Journal of Visualized Experiments

Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties --Manuscript Draft--

Manuscript Number:	JoVE52869R3			
Full Title:	Synthesis of Non-uniformly Pr-doped SrTiO3 Ceramics and Their Thermoelectric Properties			
Article Type:	Invited Methods Article - JoVE Produced Video			
Keywords:	Oxide Thermoelectrics; Praseodymium; SrTiO3; Enhanced Figure of Merit; Enhanced Power Factor; Mobility Enhancement; Grain Boundary Engineering; Highly-doped semiconductor			
Manuscript Classifications:	92.23: Chemistry and Materials (General); 92.24: Composite Materials; 92.25: Inorganic, Organic and Physical Chemistry; 97.76: Solid-State Physics			
Corresponding Author:	Arash Mehdizadeh Dehkordi, Ph.D. Clemson University Clemson, South Carolina UNITED STATES			
Corresponding Author Secondary Information:				
Corresponding Author E-Mail:	amehdiz@g.clemson.edu			
Corresponding Author's Institution:	Clemson University			
Corresponding Author's Secondary Institution:				
First Author:	Arash Mehdizadeh Dehkordi, Ph.D.			
First Author Secondary Information:				
Other Authors:	Sriparna Bhattacharya, Ph.D.			
	Taghi Darroudi, Ph.D.			
	Husam N. Alshareef, Ph.D.			
	Terry M. Tritt, Ph.D.			
Order of Authors Secondary Information:				
Abstract:	We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO3 ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy. It was observed that the grains of these bulk Pr-doped SrTiO3 ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration. Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO3-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO3.			
Author Comments:				
Additional Information:				

Question	Response
If this article needs to be "in-press" by a certain date to satisfy grant requirements, please indicate the date below and explain in your cover letter.	
f this article needs to be filmed by a certain date to due to author/equipment/lab availability, please ndicate the date below and explain in your cover letter.	

February 21, 2015

Journal of Visualized Experiments

Dear Editor:

We received the editorial and reviewers' comments on the manuscript JoVE52869 entitled "Synthesis of Non-uniformly Pr-doped SrTiO₃ Ceramics and Their Thermoelectric Properties" by Arash Mehdizadeh Dehkordi, Sriparna Bhattacharya, Taghi Darroudi, Husam N. Alshareef and Terry M. Tritt. We would like to express our appreciation for your time and efforts spent on handling our manuscript. We have revised and improved the manuscript according to the comments. Detailed response to the comments and the changes made in the manuscript are included at the end of this letter.

If you have any further questions or if any of our coauthors or us, may provide any additional information, please do not hesitate to contact us. Thank you for considering this manuscript for publication in the *Journal of Visualized Experiments*.

Sincerely yours,

Hrash Mehdizadeh Dehkordi*

Arash Mehdizadeh Dehkordi, Ph.D. Department of Materials Science and Engineering

Clemson University

Email: amehdiz@g.clemson.edu

and

Terry M. Tritt*
Terry M. Tritt, Ph.D.

Alumni Distinguished Professor of Physics

Office Phone: 864-656-5319 Email: ttritt@clemson.edu *electronic signature The manuscript has been revised and improved according to the comments. The changes made in the revised manuscript are included under the Response and Change sections below and are highlighted in the manuscripts using "Track-Changes" function of Microsoft Word. We believe that the critique have greatly improved the quality and clarity of the manuscript. Our responses to these comments are as follows:

Science Editor:

Comment #1: Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues. The JoVE editor will not copy-edit your manuscript and any errors in the submitted revision may be present in the published version.

Response: The manuscript has been proofread.

Comment #2: Please add more details to your protocol steps. Please ensure you answer the "how" question, i.e., how is the step performed? Alternatively, add references to published material specifying how to perform the protocol action.

Response: Additional information along with the reference for detailed operation was added to the steps of the protocol to answer the "how" questions.

Comment #3: 1.12: Should the pellet be ground after this second calcination process before 1.13?

Response and Change: Thank you for pointing this out. This intermediate grinding was added as an extra step.

Comment #4: 2.10: Followed by what of the current?

Response and Change: This sentence was rephrased.

Comment #5: 3.3: How is the pellet cut? Also, please indicate in which steps each kind of cut piece is used. If the steps are not included in the protocol, please give citations for the analysis.

Response and Change: The pellet is cut using a diamond saw. This information was added to the description of this step (3.3).

Comment #6: 3.4.1: Please provide a reference on how to perform the DSC. Also, please add the experimental parameters: how much of the samples were used, how long, etc.

Response and Change: The reference of DSC and the details of the measurement parameters were added to the manuscript.

Comment #7: 3.6: Please provide a reference on how to operate the gold sputtering unit. How are the tiny holes cut?

Response and Change: The reference of DSC and the details of the measurement parameters were added to the manuscript.

Comment #8: Please revise the highlighting of the protocol text for filming. Only 2.75 pages of highlighted protocol text is permissible and there are currently 3.25 pages. Please include all relevant details that are required to perform the step in the highlighting. For example: If step 2.5 is highlighted for filming and the details of how to perform the step are given in steps 2.5.1 and 2.5.2, then the sub-steps where the details are provided must be highlighted. The Protocol is >3 pages highlighted. The authors could possibly unhighlight parts of section 3, which appear to be standard techniques without much stepwise detail (like 3.7).

Response and Change: The parts which are not of considered a critical step in the filming were unhighlighted according to editor's comment.

Comment #9: JoVE cannot publish manuscripts containing commercial language. This includes trademark symbols (TM), registered symbols (®), and company names before an instrument or

reagent. Please remove all commercial language from your manuscript and use generic terms instead. All commercial products should be sufficiently referenced in the Table of Materials and Reagents. There is unnecessary branding in 1.6 and 2.4 (Carver) and in 3.2.1 (MicroFlash).

Response and Change: Commercial language including the names of the suppliers of the equipment was removed from the manuscript.

Comment #10: Overall, the discussion is more results than method oriented. The discussion needs to focus on the methods in terms of the 5 discussion requirements. Which steps are critical? Are there any modifications or troubleshooting that typically occurs? How are these methods superior to the alternatives? Please discuss the limitations and critical steps of the technique. What are some future applications of the technique? Simply stating "this work may open new horizons and opportunities to other properties and applications" is not very informative.

Response and Change: The important step(s) were highlighted throughout the protocol. The future opportunities of this synthesis method were clarified. The key differentiating the synthesis strategy described in this protocol from previous reports in the literature were highlighted in the discussion.

Comment #11: JoVE reference format requires that DOIs are included, when available, for all references listed in the article. This is helpful for readers to locate the included references and obtain more information. Please note that often DOIs are not listed with PubMed abstracts and as such, may not be properly included when citing directly from PubMed. In these cases, please manually include DOIs in reference information.

Response and Change: The DOIs of the references which were available were included in the reference list. We'd appreciate if the JoVE template can be modified to include the DOIs for future publications.

Reviewer #1:

Comment #1: Line 70 Reference is not defined.

Response: The reference to room-temperature electron mobility of SrTiO₃ had already been cited. It seems that Microsoft Word cross-referencing had a problem in updating the reference number. This issue was resolved.

Comment #2: Line 92 Reference is not defined.

Response and Change: Reference 12 has been cited for "spark plasma sintering technique".

Comment #3: Line 351 Reference is not defined.

Response and Change: Reference 13 has been cited for the results reported in Line 351.

Comment #4: Figures 2(b) and 2(c) are missing.

Response: Figures 2(b) and 2(c) have already been included in the Fig. 2.eps file uploaded before. It seems like the online pdf compilation system somehow did not incorporate the image.

Comment #5: Y-axis unit of Fig. 3(b) should be microV K⁻¹ not mV K⁻¹.

Response and Change: Fig. 3 (b) was modified. It seems that the "mu" font had been change during file conversion.

Comment #6: Line 352-353 The authors mention that ... whole temperature range over all previously reported maximum values were achieved However, no reference is cited.

Response: We thank the review for his/her comment. However, since the reported values were higher than reported in "all" previous publications we believe that the citations of selected

previous reports might be unnecessary. However, Fig. 3 compares the results to some of the highest values reported in the literature. The references are included in the caption.

