting¹⁷ with

antibody specific for protein Y. Include an aliquot of the cell lysate to verify protein Y expression in your sample.

3.2) Chemical cross-linking

- 3.2.1) Prepare the following buffers:
- 3.2.1.1) Cross-linking homogenization buffer as described in section 2.2.1.1.
- 3.2.1.2) Prepare 5x protein-loading buffer by mixing 300 mM Tris, 10% w/v SDS, 50% v/v glycerol, 25 mM EDTA, 0.05% w/v bromophenol blue, 10% v/v β -mercaptoethanol (optional); adjust the pH to 6.8 and store at room temperature; warm at 50°C before use.
- 3.2.2) Homogenize the cells from a confluent 100 mm Petri dish (\sim 8 x 10⁶ cells if HEK293, counted with the use of a hemocytometer) as described in Section 2.2.

NOTE: Sucrose (at 0.3M) is used to create an iso-osmotic buffer. Salt, e.g. 120-150 mM NaCl or KCl can be used instead, depending on the oligomeric protein complex of interest.

- 3.2.3) Centrifuge the post-nuclear sub-cellular fraction at 20,000 x g for 10 min at 4°C to pellet protein aggregates and save the supernatant. Take eight aliquots of 20 μ l each (typically ~20 μ g of protein) into separate 0.5 ml tubes.
- 3.2.4) Add 0.0025% v/v glutaraldehyde to all samples and start the timer. Let each of the eight samples react with glutaraldehyde at room temperature for: 0, 2, 5, 10, 15, 20, 30, 60 min.

NOTE: Glutaraldehyde has two aldehyde groups that react with free amines. Avoid using pH buffers or other substances with primary amino groups because they will quench the glutaraldehyde reaction.

- 3.2.5) Stop glutaraldehyde reaction at the specified time with 2% v/v hydrazine and add 5 µl of 5x protein-loading buffer to denature proteins.
- 3.2.6) Proceed to SDS-PAGE and immunoblotting¹⁷.

REPRESENTATIVE RESULTS:

In the Y2H system, the bait:prey interaction is initially tested by yeast growth selection in medium lacking (tryptophan, leucine and) histidine and subsequently assessed by β -Gal enzymatic activity assays (**Figure 1**). Yeast cultured in medium lacking histidine has slow growth rate that depends on the strength of the bait:prey protein interaction. The β -Gal assay is carried out in yeast (cultured in medium lacking only tryptophan and leucine) either growing on solid support (agar plates) or in liquid culture, with the latter yielding quantitative results. We have successfully used the Y2H to identify domain-domain interactions within the RyR2 as well as novel protein partners^{2-4,12,21,22}. For example, we screened a series of overlapping constructs spanning the entire length of the RyR2 peptide sequence for interaction with an N-terminal fragment (AD4L: RyR2 residues 1-906 fused with GAL4 AD)³. Colony-lift filter paper β -Gal assays produced vivid blue-coloured yeast colonies only for the BT4L:AD4L pair (**Figure 2A**), showing that AD4L interacts with itself, namely the BT4L construct (RyR2 residues 1-906 fused with GAL4 DNA-BD). Pale blue colonies were detected for the BT8:AD4L pair suggesting a secondary weaker association with the extreme C-terminal domain (BT8), whereas yeast co-transformed with any other construct remained

white and therefore negative for bait:prey protein interaction. Quantitative results, obtained by liquid β -Gal assays (**Figure 2B**), indicated robust BT4L:AD4L interaction equivalent in strength to the known association between the p53 protein (pVA3) and SV40 large T antigen (pTD1), whereas the BT8:AD4L interaction was considerably weaker (<10% compared to control).

We routinely carry out co-IP experiments (**Figure 3**) following transient expression in a mammalian cell line (HEK293), as an independent biochemical assay to reinforce the Y2H findings^{2-4,12-14,21-24}. To verify RyR2 N-terminus self-interaction, two separate plasmids encoding for RyR2 residues 1-906 tagged with either the cMyc or HA peptide epitope (BT4L and AD4L, respectively), were co-transfected in HEK293 cells using the calcium phosphate precipitation method³. The post-nuclear fraction of homogenized cells was solubilized with the detergent CHAPS, and the insoluble material was removed by centrifugation to produce the cell lysate. The cell lysate, treated with the reducing agent dithiothreitol, was then incubated with Ab^{HA} and Protein-A sepharose beads to immunoprecipitate HA-tagged AD4L. Co-IP samples, eluted with SDS-containing buffer, were loaded on two separate SDS-PAGE gels (1/10th and 9/10th split) and analyzed by immunoblotting with Ab^{HA} and Ab^{cMyc}, respectively. Successful direct IP of AD4L (~100 kDa) by Ab^{HA} was verified by immunoblotting, but not in the negative control using non-immune rabbit IgG (**Figure 4A**). Importantly, cMyc-tagged BT4L (~100 kDa) was recovered only in the Ab^{HA} IP, and not in the negative control in the absence of immunoprecipitated AD4L (**Figure 4B**).

Y2H and co-IP assays provided consistent evidence for RyR2 N-terminus self-interaction, but they did not inform on the oligomerization status of the N-terminal domain, namely whether it forms only dimers or higher complexes. It should be noted that complexes will dissociate and only the comprising subunits will be detected by SDS-PAGE because of SDS- and heatinduced protein denaturation abolishing protein-protein interactions. To overcome this, we use cross-linking (Figure 5) that chemically and stably conjoins pre-existing protein oligomers, whose molecular mass can then be examined by SDS-PAGE size separation²⁻⁵. For example, HEK293 cell homogenate expressing cMyc-BT4L, treated with the reducing agent dithiothreitol, was reacted with glutaraldehyde and analyzed by SDS-PAGE and immunoblotting using Ab^{cMyc} (Figure 6). In addition to the monomer (~100 kDa), a high molecular mass protein band of ~400 kDa was detected in a time dependent manner, indicating RyR2 N-terminus tetramer formation³. Notably, tetramer was the predominant oligomeric species, with minimal dimer and trimer bands observed. To determine its apparent molecular mass, the BT4L oligomer was separated through 4-15% gradient SDS-PAGE gels³. We produced the molecular mass/gel retardation standard curve using protein standards with a range of 30 - 460 kDa, and we calculated the oligomer to be 358 kDa \pm 15 (n = 4). This apparent molecular mass is consistent with a BT4L tetramer arranged in a closed circular fashion rather than in linear form, as expected from the arrangement of the four subunits within the native RyR2 channel.

