- Protas, M. E. et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet. 38 (1), 107-111, doi:10.1038/ng1700, (2006).
- Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A. & Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science. 313 (5783), 101-104, doi:10.1126/science.1126121, (2006).
- Chan, Y. F. et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science. 327 (5963), 302-305, doi:10.1126/science.1182213, (2010).
- Liu, J. et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics. 39 (5), 209-215, doi:10.1016/j.jgg.2012.04.003, (2012).
- Bannister, S. et al. TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. Genetics. 197 (1), 77-89, doi:10.1534/genetics.113.161091, (2014).
- Lei, Y. et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. 109 (43), 17484-17489, doi:10.1073/pnas.1215421109, (2012).
- Bedell, V. M. et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 491 (7422), 114-118, doi:10.1038/nature11537, (2012).
- Huang, P. et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. 29 (8), 699-700, doi:10.1038/nbt.1939, (2011).
- Ansai, S. et al. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics. 193 (3), 739-749, doi:10.1534/genetics.112.147645, (2013).
- Zhang, X. et al. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod. 91 (6), 136, doi:10.1095/biolreprod.114.121418, (2014).
- Wang, H. et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153 (4), 910-918, doi:10.1016/j.cell.2013.04.025, (2013).
- Gross, J. B. The complex origin of Astyanax cavefish. BMC Evol Biol. 12 105, doi:10.1186/1471-2148-12-105, (2012).
- Wilkens, H. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces) - support for the neutral mutation theory. Evolutionary Biology. 23 271-367 (1988).
- Teyke, T. Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol. 35 (1), 23-30 (1990).
- Schemmel, C. Genetische Untersuchungen zur Evolution des Geschmacksapparates bei cavernicolen Fischen. Z Zool Syst Evolutionforsch. 12 196-215 (1974).
- Burchards, H., Dolle, A. & Parzefall, J. Aggressive behavior of an epigean population of Astyanax mexicanus (Characidae, Pisces) and some observations of three subterranean populations. Behavioral Processes. 11 225-235 (1985).
- Parzefall, J. & Fricke, D. Alarm reaction and schooling in population hybrids of Astyanax fasciatus (Pisces, Characidae). Memoires e Biospeologie. 29-32 (1991).
- Schemmel, C. Studies on the Genetics of Feeding Behavior in the Cave Fish Astyanax mexicanus F. anoptichthys. Z. Tierpsychol. 53 9-22 (1980).
- Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L. & Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci U S A. 112 (31), 9668-9673, doi:10.1073/pnas.1510802112, (2015).
- Protas, M. et al. Multi-trait evolution in a cave fish, Astyanax mexicanus. Evol Dev. 10 (2), 196-209, doi:10.1111/j.1525-142X.2008.00227.x, (2008).
- Gross, J. B., Borowsky, R. & Tabin, C. J. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet. 5 (1), e1000326, doi:10.1371/journal.pgen.1000326, (2009).
- Yoshizawa, M., Yamamoto, Y., O'Quin, K. E. & Jeffery, W. R. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol. 10 108, doi:10.1186/1741-7007-10-108, (2012).
- Quin, K. E., Yoshizawa, M., Doshi, P. & Jeffery, W. R. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus. PLoS One. 8 (2), e57281, doi:10.1371/journal.pone.0057281, (2013).
- Kowalko, J. E. et al. Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci U S A. 110 (42), 16933-16938, doi:10.1073/pnas.1317192110, (2013).
- Kowalko, J. E. et al. Loss of Schooling Behavior in Cavefish through Sight-Dependent and Sight-Independent Mechanisms. Curr Biol. doi:10.1016/j.cub.2013.07.056, (2013).
- Gross, J. B., Krutzler, A. J. & Carlson, B. M. Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. Genetics. 196 (4), 1303-1319, doi:10.1534/genetics.114.161661, (2014).
- Yamamoto, Y., Stock, D. W. & Jeffery, W. R. Hedgehog signalling controls eye degeneration in blind cavefish. Nature. 431 (7010), 844-847, doi:10.1038/nature02864, (2004).
- Bilandzija, H., Ma, L., Parkhurst, A. & Jeffery, W. R. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One. 8 (11), e80823, doi:10.1371/journal.pone.0080823, (2013).
- Ma, L., Jeffery, W. R., Essner, J. J. & Kowalko, J. E. Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus. PLoS One. 10 (3), e0119370, doi:10.1371/journal.pone.0119370, (2015).
- 30 primer3. <bioinfo.ut.ee/primer3-0.4.0/> (
- Untergrasser A, C. I., Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG. Primer3- new capabilities and interfaces. Nucleic Acids Res. 40 (15), e115 (2012).
- Koressaar T, R. M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 23 (10), 1289-1291 (2007).
- Cermak, T. et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39 (12), e82, doi:10.1093/nar/gkr218, (2011).
- Addgene. Golden Gate TALEN assembly.
- Addgene. Sequencing TALENs. pdf
- Device+To+Hold+Zebrafish+Embryos+During+Microinjection.
- Hinaux, H. et al. A developmental staging table for Astyanax mexicanus surface fish and Pachon cavefish. Zebrafish. 8 (4), 155-165, doi:10.1089/zeb.2011.0713, (2011).
- Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9 (7), 676-682, doi:10.1038/nmeth.2019, (2012).
- Bitinaite, J., Wah, D. A., Aggarwal, A. K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. 95 (18), 10570-10575 (1998).
- Elipot, Y. et al. A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome. Nat Commun. 5 3647, doi:10.1038/ncomms4647, (2014).
- McGaugh, S. E. et al. The cavefish genome reveals candidate genes for eye loss. Nat Commun. 5 5307, doi:10.1038/ncomms6307, (2014).
- Yoshizawa, M., Goricki, S., Soares, D. & Jeffery, W. R. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol. 20 (18), 1631-1636, doi:10.1016/j.cub.2010.07.017, (2010).
- Blackburn, P. R., Campbell, J. M., Clark, K. J. & Ekker, S. C. The CRISPR system--keeping zebrafish gene targeting fresh. Zebrafish. 10 (1), 116-118, doi:10.1089/zeb.2013.9999, (2013).
- Varshney, G. K. et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25 (7), 1030-1042, doi:10.1101/gr.186379.114, (2015).
- Shin, J., Chen, J. & Solnica-Krezel, L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development. 141 (19), 3807-3818, doi:10.1242/dev.108019, (2014).
- Ablain, J., Durand, E. M., Yang, S., Zhou, Y. & Zon, L. I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell. 32 (6), 756-764, doi:10.1016/j.devcel.2015.01.032, (2015).
- Yamamoto, Y. & Jeffery, W. R. Central role for the lens in cave fish eye degeneration. Science. 289 (5479), 631-633 (2000).