Reviewer #2:

Comment #1: Line 114: Researchers generally use the powder of Pr_2O_3 for synthesis. So the authors should shortly explain why the Pr_2O_3 sintered lump was used in the manuscript.

Response: We thank the reviewer for his/her comment. However, to the best of our knowledge researchers use both forms of Pr_2O_3 . Alfa Aesar only supplies Pr_2O_3 in "sintered-lump" form which was chosen due to its competitive price comparing to the Pr_2O_3 supplied by Sigma-Aldrich. Nevertheless, our recent publication (Dehkordi *et al.*, J. Appl. Phys. **117** (2015) 055102) shows that the thermoelectric properties following the synthesis protocol presented in the manuscript is independent of the choice of Pr doping source.

Reviewer #3:

Comment #1: Line 70: Give references to the low carrier mobility of single crystals.

Response and Change: The reference to room-temperature electron mobility of SrTiO₃ had already been cited. It seems that Microsoft Word cross-referencing had a problem in updating the reference number. This issue was resolved.

Comment #2: Line 33-34: Power factor is already a defined term in thermoelectrics. The authors should change the phrase. "We herein define the numerator as the power factor..."

Response: Traditionally, the thermoelectric power factor is defined in the Z context (not ZT) as $\sigma\alpha^2$ where σ is the electrical conductivity, and α the Seebeck coefficient. Researchers still generally define the power factor this way. However, here we define the power factor as $\sigma\alpha^2T$. Not only this definition portrays the actual temperature dependence of the electronic properties incorporated in ZT calculation but it also gives the SI SI of W/m-K similar to that of thermal conductivity.

Comment #3: Line 92: provide references to the conventional sintering.

Response and Change: Reference to "conventional sintering" had already been cited. It seems that the Microsoft Word cross-referencing had a problem in updating the reference number. This issue was resolved.

Comment #4: Line 118 and 120: "Weighted" powder should be "weighted" powder.

Response and Change: Thank you for pointing this out. The typo was fixed.

Comment #5: Line 123-124: 1.4) the step is not clearly understood. How does mixing of TiO_2 powder cause reduction of volume? Do the mixing process involve manual mixing or using any particular mixing instrument?

Response: The mixing can be done either manually or with a commercial tabulator/mixer. Since the TiO_2 is a nanopowder mixing help locally cold-pressing the powder to reduce the overall volume of the portion used so it can be fitted in the stainless steel die. This part was removed to avoid confusing the reader.

Comment #6: Line 131: "green body" is an unscientific language. Replace it with a more appropriate noun.

Response: "Green body" is the technical term used primarily by ceramist for unsintered or unfired ceramics, which has been used extensively in the journal publications as well as the encyclopedia of advanced materials.

Comment #7: Line 138-141: 1.9) Define calcination first and then use the term. the phrase "let it reside.." is inappropriate in scientific papers. Replace it with clear words like "kept it at the elevated temperature.."

Response and Change: Calcination is a known technical term used by researchers in ceramics sciences and processing referring to the thermal treatment (firing) step in the solid-state reaction synthesis of ceramics. We do not believe this term needs to be defined here. The text was modified according to the reviewer's comment on "let it reside...".

Comment #8: Line 144: Has turbulator been used before during mixing the powders? If yes, mention.

Response and Change: Yes. The use of turbulator/mixer was added to step 1.4.

Comment #9: Line 267-271: The step describing the use of scotch-tape is not clear. The author should elaborate on this point for clear understanding to the general readers.

Response and Change: This step was clarified to explain the use of scotch tape as a stencil for the gold sputtering of the contacts.

TITLE:

Synthesis of Non-uniformly Pr-doped SrTiO₃ Ceramics and Their Thermoelectric Properties

AUTHORS:

Mehdizadeh Dehkordi, Arash Department of Materials Science and Engineering Clemson University Clemson, South Carolina amehdiz@g.clemson.edu

Bhattacharya, Sriparna
Department of Physics and Astronomy
Clemson University
Clemson, South Carolina
bbhatta@clemson.edu

Darroudi, Taghi Electron Microscope Facility Clemson University Clemson, South Carolina tdarrou@clemson.edu

Alshareef, Husam N.
Materials Science and Engineering
King Abdullah University of Science and Technology
Thuwal, Saudi Arabia
husam.alshareef@kaust.edu.sa

Tritt, Terry M.
Department of Physics and Astronomy
Department of Materials Science and Engineering
Clemson University
Clemson, South Carolina
ttritt@clemson.edu

CORRESPONDING AUTHOR:

A. Mehdizadeh Dehkordi (amehdiz@g.clemson.edu)

KEYWORDS:

Oxide Thermoelectrics, Praseodymium, SrTiO₃, Enhanced Figure of Merit, Enhanced Power Factor, N-type Semiconductor, Mobility Enhancement, Grain Boundary Engineering

SHORT ABSTRACT:

A protocol for the synthesis and processing of polycrystalline SrTiO₃ ceramics doped non-

uniformly with Pr is presented along with the investigation of their thermoelectric properties.

LONG ABSTRACT:

We demonstrate a novel synthesis strategy for the preparation of Pr-doped SrTiO₃ ceramics via a combination of solid state reaction and spark plasma sintering techniques. Polycrystalline ceramics possessing a unique morphology can be achieved by optimizing the process parameters, particularly spark plasma sintering heating rate. The phase and morphology of the synthesized ceramics were investigated in detail using X-ray diffraction, scanning electron microcopy and energy-dispersive X-ray spectroscopy. It was observed that the grains of these bulk Pr-doped SrTiO₃ ceramics were enhanced with Pr-rich grain boundaries. Electronic and thermal transport properties were also investigated as a function of temperature and doping concentration. Such a microstructure was found to give rise to improved thermoelectric properties. Specifically, it resulted in a significant improvement in carrier mobility and the thermoelectric power factor. Simultaneously, it also led to a marked reduction in the thermal conductivity. As a result, a significant improvement (> 30%) in the thermoelectric figure of merit was achieved for the whole temperature range over all previously reported maximum values for SrTiO₃-based ceramics. This synthesis demonstrates the steps for the preparation of bulk polycrystalline ceramics of non-uniformly Pr-doped SrTiO₃.

INTRODUCTION:

Oxide thermoelectrics were shown to be promising candidates for high-temperature thermoelectric applications, from stability and cost perspectives to electronic transport properties. Among the n-type oxide thermoelectrics, highly doped strontium titanate (STO) has attracted much attention due to its intriguing electronic properties. However, a large total thermal conductivity ($\kappa\sim 12~\text{Wm}^{-1}\text{K}^{-1}$ at 300 K for single crystals) and a low carrier mobility ($\mu\sim 6~\text{cm}^2\text{V}^{-1}~\text{s}^{-1}$ at 300 K for single crystals) detrimentally affect the thermoelectric performance which is evaluated by a dimensionless figure of merit, ZT = $\alpha^2\sigma T/\kappa$, where α is the Seebeck coefficient, σ the electrical conductivity, T the absolute temperature in Kelvin, and κ the total thermal conductivity. We herein define the numerator as the power factor, PF = $\alpha^2\sigma T$. In order for this oxide thermoelectric material to compete with other high-temperature thermoelectrics (such as SiGe alloys), a more pronounced increase in the power factor and/or decrease in lattice thermal conductivity are required.

The majority of the experimental studies in order to improve the thermoelectric properties of STO have mainly focused on the reduction of thermal conductivity through strain-field and mass fluctuation scattering of phonons. These attempts include: (i) Single- or double-doping of the Sr²⁺ and/or Ti⁴⁺ sites, as the main efforts with respect to this direction,^{2,3} (ii) Synthesis of natural superlattice Ruddlesden–Popper structures in order to further reduce the thermal conductivity through insulating SrO layers,⁴ and (iii) Composite engineering by addition of a nanosized second phase.⁵ However, up until recently, no enhancement strategy has been reported to substantially increase the thermoelectric power factor in these oxides. The reported maximum power factor (PF) values in bulk single- and poly-crystalline STO have been confined to an upper limit of PF < 1.0 Wm⁻¹K⁻¹.