FIGURE LEGENDS:

Figure 1: Y2H flowchart

Yeast, co-transformed with bait and target plasmids, is selected for growth in medium lacking histidine and/or assayed for β-Gal enzymatic activity.

Figure 2: Y2H suggests RyR2 N-terminus domain self-interaction

(A) Schematic depicting the (bait) series of human RyR2 overlapping protein fragments tested in the Y2H system for interaction with the RyR2 N-terminal AD4L (prey) construct.

Qualitative results obtained by colony-lift filter paper β -Gal assays are indicated in "+" multiples or "-" for negative interaction. (**B**) Quantitative liquid β -Gal assays normalized against the positive control (pVA3 encodes for GAL4 DNA-BD fusion with p53 protein; pTD1 encodes for GAL4 AD fusion with SV40 large T antigen). Modified from³.

Figure 3: Co-IP flowchart

Mammalian cells, co-transfected with plasmids X and Y, are homogenized and detergent-solubilized to produce the cell lysate used in the co-IP assay, followed by SDS-PAGE and immunoblotting.

Figure 4: Co-IP indicates RyR2 N-terminus domain self-interaction in mammalian cells HEK293 cells were co-transfected for transient co-expression of cMyc-tagged (BT4L) and HA-tagged (AD4L) RyR2 N-terminus domain (residues 1-906). AD4L was immunoprecipitated with Ab^{HA} from CHAPS-solubilized and dithiothreitol-treated HEK293 lysate, whereas as negative control, co-IP assays were carried out with non-immune rabbit IgG. Immunoprecipitated proteins were heated at 85°C for 5 min and resolved at 20 mA for 3 hr through separate 6% SDS-PAGE gels loaded with 1/10th or 9/10th of IP samples. Following protein transfer at 80 V for 2 hr onto polyvinylidene difluoride membrane, immunoblotting analysis was carried out using (1:1,000 dilution) Ab^{HA} (**A**) or Ab^{cMyc} (**B**), respectively, followed by horseradish peroxidase-conjugated anti-mouse IgG (1:10,000 dilution) and enhanced chemiluminescence detection (1 min exposure). An aliquot of cell lysate, 1/50th of the volume processed in IP samples, was also included to serve as molecular mass standard. Modified from³.

Figure 5: Cross-linking flowchart

Mammalian cells, transfected with plasmid X, are homogenized and subjected to reaction with glutaraldehyde in the cross-linking assay, followed by SDS-PAGE and immunoblotting.

Figure 6: Cross-linking indicates RyR2 N-terminus domain tetramer formation

HEK293 cells were transfected for transient expression of cMyc-tagged (BT4L) RyR2 N-terminus domain (residues 1-906). Cell homogenate, treated with the reducing agent dithiothreitol, was incubated with glutaraldehyde for the indicated time points. Samples were heated at 85°C for 5 min and resolved by SDS-PAGE (6% gel) at 20 mA for 3 hr. Following protein transfer at 80 V for 2 hr onto polyvinylidene difluoride membrane, immunoblotting analysis was carried out using (1:1,000 dilution) Ab^{cMyc}, followed by horseradish peroxidase-conjugated anti-mouse IgG (1:10,000 dilution) and enhanced chemiluminescence detection (1 min exposure). Monomeric (M: ~100 kDa) and tetrameric (T) forms are indicated by the arrows. Modified from³.

DISCUSSION:

The formation of protein homo-oligomers is a fundamental biological process that regulates the activity of transcription factors, enzymes, ion channels and receptors^{25,26}. Importantly, protein oligomerization has also pathological implications including neurodegeneration and arrhythmogenic cardiac disease^{4,27}. The methodologies outlined in this article are used to identify domain-domain interactions mediating protein self-association and oligomerization. Below, we point at critical steps within each protocol, and we discuss important considerations, limitations and troubleshooting.

The Y2H system can be employed first to screen for potential interacting protein partners because of its relatively high throughput screening, ease of use and highly reproducible

results. Y2H procedures are carried out in a microbiology laboratory with standard (plate or shaker) incubators and room containment facilities. The use of freshly prepared competent cells (step 1.1.8) is critical for high efficiency yeast transformation, whereas for best results in β -Gal assays, freshly grown yeast colonies (up to 5 days old) should be used (step 1.2.3). Systems based on transcription factors other than GAL4 and/or additional/alternative reporter genes are available, and therefore bait and prey plasmids should be matched with the appropriate Y2H strain.

Some strains should be cultured in the presence of 3-amino-1,2,4-triazole, a competitive inhibitor of the HIS3 protein, in order to quench any constitutive expression of the HIS3 reporter gene^{7,8}. Expression of bait and target fusion proteins should be verified by immunoblotting¹⁷. In case bait/prey fusion proteins are toxic to yeast, lower tolerable protein levels could be achieved by cloning in different vectors where bait/prey expression is driven by a different promoter. Further, it is essential to ensure that bait/prey fusion proteins do not display autonomous reporter gene activity. Autonomous reporter gene activation can be rescued by modifying the construct to remove the responsible region, or by swapping the GAL4 DNA-BD and AD fusions for the two tested proteins. Moreover, transmembrane domains are better omitted from bait/prey constructs because they may induce misfolding or mislocalization of fusion proteins in intracellular membrane compartments. Indeed, the main disadvantage of the Y2H system is that the bait and target proteins are localized in the yeast nucleus away from their physiological subcellular location and potentially lacking specific post-translational modifications, resulting in false-positive or false-negative interactions⁶⁻⁹.

Mammalian heterologous expression systems are better suited for the study of mammalian integral membrane proteins in terms of conformation, post-translational modifications and subcellular localization. One of the most widely used cell transfection methods is the calcium phosphate precipitation, mainly because of the minimum equipment and reagents required 11,15. Alternative methods, namely electroporation, liposomes, cationic lipids and polymers, may yield higher transfection efficiency depending on the cell line and construct used. In general, the primary factors affecting transfection efficiency are plasmid DNA quality and cell health/viability. The best results are achieved when plasmid DNA of the highest purity (260nm/280nm absorbance ratio of ~1.8) and actively dividing cells are used. Cells should therefore be transfected at no more than 60-70% confluence (step 2.1.2), because the ability to take up foreign DNA is related to the surface area of the cell exposed to the medium 11. Additionally, inclusion of antibiotics in the culture medium during transfection (step 2.1.3) is not advised due to increased cell death 15.

