1. Heintzmann, R., & Cremer, C. G. Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating. BiOS Eur. 3568, 185-196 (1999).
  2. Gustafsson, M. G. L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198 (2), 82-87 (2000).
  3. Shim, S.-H. et al. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. U. S. A. 109 (35), 13978-13983 (2012).
  4. Urban, N. T., Willig, K. I., Hell, S. W., & Nägerl, U. V. STED Nanoscopy of Actin Dynamics in Synapses Deep Inside Living Brain Slices. Biophys. J. 101 (5), 1277-1284 (2011).
  5. Liu, Z., Lavis, L. D., & Betzig, E. Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level. Mol. Cell 58 (4), 644-659 (2015).
  6. Westphal, V. et al. Video-Rate Far-Field Optical Nanoscopy Dissects Synaptic Vesicle Movement. Science (80-. ). 320 (5873), 246-249 (2008).
  7. Davies, T. et al. CYK4 Promotes Antiparallel Microtubule Bundling by Optimizing MKLP1 Neck Conformation. PLOS Biol. 13 (4), e1002121 (2015).
  8. Laine, R. F. et al. Structural analysis of herpes simplex virus by optical super-resolution imaging. Nat. Commun. 6, 5980 (2015).
  9. Pinotsi, D. et al. Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett. 14 (1), 339-45 (2014).
  10. Esbjörner, E. K. et al. Direct observations of amyloid β Self-assembly in live cells provide insights into differences in the kinetics of Aβ(1-40) and Aβ(1-42) aggregation. Chem. Biol. 21 (6), 732-742 (2014).
  11. Michel, C. H. et al. Extracellular monomeric tau protein is sufficient to initiate the spread of tau protein pathology. J. Biol. Chem. 289 (2), 956-967 (2014).
  12. Pinotsi, D., Kaminski Schierle, G. S., & Kaminski, C. F. Optical Super-Resolution Imaging of β-Amyloid Aggregation In Vitro and In Vivo: Method and Techniques. Syst. Biol. Alzheimer's Dis. SE - 6 1303, 125-141 (2016).
  13. Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89 (1), 141-145 (1981).
  14. Cragg, G. E., & So, P. T. Lateral resolution enhancement with standing evanescent waves. Opt. Lett. 25 (1), 46-48 (2000).
  15. Chung, E., Kim, D., & So, P. T. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy. Opt. Lett. 31 (7), 945 (2006).
  16. Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L., & Gustafsson, M. G. L. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6 (5), 339-42 (2009).
  17. Fiolka, R., Shao, L., Rego, E. H., Davidson, M. W., & Gustafsson, M. G. L. Time-lapse two-color 3D imaging of live cells with doubled resolution using structured illumination. Proc. Natl. Acad. Sci. U. S. A. 109 (14), 5311-5 (2012).
  18. Brunstein, M., Wicker, K., Hérault, K., Heintzmann, R., & Oheim, M. Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks. Opt. Express 21 (22), 26162-26173 (2013).
  19. Simple structured illumination microscope setup with high acquisition speed by using a spatial light modulator. Opt. Express 22 (17), 20663 (2014).
  20. Lu-Walther, H.-W. et al. fastSIM: a practical implementation of fast structured illumination microscopy. Methods Appl. Fluoresc. 014001, 14001 (2015).
  21. Shaw, M., Zajiczek, L., & O'Holleran, K. High speed structured illumination microscopy in optically thick samples. Methods (2015).
  22. Olshausen, P. von Total internal reflection microscopy: super-resolution imaging of bacterial dynamics and dark field imaging. PhD dissertation, University of Freiburg (2012).
  23. Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94 (12), 4957-70 (2008).
  24. Meadowlark Optics Inc Basic Polarization Techniques and Devices. (2005).
  25. Holleran, K., & Shaw, M. Polarization effects on contrast in structured illumination microscopy. Opt. Lett. 37 (22), 4603 (2012).
  26. Brankner, S. Z., & Hobson, M. Synchronization and Triggering with the ORCA-Flash4.0 Scientific CMOS Camera. at <http://www.hamamatsu.com/resources/pdf/sys/SCAS0098E_synchronization.pdf> (2013).
  27. Gustafsson, M. G. L. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination. Biophys. J. 94 (12), 4957-70 (2008).
  28. Wicker, K. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space. Opt. Express 21 (21), 24692 (2013).
  29. Boulanger, J., Pustelnik, N., & Condat, L. Non-smooth convex optimization for an efficient reconstruction in structured illumination microscopy. 2014 IEEE 11th Int. Symp. Biomed. Imaging 3 (1), 995-998 (2014).
  30. Ströhl, F., & Kaminski, C. F. A joint Richardson-Lucy deconvolution algorithm for the reconstruction of multifocal structured illumination microscopy data. Methods Appl. Fluoresc. 3 (1), 014002 (2015).
  31. Mudry, E. et al. Structured illumination microscopy using unknown speckle patterns. Nat. Photonics 6 (5), 312-315 (2012).
  32. Ayuk, R. et al. Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm. Opt. Lett. 38 (22), 4723 (2013).
  33. Ball, G. et al. SIMcheck: a Toolbox for Successful Super-resolution Structured Illumination Microscopy. Sci. Rep. 5, 15915 (2015).
  34. York, A. G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9 (7), 749-754 (2012).
  35. Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349 (6251), aab3500-aab3500 (2015).
  36. York, A. G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9 (7), 749-54 (2012).