A variety of synthesis approaches and processing techniques have been employed to implement the ideas attempted above. The powder synthesis routes include conventional solid-state reaction, sol-gel, hydrothermal, and combustion synthesis, whereas conventional sintering, hot pressing and recently spark plasma sintering are among the common techniques used to densify the powders into bulk ceramics. However, for a similar dopant (e.g. La) and doping concentration, the resulting bulk ceramics exhibit a range of electronic and thermal transport properties. This is in large due to the strongly process-dependent defect chemistry of SrTiO₃ which results in synthesis-dependent properties. There is only a handful of reports optimizing the synthesis and processing parameters to benefit thermoelectric transport. It is worth mentioning that due to the very small phonon mean free path in SrTiO₃ (I_{ph}~2 nm at 300K), anostructuring is not a viable option for the improvement of the TE performance of bulk STO ceramics primarily through the reduction of the lattice thermal conductivity.

Recently, we reported more than 30% improvement in the thermoelectric figure of merit in non-uniformly Pr-doped SrTiO₃ ceramics originating from a simultaneously enhanced thermoelectric power factor and reduced thermal conductivity. ^{12,13} In this detailed video protocol, we present and discuss the steps of our synthesis strategy for the preparation of these Pr-doped STO ceramics exhibiting improved electronic and thermoelectric properties.

PROTOCOL:

1. Preparation of Pr-doped SrTiO₃ Powder

1.1) In order to prepare 10 g of $Sr_{0.95}Pr_{0.05}TiO_3$ powder, weigh the stoichiometric amounts of $SrCO_3$ powder (7.53407 g), TiO_2 nanopowder (4.28983 g), and Pr_2O_3 sintered lump (0.44299 g) following the reaction for x = 0.05

$$(1-x)\text{SrCO}_3 + \left(\frac{x}{2}\right)\text{Pr}_2\text{O}_3 + \text{TiO}_2 \to \text{Sr}_{1-x}\text{Pr}_x\text{TiO}_{3-\delta} + (1-x)\text{CO}_2$$
 (1)

- 1.2) Grind the weighed Pr₂O₃ sintered lumps to fine particles using an agate mortar and pestle.
- 1.3) Add the weighed $SrCO_3$ powder and TiO_2 nanopowder to the Pr_2O_3 and continue grinding and mixing using an agate mortar and pestle until a visually homogenous powder is achieved.
- 1.4) Load the ground powder into a glass jar and mix using a turbulator for 30 minutes to homogenize the mixture.
- 1.5) Load the resulting mixed powder into a meticulously cleaned and polished stainless steel die (1 inch in diameter) and sandwich it between two stainless steel plungers.
- 1.6) Cold press the powder using a press under an approximately 1 metric ton load.
- 1.7) Eject the cold-pressed pellet by placing the die on a hollowed stainless steel cylinder and

pushing the plungers and the pellet out from the top using a pushing rod. Upon ejection of the cold pressed pellet (green body) from the die, clean any contamination on the circumferential surface of the pellet by gently covering the pellet with a small piece of scotch-tape and removing a thin layer by ripping the tape.

- 1.8) Place the pellet vertically in an alumina boat filled with commercially purchased SrTiO₃ powder as the barrier between the alumina boat and the cold press pellet.
- 1.9) Place the boat in a tube furnace, heat up to 1300 °C in 3 hours and keep it at this temperature for 15 hours. Allow the pellet to cool down to room temperature inside the furnace when the calcination is over. This step is referred to as the "calcination process" thereafter.
- 1.10) Grind the pellet using the agate mortar and pestle and load the resulting powder into a glass jar for further mixing using the turbulator.
- 1.11) Load the powder into the stainless steel die and cold pressed under an approximately 3 metric tons of load.
- 1.12) Repeat the step 1.9 one more time at 1400 °C in 3 hours and keep it at this temperature for 20 hours.
- 1.13) Grind the pellet using the agate mortar and pestle.
- 1.14) Repeat steps 1.11, 1.12, and 1.13 one more time for the solid state reaction to reach completion.

2. Preparation of Bulk Polycrystalline Pr-doped SrTiO₃ Ceramic

- 2.1) Weigh 1.6 g of the as-prepared powder (for a disk 2 mm thick and 12.7 mm in diameter).
- 2.2) Prepare circular graphoil pieces to cover the top and bottom interface of the sandwiched powder and graphite plungers in the graphite die. Also, prepare another rectangular graphoil piece to cover the inner wall of the graphite die.
- 2.3) Load the as-prepared powder into a graphite die (12.7 mm in inner diameter) and sandwich the powder between two graphite plungers of the same size. Drill a 2-mm hole in the middle of the length of the graphite die and from the outer surface of the die to about 2 mm of the inner surface for temperature reading.

Note: Adjust the length of the graphite plungers remaining outside the die and position the center of the sandwiched powder cylinder where the hole is placed to get an accurate temperature reading. The faces of the graphite plungers need to be meticulously leveled during the machining of the pieces. Any misalignment can result in the cracking of the sintered pellet

during spark plasma sintering.

- 2.4) Cold-press the powder gently (load < 200 kg) using a press prior to mounting on the spark plasma sintering plate inside the chamber. Use flat polished stainless steel support plates between the top and bottom plungers and the press stage to avoid damaging the graphite plungers.
- 2.5) Wrap a piece of graphite felt around the die for insulation and secure it with graphite yarn. Devise a window on the graphite felt by cutting a rectangular piece of the felt where the temperature reading hole is placed on the die.
- 2.6) Place the loaded graphite die and plungers in the spark plasma sintering chamber. Move the stage to the final position.
- 2.7) Focus and align the Pyrometer target circle on the temperature reading hole of the die. Make sure the emissivity setting of the pyrometer is set for graphite.
- 2.8) Close the chamber and put a 7.7 kN load (approximately 60 MPa) on the sample. Vacuum and purge the chamber with Ar three times and leave the chamber under dynamic vacuum of 6 Pa.
- 2.9) Increase the temperature by increasing the current (manually or using a program). Use 250 A min⁻¹ (corresponding to approximately 300-400 °C min⁻¹) for the optimized samples. This is the most important step of the spark plasma sintering process.
- 2.10) Keep the temperature at 1500 °C for 5 min by manually adjusting the current or using the program. At the end of the 5 min holding period, shut the current off and quickly release the 7.7 kN load to avoid cracking the sample during the cooling down. Let the sample cool to room temperature inside the chamber.
- 2.11) Release the bulk pellet from the graphite die gently using the cold press. This is done by placing the graphite die on a hollowed steel cylinder and ejecting the pellet and the graphite plungers using a steel pushing rod from the top.
- 2.12) Remove the graphoil on top and bottom faces of the pellet as well as the circumferential surface using a sharp razor blade.
- 2.13) Polish the sample using a rough sand paper (400 grid) down for 0.3-0.5 mm from each side to assure the complete removal of the graphoil. Clean the sample with acetone.
- 3. Characterization of Electronic and Thermal Transport Properties of Bulk Ceramics
- 3.1) Determine the density of the ceramic disk, p, using the Archimedes method.

3.1.1) Measure the weight of the sample, W_{dry} , and then the weight of the sample submerged in water, W_{wet} , on a stabilized density measurement system and calculate the Archimedes density from

$$\rho = \frac{W_{\text{dry}}}{W_{\text{dry}} - W_{\text{wet}}} \rho_{\text{water}} \tag{2}$$

where ρ_{water} is the density of the water at the measurement temperature (e.g. equals 1 g cm $^{\text{-3}}$ at 300K). $^{\text{14}}$

3.2) Measure the thermal diffusivity of the sample, d, using the transient laser-flash technique under a 75 ml min⁻¹ flow of Ar. Measure the thickness of the sample, L, accurately first using a digital micrometer.

Note: Parallel-faced samples with different sizes and shapes (e.g. round discs 12.7 mm in diameter or square $10 \times 10 \text{ mm}^2$ disks) and thicknesses between 0.5 and 5 mm can be easily measured.