For calcium phosphate precipitation in particular, careful preparation and pH adjustment (to 7.05 precisely) of the 2x HBS solution (step 2.1.1), and proper formation of plasmid DNA/calcium/phosphate complexes by vigorous mixing (step 2.1.5) are critical steps for high efficiency transfection. Typically, protein expression by transient transfection peaks within 24-72 hr.

Once cells are harvested, subsequent procedures must be carried out at 4°C to minimize protease activity, and addition of protease inhibitors is recommended. Cell homogenization should be followed by a centrifugation step to remove nuclei because chromosomal DNA may increase solution viscosity and enhance non-specific binding. Thus, homogenization by mechanical means in an iso-osmotic buffer is preferred, usually in (0.3 M) sucrose or (150 mM) NaCl. In general, sucrose-based buffers are known to enhance protein stability and reduce potential non-native protein aggregation, but due to preferential hydration on the

protein surface, electrostatic protein-protein interactions are favored. Conversely, salt-based buffers influence the net charge of charged amino acid side groups on the protein surface, thus having a bias towards more hydrophobic-based interactions²⁸.

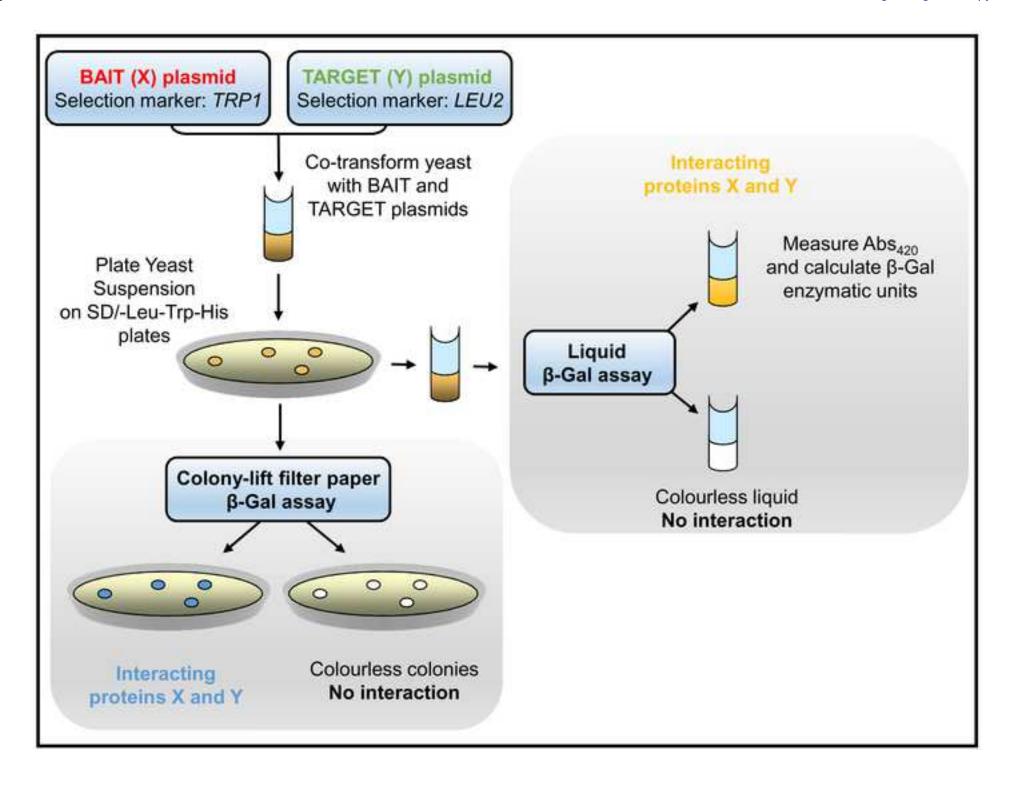
Co-IP is the most commonly employed biochemical assay to assess protein-protein interactions especially from native tissue. Its main drawback is the requirement for highly specific antibodies validated for use in IP and immunoblotting 10,16,18. Thus, recombinant proteins are often tagged with a peptide epitope, e.g. influenza hemagglutinin (YPYDVPDYA) or human cMyc (EQKLISEEDL), for which high-affinity specific antibodies are commercially available. If desired, the immunoprecipitating antibody can be chemically conjugated onto the Protein-A resin to avoid its elution and detection during the immunoblotting stage that may obscure the co-precipitated protein¹⁶; to achieve this, we have successfully used the chemical cross-linker 3,3'-dithiobis(sulfosuccinimidylpropionate)²⁴. It is imperative that an appropriate detergent is included in the IP buffer and the insoluble material of homogenized cells is removed by centrifugation to minimize non-specific binding (step 3.1.3). The choice and concentration of detergent are important considerations: stronger detergents and/or higher concentrations will substantially reduce non-specific binding but may also abolish X:Y protein interaction, whereas lower concentrations or milder detergents may allow a weak interaction to be observed but may result in excessive non-specific binding. Intermediate strength detergents are preferred, e.g. Triton X-100 at 0.5-1% concentration. To further reduce non-specific binding, a neutral protein (e.g. bovine serum albumin at 100 µg/ml) can be included in the IP buffer, and/or the cell lysate can be precleared with prior incubation with Protein-A resin alone. The number of washes should be optimized for the X:Y pair tested, typically three 10-min washes with IP buffer (step 3.1.9). In any case, a co-IP sample with non-immune IgG as the immunoprecipitating antibody should always be processed in parallel to serve as negative control (step 3.1.6).