3.2.1) In the laser-flash thermal diffusivity technique, irradiate one face of the sample by a short (~1 ms) laser pulse and record the temperature rise on the opposite face by an infra-red detector. Then calculate thermal diffusivity by the laser-flash interface software from the thickness of the sample and the temperature rise-time profile using the Parker equation 15

$$d = 0.138 \frac{L^2}{t_{1/2}} \tag{3}$$

where L is the thickness of the disk and $t_{1/2}$ is the half-time of the maximum temperature rise of the other side of the sample.

Note: The Parker model¹⁵ assumes ideal conditions of adiabatic sample and instantaneous pulse heating, other models have been proposed over the years, which account for various losses in the measurement such as heat losses, finite pulse duration, non-uniform pulse heating and nonhomogeneous structures. We have used the Cowan model¹⁶ with pulse correction which is one of the most advanced methods. It should be noted that in order to maximize the amount of thermal energy transmitted from the front surface and to maximize the signal observed by the IR detector, the sample surfaces must be highly emissive. Usually this requires the application of a thin coating of graphite to the sample surfaces. An uncertainty of 2-5% in the measurement of thermal diffusivity exists, arising from the determination of dimension.¹⁷

- 3.3) Cut the disk pellet using a diamond saw into rectangular bars, $2 \times 2 \times 10 \text{ mm}^3$, electrical conductivity and Seebeck coefficient measurements as well as a square disk, $4 \times 4 \times 1.5 \text{ mm}^3$ for high-temperature specific heat and a thin rectangular piece, $8 \times 5 \times 1 \text{ mm}^3$ for Hall measurements.
- 3.4) Measure the specific heat, C_p , of the sample on the flat and mirror-polished square piece (4 x 4 x 1.5 mm³) using a differential scanning calorimetry (DSC) under argon flow.¹⁸.
- 3.4.1) Use a heating rate of 5 K min $^{-1}$ up to 40° C for an isothermal hold for 10 min to allow the

sample to reach thermal equilibrium followed by 20 K min⁻¹ heating rate up to 500°C, with an exact cooling rate which followed. Perform the measurement under the flow of argon (50 mL min⁻¹ is suggested).

Note: Due to the sensitivity of the method used for analysis, conduct three measurements to determine the heat capacity including (1) a baseline measurement to subtract the background, (2) measurement of the specific heat of a standard material (such as sapphire) with a known C_P , and (3) measurement of the specific heat of the sample. Ensure that samples are flat and mirror-polished in order to make an ideal contact with the bottom of the measurement crucible (Pt/Rh pans with Al_2O_3 crucibles used in this work). More details on the exact structure of the DSC stage, a comparison of the DSC techniques to others, and exact instructions for measuring a sample can be found in various sources. ¹⁹

3.5) Calculate the high-temperature thermal conductivity, κ , of the sample from the measured values of thermal diffusivity, d, the specific heat, C_P , and the density, ρ using²⁰

$$\kappa = \rho dC_P. \tag{4}$$

- 3.6) Gold plate the probes contact points (4 contacts) on the 2 x 2 x 10 mm³ piece cut from the sample to alleviate the contact resistance issues.
- 3.6.1) In order to sputter gold only on the desired contact areas, wrap a scotch-tape around the $2 \times 2 \times 10 \text{ mm}^3$ sample to use as a stencil. Leave the $2 \times 2 \text{ mm}^2$ faces un-covered. Using a razor blade, cut out 2 very small holes (approximately 1 mm in diameter) in the middle of the $2 \times 10 \text{ mm}^2$ face along a line separated by the probes distance.
- 3.6.2) Sputter a ~ 200 nm-thick gold film using a bench-top gold sputtering unit. 21
- 3.7) Measure the electrical transport properties, namely the electrical conductivity and Seebeck coefficient) of the sample as a function of temperature^{22,23}.
- 3.7.1) Measure electrical conductivity using the four-terminal method. Measure the Seebeck coefficient on the same setup using the measurements of temperature and voltage via the two middle thermocouple "probes". Measure the distance between these two probes using a digital microscope. More details on the electrical transport measurements can be found elsewhere.^{22,23}
- 3.8) Measure the Hall carrier concentration as a function of temperature on the 8 x 5 x 1 mm³ sample using a Physical Properties Measurement System.²⁴

REPRESENTATIVE RESULTS:

X-ray diffractions patterns were collected for the as-prepared powders and the corresponding bulk ceramics as a function of Pr-content (Figure 1) in order to study the effect of Pr-doping on the SrTiO₃ lattice, solubility of Pr in SrTiO₃ and the formation of secondary phase(s). The

patterns confirm the formation of $SrTiO_3$ phase in all the as-prepared powders where the reflections can be indexed to a cubic lattice with $Pm\overline{3}m$ space group (Figure 1a). The monotonic change in the indexed lattice parameter from a = 3.906 for x = 0 (undoped) with increasing Pr content confirms the distortion of the lattice upon incorporation of smaller Pr^{+3} ions in Sr^{2+} sites. Weak reflections were also observed for x > 0.05, corresponding to the intermediate praseodymium oxide phase (e.g. Pr_5O_9), which increase intensity with increasing nominal Pr concentration (Figure 1b). It was found that by optimizing the SPS heating rate the reflections corresponding to the secondary phase(s) are fully disappeared (Figure 1c, d).

A synthesis-structure-property relationship study was conducted in order to understand the effect of the SPS heating rate and the observed secondary phase on the electronic transport properties. Scanning electron micrographs were acquired in conjunction with energy-dispersive X-ray spectra to investigate the effect of the synthesis and densification parameters, particularly spark plasma sintering heating rate, on the morphology and the chemistry of the grains and grain boundaries (Figure 2). Synthesis-(micro) structure-property relationship was investigated by monitoring the temperature-dependence of electronic transport properties of the bulk ceramics (Figure 2). It was found that electrical conductivity can be significantly increased through the optimization of the SPS heating rate (Figure 2a). This improvement was attributed to a marked enhancement in the carrier mobility since similar Seebeck coefficient and carrier concentration values were obtained for samples densified under different heating rates (Figure 2a, inset). Scanning electron micrographs have shown that the Pr-rich secondary phase present in the as prepared powder (Figure 2b, inset) can partially dope the grain boundary region during the SPS process (Figure 2b). By the appropriate optimization of the SPS heating rate, the grain boundary region can be fully doped with Pr, in which case an enhancement in the carrier mobility is observed (Figure 2c).

Electronic and thermal transport properties of the bulk ceramics prepared with a high SPS heating rate of 300 °C min⁻¹ were measured as a function of temperature and Pr content in order to calculate the overall thermoelectric figure of merit (Figure 3). All samples exhibit a degenerate semiconducting behavior (i.e. metallic-like) for electrical conductivity (Figure 3a) and a corresponding diffusive-like thermopower (Figure 3b). Large thermoelectric power factor > 1 W m⁻¹ K⁻¹ was observed for ceramics with x > 0.075 in a broad temperature range reaching a maximum of 1.3 W m^{-1} K⁻¹ for x = 0.15, corresponding to 3 at.% Pr (Figure 3c). Simultaneously, a monotonic reduction in thermal conductivity was observed with increasing Pr up to x = 0.15(Figure 3d). The optimum nominal Pr concentration was found to be x = 0.15 for these samples. Error! Bookmark not defined. More than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values were achieved as a result of the simultaneous enhancement in the thermoelectric power factor and reduction in the thermal conductivity (Figure 3e). 13 Maximum ZT value of 0.35 was obtained at 500°C. If the measurements are to be performed under a highly reducing atmosphere, maximum ZT values above 0.6 are predicted at 1000°C by fitting the experimental electronic and thermal transport data. The possibility of further improvement of the power factor at these temperatures, and hence ZT also exist if the carrier concentration can be further increased.³⁰

Figure 1: X-ray diffraction profiles. (a) X-ray diffraction (XRD) profiles of $Sr_{1-x}Pr_xTiO_{3-\delta}$ powders before SPS as a function of nominal Pr content. (b) Magnified view of the dashed rectangle in (a), (c) XRD profiles of $Sr_{1-x}Pr_xTiO_{3-\delta}$ with x=0.075 before SPS (Powder) and after high-heating-rate SPS (Bulk Ceramic). Photographs of cold-pressed powder after solid-state reaction and the corresponding SPSed ceramic are shown. (d) Magnified view of the dashed rectangle in (c). Reprinted with permission. ¹²

Figure 2: Effect of SPS heating rate. (a) Temperature dependence of electrical conductivity and Seebeck coefficient (inset) for $Sr_{1-x}Pr_xTiO_{3-\delta}$ ceramics with x=0.075 processed using two different SPS heating rates of 100 °C min⁻¹ and 300 °C min⁻¹, respectively. (b) Backscattered electron (BSE) micrograph of the ceramic made under 100 °C min⁻¹ SPS. A typical Pr spectrum of the EDS line scan across a PrO_y particle is shown. (c) Backscattered electron micrograph of the ceramic made under a 300 °C min⁻¹ SPS heating rate. A typical Pr spectrum of EDS line scan across two grains, grain 1 and grain 2, is shown. The inset depicts the BSE micrograph of the $Sr_{0.95}La_{0.05}TiO_3$ ceramic prepared following the same recipe. Reprinted with permission. ¹²

Figure 3: Thermoelectric transport properties. Temperature dependence of (a) electrical conductivity (σ), (b) Seebeck coefficient (α), (c) power factor (defined as PF= $\alpha 2\sigma T$), (d) total thermal conductivity and (e) figure-of-merit, ZT for $Sr_{1-x}Pr_xTiO_{3-\delta}$ ceramics as a function of Pr content. Temperature dependence of reported maximum ZT values in the literature is shown for comparison. ^{2,25-28,} Reproduced with permission. ^{12,13}

DISCUSSION:

In this protocol, we have presented the steps of the synthesis strategy in order to successfully prepare bulk polycrystalline Pr-doped SrTiO₃ ceramics exhibiting improved electronic and thermoelectric properties. The main steps of the protocol include (i) the solid-state synthesis of the doped SrTiO₃ powder in air under atmospheric pressure and (ii) taking advantage of the capabilities of spark plasma sintering technique to densify the as-prepared powder into highdensity bulk ceramics and at the same time to further dope the grain boundaries of the sample with Pr. It was demonstrated that by applying a high SPS heating rate (300-400 °C min⁻¹) the reflections in the X-ray diffraction patterns corresponding to the secondary phase(s) are fully disappeared (Figure 1c, d). The high heating rate is one of the key differences of this synthesis strategy with previous reports in the literature. ¹⁷ Complete incorporation of Pr dopants in Sr sites, which lead to measured carrier concentration values corresponding to the nominal doping values¹², is one of the main accomplishments of this synthesis strategy. As a result, higher carrier concentration values were observed for the samples prepared in this work comparing to the values reported in the literature for the samples prepared using other methods with same nominal doping concentrations. Taking advantage of the highly-reducing atmosphere of spark plasma sintering chamber (graphite die under dynamic vacuum and high heating rate) to reduce the oxide powder in order to create oxygen vacancies as another source of electron doping also differentiates this protocol from other samples reported in the literature prepared under Ar²⁹ or forming gas (5-10% H in Ar)²⁹ atmospheres.

Furthermore, it was observed that by applying a high SPS heating rate, secondary phases, which are primarily praseodymium oxide, can locally dope the grain boundary regions. This non-uniform doping of the ceramic samples resulted in the observation of an unexpected marked improvement in the carrier mobility, thermoelectric power factor as well as a significant reduction in the total thermal conductivity. The experimental data suggest that the observed enhancement is correlated to the unique microstructure of the ceramics and the presence of Pr-rich boundary regions. Such boundaries were not observed for the SrTiO₃ ceramics doped with other dopants such as La (Figure 2c, inset) or prepared with other synthesis methods reported in the literature. A recent theoretical study by Dawson and Tanaka attempts to explain this observation (i.e. why Pr-doping induces core–shell formation and La-doping does not) by investigating the local structure and energetics of Pr- and La-doped SrTiO₃ grain boundaries. Their calculations show a far stronger energetic benefit for Pr-doping of grain boundaries than La-doping. Since the electronic transport results could not be explained by effective medium theory, it is believed that a charge transfer mechanism is likely to be involved in the carrier mobility improvement.

The results prove that the strategy can be applied as a method to synthesize in-situ composite structures particularly of the core-shell type structure. However, the efficiency of the non-uniform doping depends on the nature of the constituent phases of the composite. This method is limited by the melting point of the phases present in the material. High heating rates of 300-400 °C min⁻¹ can locally melt the material under mechanical pressure and either crack the sample or change the properties. Therefore, this protocol is a good synthesis strategy to be implemented to other oxides due to their high-temperature stability. Caution should be exercised when the method is applied to other thermoelectric materials. The conditions of spark plasma sintering technique need to be optimized before applying the strategy to other materials systems. It should be noted that due to the high heating rates applied, significant grain growth is expected if the densification part of the protocol is employed on nanosctructured powders.

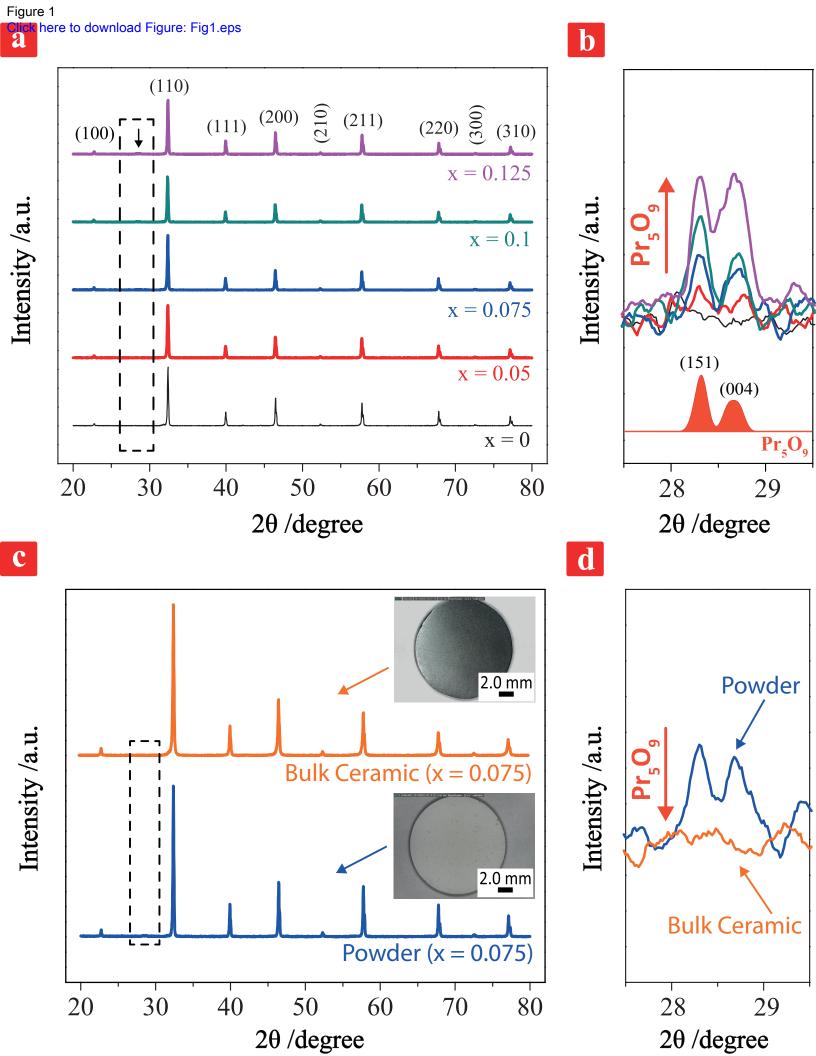
Future work to modify the current protocol in order to further improve the thermoelectric properties will focus on the simultaneous optimization of the effect of the mechanical load (60 MPa in this protocol), the SPS soaking temperature, and soaking time to further reduce the thermal conductivity, improve the power factor, and to improve the success rate of the preparation of crack-free samples.