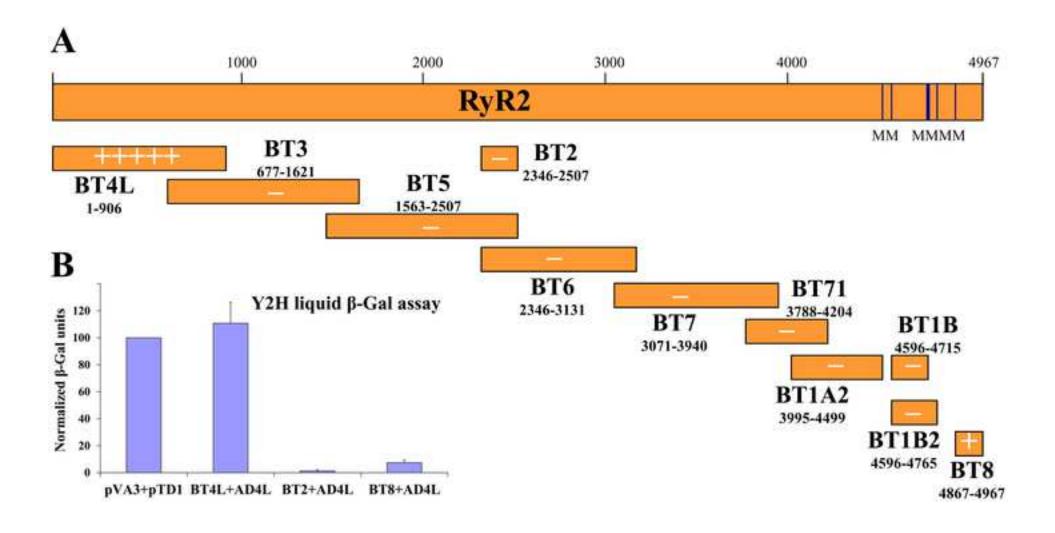
The main advantage of chemical cross-linking is that it informs on the stoichiometric composition of the protein homo-oligomer. Glutaraldehyde is a commonly used cross-linker because it requires no specialized equipment and it generates thermally and chemically stable cross-links between interacting proteins^{19,20}. Compounds with free amino groups should be omitted from assay buffers (step 3.2.1) because they will quench the chemical reaction. Glutaraldehyde concentration and reaction time (step 3.2.4) should be optimized for the oligomeric protein complex of interest. The main drawback of this technique, especially when performed on whole cell preparations, is the non-specificity of the chemical reaction that could yield artificial protein aggregates that lack biological significance.

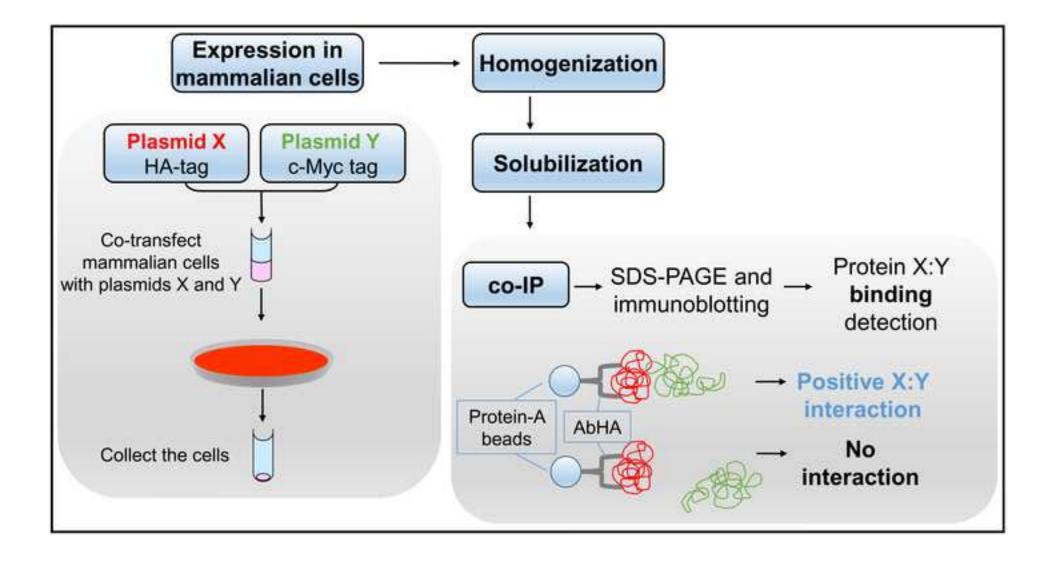
Alternative *in vivo* (e.g. fluorescence resonance energy transfer, bi-molecular fluorescence or luminescence complementation) and *in vitro* techniques (e.g. size exclusion chromatography, analytical ultracentrifugation, isothermal titration calorimetry) are available for characterization of protein self-association and assessment of oligomerization stoichiometry ^{29,30}. Each method has its own advantages and disadvantages, and it may be more suitable for the study of a specific protein depending on protein purification/stability and equipment/reagent availability. The three complementary methods described here in detail, namely Y2H, co-IP and cross-linking, have been used in combination to provide compelling evidence for RyR2 homo-oligomer formation in isolation and within a living cell.

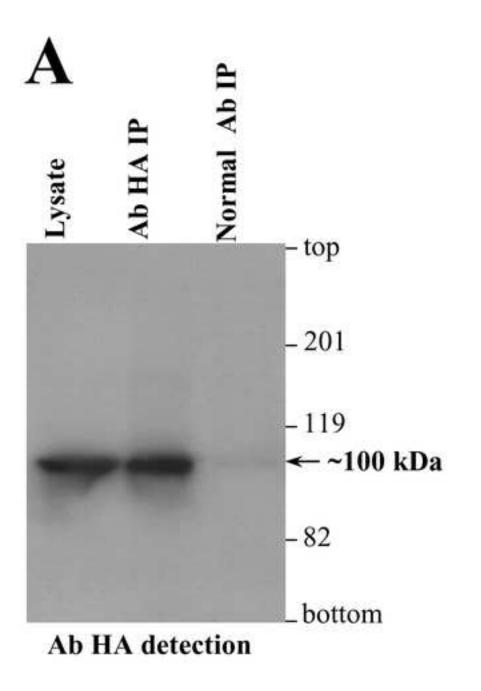
ACKNOWLEDGEMENTS:

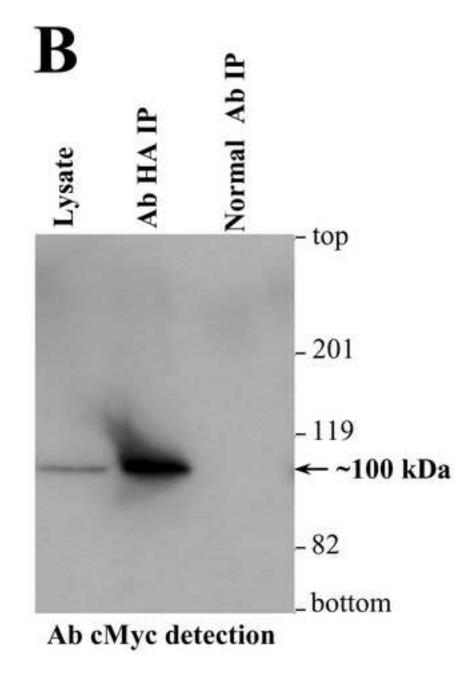
This work was supported by British Heart Foundation Fellowships to SZ (FS/08/063 and FS/15/30/31494).