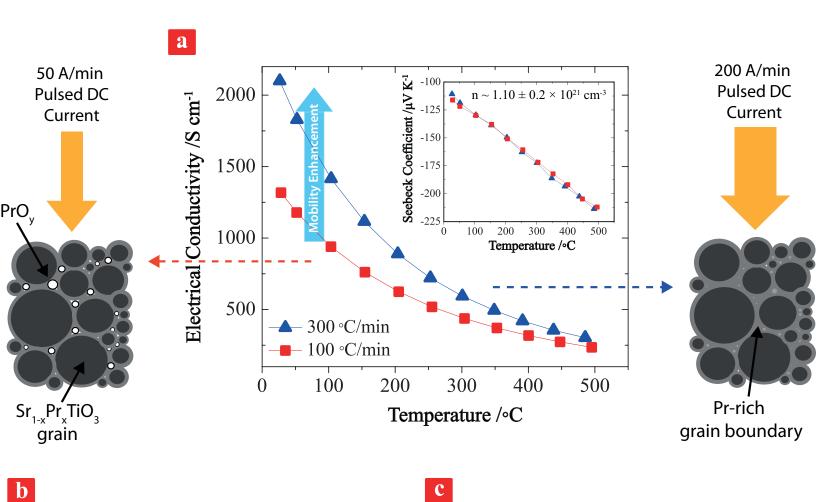
In conclusion, we have demonstrated the synthesis approach for the preparation of bulk polycrystalline Pr-doped SrTiO₃ ceramics with Pr-rich grain boundaries exhibiting significantly improved electronic and thermoelectric properties. The synthesis strategy utilized in this work may open new horizons and opportunities to other properties and applications of this broadly functional perovskite where higher carrier mobility is desired. Moreover, the grain boundary engineering using spark plasma sintering demonstrated in this work can be implemented in other oxide materials to modify the physical properties.

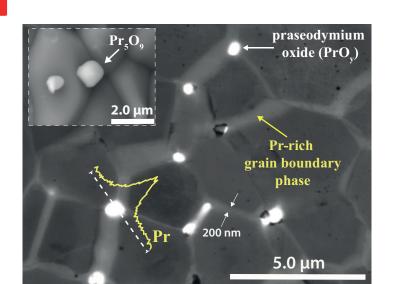
DISCLOSURES:

The authors have nothing to disclose.

ACKNOWLEDGMENTS:


The authors wish to acknowledge the competitive faculty-initiated collaboration (FIC) grant from KAUST.


REFERENCES


- 1. Ohta, S., Nomura, T., Ohta, H., Koumoto, K. High-temperature Carrier Transport and Thermoelectric Properties of Heavily La-or Nb-doped SrTiO₃ Single Crystals. *J. Appl. Phys.* **97**, doi: 10.1063/1.1847723 (2005).
- 2. Wang, H. C. *et al.* Enhancement of Thermoelectric Figure of Merit by Doping Dy in La_{0.1}Sr_{0.9}TiO₃ Ceramic. *Mater. Res. Bull.* **45**, 809 812, doi: 10.1016/j.materresbull.2010.03.018 (2010).
- 3. Bhattacharya, S., Mehdizadeh Dehkordi, A., Alshareef, H. N., Tritt, T. M. Synthesis–Property Relationship in Thermoelectric $Sr_{1-x}Yb_xTiO_{3-\delta}$ Ceramics. *J. Phys. D: Appl. Phys.* **47**, 385302 doi: 10.1088/0022-3727/47/38/385302 (2014).
- 4. Wang, Y., Lee, K. H., Ohta, H., Koumoto, K. Thermoelectric Properties of Electron Doped SrO(SrTiO₃)_n (n=1,2) Ceramics. *J. Appl. Phys.* **105**, 1037011-1037016, doi: 10.1063/1.3117943 (2009).
- 5. Wang, N. et al. Effects of YSZ Additions on Thermoelectric Properties of Nb-Doped Strontium Titanate. J. Electron. Mater. **39**, 1777-1781, doi: 10.1007/s11664-010-1144-1 (2010).
- 6. Muta, H., Kurosaki, K., Yamanaka, S. Thermoelectric Properties of Rare Earth Doped SrTiO₃. *J. Alloys Compd.* **350**, 292-295, doi: 10.1016/S0925-8388(02)00972-6 (2003).
- 7. Shang, P.-P., Zhang, B.-P., Li, J.-F., Ma, N. Effect of Sintering Temperature on Thermoelectric Properties of La-doped SrTiO₃ Ceramics Prepared by Sol-gel Process and Spark Plasma Sintering. *Solid State Sciences* **12**, 1341-1346, doi: 10.1016/j.solidstatesciences.2010.05.005 (2010).
- 8. Wang, Y., Fan, H. J., $Sr_{1-x}La_xTiO_3$ Nanoparticles: Synthesis, Characterization and Enhanced Thermoelectric Response. *Scripta Materialia* **65**, 190–193, doi: 10.1016/j.scriptamat.2011.03.037 (2011).
- 9. Kikuchi, A., Okinakab, N., Akiyama, T. A Large Thermoelectric Figure of Merit of Ladoped SrTiO₃ Prepared by Combustion Synthesis with Post-Spark Plasma Sintering. *Scripta Materialia* **63**, 407–410, doi: 10.1016/j.scriptamat.2010.04.041 (2010).
- 10. Obara, H., et al. Thermoelectric Properties of Y-Doped Polycrystalline SrTiO₃. *Jpn. J. Appl. Phys.* **43**, L540-L542, doi: 10.1143/JJAP.43.L540 (2004).
- 11. Koumoto, K., Wang, Y., Zhang, R., Kosuga, A., Funahashi, R. Oxide Thermoelectric Materials: A Nanostructuring Approach. *Annu. Rev. Mater. Res.* **40**, 363-394, doi: 10.1146/annurev-matsci-070909-104521 (2010).
- 12. Mehdizadeh Dehkordi, A., et al. Large Thermoelectric Power Factor in Pr-Doped $SrTiO_{3-\delta}$ Ceramics via Grain-Boundary-Induced Mobility Enhancement. *Chem. Mater.* **26**, 2478-2485, doi: 10.1021/cm4040853 (2014).
- 13. Mehdizadeh Dehkordi, A., Bhattacharya, S., He, J., Alshareef, H. N., Tritt, T. M. Significant Enhancement in Thermoelectric Properties of Polycrystalline Pr-doped SrTiO₃