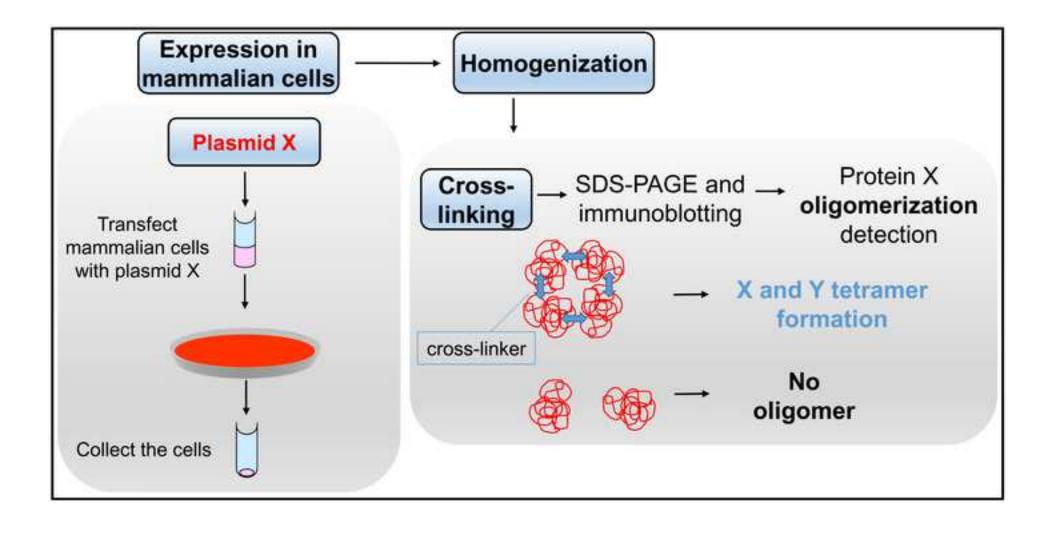

DISCLOSURES:

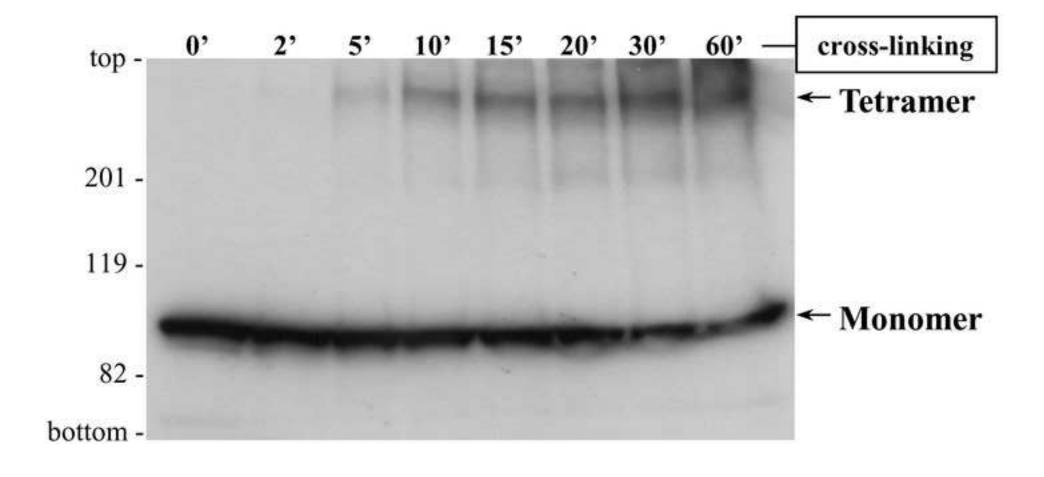

The authors have nothing to declare.


REFERENCES:


- Seidel, M., Lai, F. A. & Zissimopoulos, S. Structural and functional interactions within ryanodine receptor. *Biochem Soc Trans.* **43** (3), 377-383, doi:BST20140292 [pii] 10.1042/BST20140292, (2015).
- Zissimopoulos, S., Marsh, J., Stannard, L., Seidel, M. & Lai, F. A. Amino-terminus oligomerisation is conserved in intracellular calcium release channels. *Biochem J.* **459** (2), 265-273, doi:10.1042/BJ20131061, (2014).
- Zissimopoulos, S. *et al.* N-terminus oligomerization regulates the function of cardiac ryanodine receptors. *J Cell Sci.* **126** (Pt 21), 5042-5051, doi:10.1242/jcs.133538 jcs.133538 [pii], (2013).
- Seidel, M., Thomas, N. L., Williams, A. J., Lai, F. A. & Zissimopoulos, S. Dantrolene rescues aberrant N-terminus inter-subunit interactions in mutant pro-arrhythmic cardiac ryanodine receptors. *Cardiovasc Res.* **105** (1), 118-128, doi:10.1093/cvr/cvu240, (2015).
- 5 Stewart, R., Zissimopoulos, S. & Lai, F. Oligomerization of the cardiac ryanodine receptor C-terminal tail. *Biochem J.* **376** 795-799 (2003).
- Deane, C. M., Salwinski, L., Xenarios, I. & Eisenberg, D. Protein interactions: two methods for assessment of the reliability of high throughput observations. *Mol Cell Proteomics.* **1** (5), 349-356 (2002).
- Fashena, S. J., Serebriiskii, I. & Golemis, E. A. The continued evolution of two-hybrid screening approaches in yeast: how to outwit different preys with different baits. *Gene.* **250** (1-2), 1-14, doi:S0378-1119(00)00182-7 [pii], (2000).
- Stynen, B., Tournu, H., Tavernier, J. & Van Dijck, P. Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. *Microbiol Mol Biol Rev.* **76** (2), 331-382, doi:76/2/331 [pii] 10.1128/MMBR.05021-11, (2012).
- 9 Yang, M., Wu, Z. & Fields, S. Protein-peptide interactions analyzed with the yeast two-hybrid system. *Nucleic Acids Res.* **23** (7), 1152-1156, doi:5t0003 [pii], (1995).
- Elion, E. A. Detection of protein-protein interactions by coprecipitation. *Curr Protoc Immunol.* **Chapter 8** Unit 8 7, doi:10.1002/0471142727.im0807s76, (2007).
- Kingston, R. E., Chen, C. A. & Rose, J. K. Calcium phosphate transfection. *Curr Protoc Mol Biol.* Chapter 9 Unit 9 1, doi:10.1002/0471142727.mb0901s63, (2003).
- Lam, A. K., Galione, A., Lai, F. A. & Zissimopoulos, S. Hax-1 identified as a two-pore channel (TPC)-binding protein. *FEBS letters*. doi:S0014-5793(13)00801-6 [pii] 10.1016/j.febslet.2013.10.031, (2013).
- Zissimopoulos, S. & Lai, F. Interaction of FKBP12.6 with the cardiac ryanodine receptor C-terminal domain. *J Biol Chem.* **280** 5475-5485 (2005).
- Zissimopoulos, S., Thomas, N. L., Jamaluddin, W. W. & Lai, F. A. FKBP12.6 binding of ryanodine receptors carrying mutations associated with arrhythmogenic cardiac disease. *Biochem J.* **419** (2), 273-278 (2009).
- Jordan, M. & Wurm, F. Transfection of adherent and suspended cells by calcium phosphate. *Methods.* **33** (2), 136-143, doi:10.1016/j.ymeth.2003.11.011 S1046202303003050 [pii], (2004).
- Kaboord, B. & Perr, M. Isolation of proteins and protein complexes by immunoprecipitation. *Methods Mol Biol.* **424** 349-364, doi:10.1007/978-1-60327-064-9_27, (2008).


- Sambrook, J., Fritsch, E. F. & Maniatis, T. *Molecular cloning: a laboratory manual*. 2nd edn, (Cold Spring Harbor Laboratory Press, 1989).
- Yang, W., Steen, H. & Freeman, M. R. Proteomic approaches to the analysis of multiprotein signaling complexes. *Proteomics*. **8** (4), 832-851, doi:10.1002/pmic.200700650, (2008).
- Migneault, I., Dartiguenave, C., Bertrand, M. J. & Waldron, K. C. Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. *Biotechniques*. **37** (5), 790-796, 798-802 (2004).
- Wine, Y., Cohen-Hadar, N., Freeman, A. & Frolow, F. Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. *Biotechnol Bioeng.* **98** (3), 711-718, doi:10.1002/bit.21459, (2007).
- Zissimopoulos, S. & Lai, F. Central domain of the human cardiac muscle ryanodine receptor does not mediate interaction with FKBP12.6. *Cell Biochem Biophys.* **43** 203-220 (2005).
- Zissimopoulos, S., West, D., Williams, A. & Lai, F. Ryanodine receptor interaction with the SNARE-associated protein snapin. *J Cell Sci.* **119** 2386-2397 (2006).
- Zissimopoulos, S., Docrat, N. & Lai, F. Redox sensitivity of the ryanodine receptor interaction with FK506-binding protein. *J Biol Chem.* **282** 6976-6983 (2007).
- Zissimopoulos, S., Seifan, S., Maxwell, C., Williams, A. J. & Lai, F. A. Disparities in the association of the ryanodine receptor and the FK506-binding proteins in mammalian heart. *J Cell Sci.* **125** (Pt 7), 1759-1769, doi:10.1242/jcs.098012 jcs.098012 [pii], (2012).
- 25 Ali, M. H. & Imperiali, B. Protein oligomerization: how and why. *Bioorg Med Chem.* **13** (17), 5013-5020, doi:S0968-0896(05)00474-8 [pii] 10.1016/j.bmc.2005.05.037, (2005).
- Hashimoto, K. & Panchenko, A. R. Mechanisms of protein oligomerization, the critical role of insertions and deletions in maintaining different oligomeric states. *Proc Natl Acad Sci U S A.* **107** (47), 20352-20357, doi:1012999107 [pii] 10.1073/pnas.1012999107, (2010).
- Haass, C. & Selkoe, D. J. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. *Nat Rev Mol Cell Biol.* **8** (2), 101-112, doi:nrm2101 [pii] 10.1038/nrm2101, (2007).
- 28 Chi, E. Y., Krishnan, S., Randolph, T. W. & Carpenter, J. F. Physical stability of proteins in aqueous solution: mechanism and driving forces in nonnative protein aggregation. *Pharm Res.* **20** (9), 1325-1336 (2003).
- 29 Gell, D. A., Grant, R. P. & Mackay, J. P. The detection and quantitation of protein oligomerization. *Adv Exp Med Biol.* **747** 19-41, doi:10.1007/978-1-4614-3229-6_2, (2012).
- Kaczor, A. A. & Selent, J. Oligomerization of G protein-coupled receptors: biochemical and biophysical methods. *Curr Med Chem.* **18** (30), 4606-4634, doi:BSP/CMC/E-Pub/2011/344 [pii], (2011).





Name of Material/ Equipment

Company

1. PART 1 yeast two-hybrid

Plate incubator Hereaus

Orbital shaker incubator New Brunswick Scientific

Spectrophotometer Perkin Elmer Matchmaker Two-Hybrid System 2 Kit Takara Clontech Yeast Nitrogen Base Sigma-Aldrich Dropout supplement lacking leucine and tryptophan Sigma-Aldrich Dropout supplement lacking leucine, tryptophan, histidine Sigma-Aldrich Herring testes carrier DNA Takara Clontech Whatman filter paper Grade 5 Sigma-Aldrich X-Gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) Sigma-Aldrich ONPG (o-nitrophenyl-β-D-galactopyranoside) Sigma-Aldrich

PART 2. Protein expression in a mammalian cell line

HEK293 cell line ATCC Humidified incubator (5% CO₂, 37 °C) SANYO

DMEM (Dulbecco's Modified Eagle's medium)

Invitrogen (ThermoFisher)

Fetal Bovine Serum Invitrogen (ThermoFisher)

Glass beads Sigma-Aldrich
Needle 23G (0.6 x 30mm) BD Microlance

Needle 23G (0.6 x 30mm) BD Microlance

Protease inhibitor cocktail (Complete) Roche

PART 3. In vitro biochemical methods

Mini-PROTEAN Tetra Cell (SDS-PAGE system)

Trans-Blot SD (Semi-dry transfer system)

Bio-Rad

Compact X-ray film processor

Glutaraldehyde

Sigma-Aldrich

Protein-A sepharose beads

Anti-HA (Y-11 rabbit polyclonal IgG)

Non-immune rabbit IgG

Anti-CMyc (9E10 mouse monoclonal IgG)

GE Healthcare Life Sciences

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Santa Cruz Biotechnology

Anti-HA (16B12 mouse monoclonal IgG) Covance

Anti-mouse IgG-HRP Santa Cruz Biotechnology
Hyperfilm ECL GE Healthcare Life Sciences

ECL Western Blotting Substrate Pierce (ThermoFisher)

Catalog Number Comments/Description

B6120 Used at 30°C

INNOVA 4300 Used at 30°C with shaking at 230-250 rpm

Lambda Bio+ To measure OD600 of yeast culture; to measure Absorbance at 420 nm in liqu