- Ceramics Originating from Nonuniform distribution of Pr dopants. *Appl. Phys. Lett.* **104**, 1939021-1939024, doi: 10.1063/1.4875925 (2014).
- 14. ASTM B962-14, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes' Principle, ASTM International, West Conshohocken, PA, www.astm.org, doi: 10.1520/B0962-14 (2014).
- 15. Parker, W. J., Jenkins, R. J., Butler, C. P., Abbott, G. L. Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity. *J. Appl. Phys.* **32**, 1679-1684, doi: 10.1063/1.1728417 (1961).
- 16. Cowan, R. D, Pulse Method of Measuring Thermal Diffusivity at High Temperatures. *J. Appl. Phys.* **34**, 926-927, doi: 10.1063/1.1729564 (1963).
- 17. Mehdizadeh Dehkordi, A., An Experimental Investigation Towards Improvement of Thermoelectric Properties of Strontium Titanate Ceramics. *All Dissertations. Paper 1333* http://tigerprints.clemson.edu/all_dissertations/1333 (2014).
- 18. Netzsch GmbH. DSC Pegasus 404C Operating Manual. Netzsch GmbH, Selb, Germany (1999).
- 19. Daw, J. E. Measurement of Specific Heat Capacity Using Differential Scanning Calorimeter. *Report of US Department of Energy* Idaho National Laboratory (2008).
- 20. Tritt, T. M. Thermal Conductivity: Theory, Properties and Applications. Kluwer Academic (2004).
- 21. Quorum Technologies Ltd. SC7610 Sputter Coater Operating Manual. Quorum Technologies Ltd., East Sussex, England (2002).
- 22. Tritt, T. M. Electrical and Thermal Transport Measurement Techniques for Evaluation of the figure-of-Merit of Bulk Thermoelectric Materials. in *Thermoelectrics Handbook: Macro to Nano* (D. M. Rowe, ed.), pp. 23(1)-23(17), CRC press, Boca Raton (2006).
- 23. Burkov, A. T. Measurements of Resistivity and Thermopower: Principles and Practical Realization, in *Thermoelectrics Handbook: Macro to Nano* (D. M. Rowe, ed.), 22 (1)-22(12), CRC press, Boca Raton (2006).
- 24. Quantum Design. Physical Property Measurement System: AC Transport Option User's Manual. Quantum Design, San Diego, USA (2003).
- 25. Ohta, S., Ohta, H. , Koumoto, K. Grain Size Dependence of Thermoelectric Performance of Nb-doped $SrTiO_3$ Polycrystals. J. Ceram. Soc. Jpn. 114, 102 (2006).
- 26. Wang, N., He, H., Ba, Y., Wan, C., Koumoto, K. Thermoelectric Properties of Nb-doped SrTiO₃ Ceramics Enhanced by Potassium Titanate Nanowires Addition. J. Ceram. Soc. Jpn. 118, 1098, doi: 10.2109/jcersj2.118.1098 (2010).
- 27. Ohta, S., et al. Large Thermoelectric Performance of Heavily Nb-doped SrTiO₃ Epitaxial Film at High Temperature. Appl. Phys. Lett. 87, 092108, doi: 10.1063/1.2035889 (2005).
- 28. Kovalevsky, A., Yaremchenko, A., Populoh, S., Weidenkaff, A., Frade, J. Enhancement of Thermoelectric Performance in Strontium Titanate by Praseodymium Substitution. J. Appl. Phys. 113, 053704, doi: 10.1063/1.4790307 (2013).
- 29. Kovalevsky, A. V. *et al.* Towards a High Thermoelectric Performance in Rare-Earth Substituted SrTiO3: Effects Provided by Strongly-Reducing Sintering Conditions. Phys.Chem.Chem.Phys. 16, 26946, doi: 10.1039/C4CP04127E (2014)
- 30. Dawson, J. A., Tanaka, I. Local Structure and Energetics of Pr- and La-Doped SrTiO3 Grain Boundaries and the Influence on Core–Shell Structure Formation. *J. Phys. Chem. C.* **118**,

- 25765-25778, doi: 10.1021/jp508444k (2014).
- 31. Mehdizadeh Dehkordi, A., et al. New Insights on the Synthesis and Electronic Transport in Bulk Polycrystalline Pr-doped SrTiO $_{3-\delta}$. Appl. Phys. Lett. **117**, 055102, doi: 10.1063/1.4905417 (2015)

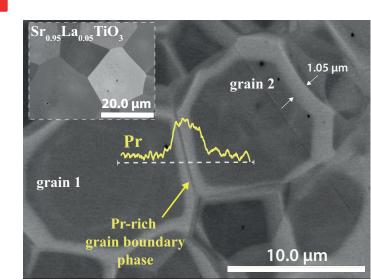
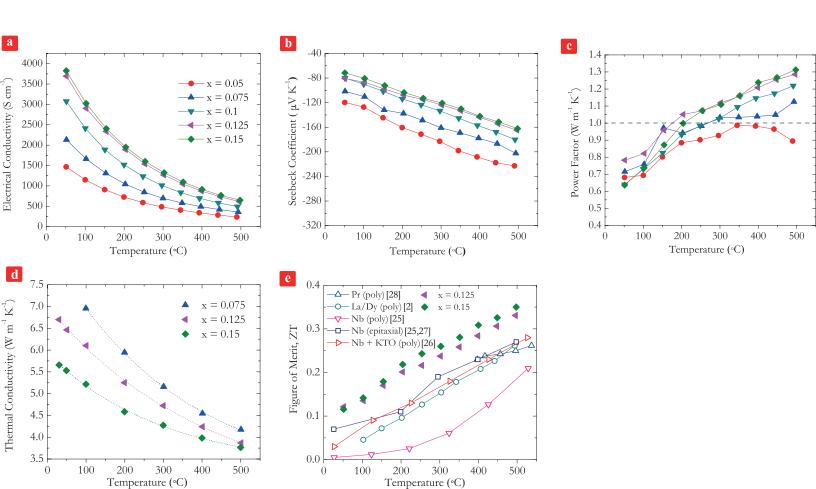



Figure 3 Click here to download Figure: Fig3.eps

Company	Catalog Number
Sigma Aldrich	472018
Sigma Aldrich	718467
203 Sintered Lumps, 99.9% Alfa Aesar	
Dr. Sinter Lab	SPS-515S
Ulvac-Riko	ZEM-2
Netzsch	LFA-457 Microflash
Netzsch	404C Pegasus
Quantum Design	
Hitachi	SU-6600
Oxford Instruments	
Rigaku	Ultima IV
Denton Vacuum	Desk II
South Bay Technology	
	Sigma Aldrich Sigma Aldrich Alfa Aesar Dr. Sinter Lab Ulvac-Riko Netzsch Netzsch Quantum Design Hitachi Oxford Instruments Rigaku Denton Vacuum

Comments/Description

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	
Author(s):	
•	ne box): The Author elects to have the Materials be made available (as described at ww.jove.com/publish) via: Standard Access Open Access
Item 2 (check one	box):
	uthor is NOT a United States government employee.
	Author is a United States government employee and the Materials were prepared in the his or her duties as a United States government employee.
	uthor is a United States government employee but the Materials were NOT prepared in the his or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed, or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials; "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in **Section 3** above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. <u>Grant of Rights in Video Standard Access</u>. This **Section 5** applies if the "Standard Access" box has been checked in **Item 1** above or if no box has been checked in **Item 1** above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to **Section 7** below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. <u>Government Employees.</u> If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in **Item 2** above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. <u>JoVE Discretion</u>. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. <u>Fees</u>. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law</u>. This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDING AUTHOR:

Name:		
Department:		
Institution:		
Article Title:		
Article Title.		
Signature:	Date:	

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- 2) Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For guestions, please email submissions@jove.com or call +1.617.945.9051

February 21, 2015

Journal of Visualized Experiments

Dear Editor:

We received the editorial and reviewers' comments on the manuscript JoVE52869 entitled "Synthesis of Non-uniformly Pr-doped SrTiO₃ Ceramics and Their Thermoelectric Properties" by Arash Mehdizadeh Dehkordi, Sriparna Bhattacharya, Taghi Darroudi, Husam N. Alshareef and Terry M. Tritt. We would like to express our appreciation for your time and efforts spent on handling our manuscript. We have revised and improved the manuscript according to the comments. Detailed response to the comments and the changes made in the manuscript are included at the end of this letter.

If you have any further questions or if any of our coauthors or us, may provide any additional information, please do not hesitate to contact us. Thank you for considering this manuscript for publication in the *Journal of Visualized Experiments*.

Sincerely yours,

Hrash Mehdizadeh Dehkordi*

Arash Mehdizadeh Dehkordi, Ph.D. Department of Materials Science and Engineering

Clemson University

Email: amehdiz@g.clemson.edu

and

Terry M. Tritt*
Terry M. Tritt, Ph.D.

Alumni Distinguished Professor of Physics

Office Phone: 864-656-5319 Email: <u>ttritt@clemson.edu</u> *electronic signature The manuscript has been revised and improved according to the comments. The changes made in the revised manuscript are included under the Response and Change sections below and are highlighted in the manuscripts using "Track-Changes" function of Microsoft Word. We believe that the critique have greatly improved the quality and clarity of the manuscript. Our responses to these comments are as follows:

Science Editor:

Comment #1: Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues. The JoVE editor will not copy-edit your manuscript and any errors in the submitted revision may be present in the published version.

Response: The manuscript has been proofread.

Comment #2: Please add more details to your protocol steps. Please ensure you answer the "how" question, i.e., how is the step performed? Alternatively, add references to published material specifying how to perform the protocol action.

Response: Additional information along with the reference for detailed operation was added to the steps of the protocol to answer the "how" questions.

Comment #3: 1.12: Should the pellet be ground after this second calcination process before 1.13?

Response and Change: Thank you for pointing this out. This intermediate grinding was added as an extra step.