K1604-1 Contains bait vector pGBKT7, prey vector pACT2 and yeast strain Y190

Y0626 To prepare minimal SD growh medium Y0750 To prepare minimal SD growh medium Y2001 To prepare minimal SD growh medium

630440 For yeast transformation

WHA1005070 for use in colony-lift filter paper b-Gal assay B4252 for use in colony-lift filter paper b-Gal assay

N1127 for use in liquid b-Gal assay

ATCC® CRL-1573™

MCO-18AIC To culture mammalian cells

To prepare growth medium for mammalian cells
To prepare growth medium for mammalian cells

G8772 To homogenise cells 300700 To homogenise cells 11873508001 To prevent proteolysis

1658000EDU For polyacrylamide gel electrophoresis

1703940 For electrophoretic transfer
 X4 For use in immunoblotting
 G5882 For use in chemical cross-linking

17-5280-01 For use in co-IP assay sc-805 For use in co-IP assay sc-2027 For use in co-IP assay sc-40 For use in immunoblotting MMS-101P For use in immunoblotting sc-2005 For use in immunoblotting 28906836 For use in immunoblotting 32106 For use in immunoblotting id b-Gal assay

ARTICLE AND VIDEO LICENSE AGREEMENT

	Genetic and Biochemical Approaches for in vivo and in vitro Assessment of Protein			
Title of Article:	Oligomerization: the Ryanodine Receptor Case Study			
Author(s):	Stanczyk, Paulina J., Lai, F. Anthony, Zissimopoulos, Spyros			
•	box): The Author elects to have the Materials be made available (as described a ove.com/publish) via: X Standard Access Open Access	эt		
Item 2 (check one bo	x):			
	or is NOT a United States government employee. hor is a United States government employee and the Materials were prepared in th	10		
	or her duties as a United States government employee.	e		
	or is a United States government employee but the Materials were NOT prepared in thor or her duties as a United States government employee.	e		

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts. Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. <u>Grant of Rights in Video Standard Access</u>. This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. <u>Government Employees.</u> If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. <u>JoVE Discretion</u>. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. <u>Fees</u>. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law</u>. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDING AUTHOR:

Name:	Spyros Zissimopoulos					
Department:	Wales Heart Research Institute					
Institution:	Cardiff University					
mstration.	Genetic and Biochemical Approaches for in vivo and in vitro Assessment of Protein					
Article Title:	Oligomerization: the Ryanodine Receptor Case Study					
Signature:		Date:	28/10/15			
JiBilatai C.	Mi	Dute.				

Please submit a <u>signed</u> and <u>dated</u> copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- 2) Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

Dear Editor,

We are pleased that our manuscript JoVE54271R1 "Genetic and Biochemical Approaches for in vivo and in vitro Assessment of Protein Oligomerization: the Ryanodine Receptor Case Study" was well received by the Editor and Reviewers.

Please find enclosed the revised manuscript that addresses all the Editorial and Reviewers' comments. Manuscript text edits, marked in red color, were made to the latest file "54271_R1_111615" as requested. Please find below a point-by-point response to editorial and peer review comments.

We look forward to receiving your comments on the suitability of this manuscript for publication in JoVE.

Sincerely,

Spyros Zissimopoulos et al.

Response to Editorial comments:

1. Please keep the editorial comments from your previous revisions in mind as you revise your manuscript to address peer review comments. For instance, if formatting or other changes were made, commercial language was removed, etc., please maintain these overall manuscript changes.

Editorial comments from previous revisions and JoVE's requirements were followed throughout, including amendments to address peer review comments.

2. Length warning: The current highlighting is spotty and will require additional steps added back to form a cohesive narrative. Once this is done, the length is at the filming limit of 2.75 pages.

We believe that the highlighted protocol text forms a cohesive story and is within 2.75 pages.

3.1.4 - What's the concentration of protein added?

The concentration (6 mg/ml) is now given in the revised manuscript.

4. If your figures and tables are original and not published previously, please ignore this comment. For figures and tables that have been published before, please include phrases such as "Re-print with permission from (reference#)" or "Modified from.." etc. And please send a copy of the re-print permission for JoVE's record keeping purposes.

Schematic Figures 1, 3 & 5 are original. We include the phrase "Modified from.." in the legends to indicate that Figures 2, 4 & 6 have been published before.

Re-print permission has already been emailed to JoVE on 14/11/2015 but we can email it again if necessary.

Response to Reviewers' comments:

Reviewer #1:

Manuscript Summary:

This method manuscript presents, in a brief but authoritative fashion, several biochemical and molecular biology protocols for the study of protein self-association (oligomerization) in eukaryotic cells. Oligomerization is an important requirement for most proteins to achieve proper function. Specifically, the authors describe the use of complementary in vivo (yeast two-hybrid, gene expression in HEK cells) and in vitro (co-immunoprecipitation and chemical cross-linking) assays combined with immunoblotting methods to detect protein self-association and determine homo-oligomer stoichiometry. To demonstrate the functional relevance and applicability of the described methods the authors use as an example the cardiac calcium release channel RyR2.

This is a well-conceived method manuscript. The methods described here will be of interest to other scientists that wish to apply these techniques.

Major Concerns:

None

Minor Concerns:

The authors may wish to take into consideration the following points:

1) Page 4, Line 163, end of sentence, please add storage conditions.

The text has been amended accordingly (pg 4, ln 163): "and use fresh on the day of the experiment"

2) Page 4, Line 168, end of sentence, please add storage conditions.

The text has been amended accordingly (pg 4, ln 169): "and use fresh on the day of the experiment"

3) Page 8, Line 362, For Cell Homogenization section; please indicate whether or not proteases inhibitors were needed for Co-IP and X-linking.

Protease inhibitors were included in the Homogenization buffers, now indicated in the revised manuscript (pg 8, ln 368): "Supplement with protease inhibitors prior to use."

4) Page 8, Line 365, Delete: "Prepare Cross-linking homogenization buffer by mixing 5 mM Hepes, 0.3 M sucrose; adjust the pH to 7.4 and store at 4°C (filter before use to remove any particulates)." This information is repeated in section 3.2.1.1.

The information repeated in sections 3.1.1.1 and 3.2.1.1 (pg 8, ln 388, and pg 10, ln 455, respectively) has now been deleted and replaced by: "as described in section 2.2.1.1"

5) Page 10, Line 475, Note that cross-linking homogenization buffer contains 5 mM Hepes. Does this amount of Hepes not quench the glutaraldehyde reaction? Please comment on that.