Comment #4: 2.10: Followed by what of the current?

Response and Change: This sentence was rephrased.

Comment #5: 3.3: How is the pellet cut? Also, please indicate in which steps each kind of cut piece is used. If the steps are not included in the protocol, please give citations for the analysis.

Response and Change: The pellet is cut using a diamond saw. This information was added to the description of this step (3.3).

Comment #6: 3.4.1: Please provide a reference on how to perform the DSC. Also, please add the experimental parameters: how much of the samples were used, how long, etc.

Response and Change: The reference of DSC and the details of the measurement parameters were added to the manuscript.

Comment #7: 3.6: Please provide a reference on how to operate the gold sputtering unit. How are the tiny holes cut?

Response and Change: The reference of DSC and the details of the measurement parameters were added to the manuscript.

Comment #8: Please revise the highlighting of the protocol text for filming. Only 2.75 pages of highlighted protocol text is permissible and there are currently 3.25 pages. Please include all relevant details that are required to perform the step in the highlighting. For example: If step 2.5 is highlighted for filming and the details of how to perform the step are given in steps 2.5.1 and 2.5.2, then the sub-steps where the details are provided must be highlighted. The Protocol is >3 pages highlighted. The authors could possibly unhighlight parts of section 3, which appear to be standard techniques without much stepwise detail (like 3.7).

Response and Change: The parts which are not of considered a critical step in the filming were unhighlighted according to editor's comment.

Comment #9: JoVE cannot publish manuscripts containing commercial language. This includes trademark symbols (TM), registered symbols (®), and company names before an instrument or

reagent. Please remove all commercial language from your manuscript and use generic terms instead. All commercial products should be sufficiently referenced in the Table of Materials and Reagents. There is unnecessary branding in 1.6 and 2.4 (Carver) and in 3.2.1 (MicroFlash).

Response and Change: Commercial language including the names of the suppliers of the equipment was removed from the manuscript.

Comment #10: Overall, the discussion is more results than method oriented. The discussion needs to focus on the methods in terms of the 5 discussion requirements. Which steps are critical? Are there any modifications or troubleshooting that typically occurs? How are these methods superior to the alternatives? Please discuss the limitations and critical steps of the technique. What are some future applications of the technique? Simply stating "this work may open new horizons and opportunities to other properties and applications" is not very informative.

Response and Change: The important step(s) were highlighted throughout the protocol. The future opportunities of this synthesis method were clarified. The key differentiating the synthesis strategy described in this protocol from previous reports in the literature were highlighted in the discussion.

Comment #11: JoVE reference format requires that DOIs are included, when available, for all references listed in the article. This is helpful for readers to locate the included references and obtain more information. Please note that often DOIs are not listed with PubMed abstracts and as such, may not be properly included when citing directly from PubMed. In these cases, please manually include DOIs in reference information.

Response and Change: The DOIs of the references which were available were included in the reference list. We'd appreciate if the JoVE template can be modified to include the DOIs for future publications.

Reviewer #1:

Comment #1: Line 70 Reference is not defined.

Response: The reference to room-temperature electron mobility of SrTiO₃ had already been cited. It seems that Microsoft Word cross-referencing had a problem in updating the reference number. This issue was resolved.

Comment #2: Line 92 Reference is not defined.

Response and Change: Reference 12 has been cited for "spark plasma sintering technique".

Comment #3: Line 351 Reference is not defined.

Response and Change: Reference 13 has been cited for the results reported in Line 351.

Comment #4: Figures 2(b) and 2(c) are missing.

Response: Figures 2(b) and 2(c) have already been included in the Fig. 2.eps file uploaded before. It seems like the online pdf compilation system somehow did not incorporate the image.

Comment #5: Y-axis unit of Fig. 3(b) should be microV K⁻¹ not mV K⁻¹.

Response and Change: Fig. 3 (b) was modified. It seems that the "mu" font had been change during file conversion.

Comment #6: Line 352-353 The authors mention that ... whole temperature range over all previously reported maximum values were achieved However, no reference is cited.

Response: We thank the review for his/her comment. However, since the reported values were higher than reported in "all" previous publications we believe that the citations of selected

previous reports might be unnecessary. However, Fig. 3 compares the results to some of the highest values reported in the literature. The references are included in the caption.

Reviewer #2:

Comment #1: Line 114: Researchers generally use the powder of Pr_2O_3 for synthesis. So the authors should shortly explain why the Pr_2O_3 sintered lump was used in the manuscript.

Response: We thank the reviewer for his/her comment. However, to the best of our knowledge researchers use both forms of Pr_2O_3 . Alfa Aesar only supplies Pr_2O_3 in "sintered-lump" form which was chosen due to its competitive price comparing to the Pr_2O_3 supplied by Sigma-Aldrich. Nevertheless, our recent publication (Dehkordi *et al.*, J. Appl. Phys. **117** (2015) 055102) shows that the thermoelectric properties following the synthesis protocol presented in the manuscript is independent of the choice of Pr doping source.

Reviewer #3:

Comment #1: Line 70: Give references to the low carrier mobility of single crystals.

Response and Change: The reference to room-temperature electron mobility of SrTiO₃ had already been cited. It seems that Microsoft Word cross-referencing had a problem in updating the reference number. This issue was resolved.

Comment #2: Line 33-34: Power factor is already a defined term in thermoelectrics. The authors should change the phrase. "We herein define the numerator as the power factor..."

Response: Traditionally, the thermoelectric power factor is defined in the Z context (not ZT) as $\sigma\alpha^2$ where σ is the electrical conductivity, and α the Seebeck coefficient. Researchers still generally define the power factor this way. However, here we define the power factor as $\sigma\alpha^2T$. Not only this definition portrays the actual temperature dependence of the electronic properties incorporated in ZT calculation but it also gives the SI SI of W/m-K similar to that of thermal conductivity.

Comment #3: Line 92: provide references to the conventional sintering.

Response and Change: Reference to "conventional sintering" had already been cited. It seems that the Microsoft Word cross-referencing had a problem in updating the reference number. This issue was resolved.

Comment #4: Line 118 and 120: "Weighted" powder should be "weighted" powder.

Response and Change: Thank you for pointing this out. The typo was fixed.

Comment #5: Line 123-124: 1.4) the step is not clearly understood. How does mixing of TiO_2 powder cause reduction of volume? Do the mixing process involve manual mixing or using any particular mixing instrument?

Response: The mixing can be done either manually or with a commercial tabulator/mixer. Since the TiO_2 is a nanopowder mixing help locally cold-pressing the powder to reduce the overall volume of the portion used so it can be fitted in the stainless steel die. This part was removed to avoid confusing the reader.

Comment #6: Line 131: "green body" is an unscientific language. Replace it with a more appropriate noun.

Response: "Green body" is the technical term used primarily by ceramist for unsintered or unfired ceramics, which has been used extensively in the journal publications as well as the encyclopedia of advanced materials.

Comment #7: Line 138-141: 1.9) Define calcination first and then use the term. the phrase "let it reside.." is inappropriate in scientific papers. Replace it with clear words like "kept it at the elevated temperature.."

Response and Change: Calcination is a known technical term used by researchers in ceramics sciences and processing referring to the thermal treatment (firing) step in the solid-state reaction synthesis of ceramics. We do not believe this term needs to be defined here. The text was modified according to the reviewer's comment on "let it reside...".

Comment #8: Line 144: Has turbulator been used before during mixing the powders? If yes, mention.

Response and Change: Yes. The use of turbulator/mixer was added to step 1.4.

Comment #9: Line 267-271: The step describing the use of scotch-tape is not clear. The author should elaborate on this point for clear understanding to the general readers.

Response and Change: This step was clarified to explain the use of scotch tape as a stencil for the gold sputtering of the contacts.

Revised SciEd Manuscript Click here to download Supplemental File (as requested by JoVE): JoVE-SciEdu-Enthalpy-of-Formation-Revised.docx

Copyright Permission ChemMater Click here to download Supplemental File (as requested by JoVE): renamed_d8058.pdf

Copyright Permission APL Click here to download Supplemental File (as requested by JoVE): Rightslink APL.pdf