Glutaraldehyde reacts with compounds that have free primary amines. Hepes does not contain primary amines and therefore it does not interfere with the glutaraldehyde reaction.

Additional Comments to Authors:

There are a few typos/inaccuracies that need correction.

1) Page 5, Line 217, "...14,000 x g for 15 sec" do you mean minutes?

The centrifugation time is indeed 15 seconds only, not minutes.

2) In Fig 2B, for consistency with Figure 1, Greek beta symbol instead of b in y-axis and on panel's label.

This is now amended in the new Figure 2.

3) For Figures 4 and 6: Please add the following details:

Samples (i.e., total protein concentration, indicate whether the sample was boiled or heated after addition of loading buffers), PAGE (voltage and time used for electrophoresis), Protein Transfer (membrane used, transfer buffer composition and transfer voltage and duration used). Primary and secondary antibodies used (dilutions). Detection system (chemoluminescence -HR peroxidase or alkaline phospatase, reagents and film exposure time).

The text has been amended accordingly:

Figure 4 legend: "Figure 4: Co-IP indicates RyR2 N-terminus domain self-interaction in mammalian cells

HEK293 cells were co-transfected for transient co-expression of cMyc-tagged (BT4L) and HA-tagged (AD4L) RyR2 N-terminus domain (residues 1-906). AD4L was immunoprecipitated with Ab^{HA} from CHAPS-solubilized and dithiothreitol-treated HEK293 lysate, whereas as negative control, co-IP assays were carried out with non-immune rabbit IgG. Immunoprecipitated proteins were heated at 85°C for 5 min and resolved at 20 mA for 3 hr through separate 6% SDS-PAGE gels loaded with 1/10th or 9/10th of IP samples. Following protein transfer at 80 V for 2 hr onto polyvinylidene difluoride membrane, immunoblotting analysis was carried out using (1:1,000 dilution) Ab^{HA} (A) or Ab^{cMyc} (B), respectively, followed by horseradish peroxidase-conjugated anti-mouse IgG (1:10,000 dilution) and enhanced chemiluminescence detection (1 min exposure). An aliquot of cell lysate, 1/50th of the volume processed in IP samples, was also included to serve as molecular mass standard. Modified from³."

Figure 6 legend: "Figure 6: Cross-linking indicates RyR2 N-terminus domain tetramer formation

HEK293 cells were transfected for transient expression of cMyc-tagged (BT4L) RyR2 N-terminus domain (residues 1-906). Cell homogenate, treated with the reducing agent dithiothreitol, was incubated with glutaraldehyde for the indicated time points. Samples were heated at 85°C for 5 min and resolved by SDS-PAGE (6% gel) at 20 mA for 3 hr. Following protein transfer at 80 V for 2 hr onto polyvinylidene difluoride membrane, immunoblotting analysis was carried out using (1:1,000 dilution) Ab^{cMyc}, followed by horseradish peroxidase-conjugated anti-mouse IgG (1:10,000 dilution) and enhanced chemiluminescence detection (1 min exposure). Monomeric (M: ~100 kDa) and tetrameric (T) forms are indicated by the arrows. Modified from³."

4) Page 26, description of last item in the list of materials (*id b-Gal assay) seems incomplete, please fix or delete.

This is the last part of the sentence "To measure OD600 of yeast culture; to measure Absorbance at 420 nm in liquid b-Gal assay" in the "Comments\Description" column of the excel spreadsheet for the List of Materials.

While this problem occurred due to the creation of the complete manuscript as PDF file, it should be fine for the final version using the individual separate files.

Reviewer #2:

Manuscript Summary:

This manuscript described 3 protocols, yeast two-hybrid (Y2H), co-immunoprecipitation (co-IP), and chemical cross-linking, that commonly used in the protein-protein binding assay. These are complementary and synergistic techniques. The authors have described the protocols in detail. They applied the approaches to analyze the self-binding between N-terminal domain of ryanodine receptors. They make these protocols available for analysis by other researchers for detect protein-protein interaction and homo-oligomerization of protein monomers.

Major Concerns:

N/A

Minor Concerns:

1. In Y2H studies, sequence 1-906 (BT4L) showed positively self-binding, but 677-1621 (BT3) gave a negative result. There are over 200 residues overlapped between the 2 constructs. Does it means only the first 667 residues in important for the self oligomerization?

As the Reviewer points out, it is likely that RyR2 N-terminus oligomerization determinants are entirely contained within the first 677 residues. We are currently exploring this possibility using truncated fragments, however this is beyond the scope of the present, Methods-focused paper.

2. Figure 4, panel B, should be AB cmyc IP, not AB HA IP.

The experimental data depicted in Figure 4, are different immunoblots of the same samples, immunoprecipitated with Ab HA, and therefore the labeling "Ab HA IP" of lane 2 is correct for both panels A and B. The difference between the two panels is that Ab HA IP (and normal Ab IP) samples were separated through two different gels and subsequently detected with two different antibodies: Ab HA (for AD4L detection) and Ab cMyc (for BT4L detection), panels A and B, respectively.

For clarity, "Ab HA detection" and "Ab cMyc detection" has been included in the new Figure 4 at the bottom of panels A and B, respectively.

3. Figure 6, the gel showed RyR N-terminal domains can self-oligomerization, but it won't tell if they are tetramers or not? Should use a high molecular marker, like Hi Mark from Pierce that has protein ladder up to 460 kDa. There are light bands at position (201 kDa), are they dimers?

We have already used high molecular weight markers and gradient SDS-PAGE gels for accurate determination of the oligomer's size, indicating that BT4L forms tetramers [Ref #3]. The following text has been included in the revised manuscript (pg 11, ln 534): "To determine its apparent molecular mass, the BT4L oligomer was separated through 4-15% gradient SDS-PAGE gels³. We produced the molecular mass/gel retardation standard curve using protein standards with a range of 30 - 460 kDa, and we calculated the oligomer to be 358 kDa \pm 15 (n = 4). This apparent molecular mass is consistent with a BT4L tetramer arranged in a closed circular fashion rather than in linear form, as expected from the arrangement of the four subunits within the native RyR2 channel"

Dimer bands are indeed observed at position 201 kDa but they are significantly less intense than the tetrameric species. This is described in the manuscript (pg 11, ln 533): "Notably, tetramer was the predominant oligomeric species, with minimal dimer and trimer bands

observed".

Additional Comments to Authors: N/A