Journal of Visualized Experiments

Exploring the effects of atmospheric forcings on evaporation: Experimental integration of the atmospheric boundary layer and shallow subsurface --Manuscript Draft--

Manuscript Number:	JoVE52704R2	
Full Title:	Exploring the effects of atmospheric forcings on evaporation: Experimental integration of the atmospheric boundary layer and shallow subsurface	
Article Type:	Methods Article - JoVE Produced Video	
Keywords:	Bare-soil evaporation; Land-atmosphere interactions; Heat and mass flux; Porous media; Wind tunnel; Soil thermal properties; Multiphase flow	
Manuscript Classifications:	94.42: Geosciences (General); 94.43: Earth Resources and Remote Sensing; 94.45: Environment Pollution; 94.47: Meteorology and Climatology	
Corresponding Author:	Kathleen Smits Colorado School of Mines Golden, CO UNITED STATES	
Corresponding Author Secondary Information:		
Corresponding Author E-Mail:	ksmits@mymail.mines.edu	
Corresponding Author's Institution:	Colorado School of Mines	
Corresponding Author's Secondary Institution:		
First Author:	Kathleen Smits	
First Author Secondary Information:		
Other Authors:	Victoria Eagen	
	Andrew Trautz	
Order of Authors Secondary Information:		
Abstract:	Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages.	
Author Comments:		
Additional Information:		
Question	Response	
If this article needs to be "in-press" by a certain date to satisfy grant requirements, please indicate the date below and explain in your cover letter.		
If this article needs to be filmed by a certain date to due to		

author/equipment/lab availability, please indicate the date below and explain in your cover letter.

TITLE:

Exploring the effects of atmospheric forcings on evaporation: Experimental integration of the atmospheric boundary layer and shallow subsurface

AUTHORS:

Smits, Kathleen
Civil and Environmental Engineering
Colorado School of Mines
Golden, CO
ksmits@mines.edu

Victoria Eagen Civil and Environmental Engineering Colorado School of Mines Golden, CO veagen@mines.edu

Trautz, Andrew
Civil and Environmental Engineering
Colorado School of Mines
Golden, CO
atrautz@mines.edu

CORRESPONDING AUTHOR:

Kathleen Smits

KEYWORDS:

Bare-soil evaporation; Land-atmosphere interactions; Heat and mass flux; Porous media; Wind tunnel; Soil thermal properties; Multiphase flow

SHORT ABSTRACT:

A protocol for the design and construction of a soil tank interfaced to a small climate controlled wind tunnel to study the effects of atmospheric forcings on evaporation is presented. Both the soil tank and wind tunnel are instrumented with sensor technologies for the continuous in-situ measurement of environmental conditions.

LONG ABSTRACT:

Evaporation is directly influenced by the interactions between the atmosphere, land surface and soil subsurface. This work aims to experimentally study evaporation under various surface boundary conditions to improve our current understanding and characterization of this multiphase phenomenon as well as to validate numerical heat and mass transfer theories that couple Navier-Stokes flow in the atmosphere and Darcian flow in the porous media. Experimental data were collected using a unique soil tank apparatus interfaced with a small climate controlled wind tunnel. The experimental apparatus was instrumented with a suite of

state of the art sensor technologies for the continuous and autonomous collection of soil moisture, soil thermal properties, soil and air temperature, relative humidity, and wind speed. This experimental apparatus can be used to generate data under well controlled boundary conditions, allowing for better control and gathering of accurate data at scales of interest not feasible in the field. Induced airflow at several distinct wind speeds over the soil surface resulted in unique behavior of heat and mass transfer during the different evaporative stages.

INTRODUCTION:

Understanding the interaction between the land and atmosphere is paramount to our understanding of many current world problems such as leaking of geologically-sequestered carbon dioxide in soil, climate change, water and food supply, the accurate detection of landmines, and the remediation of ground water and soil. In addition, the primary exchanges of heat and water that drive global and regional meteorological conditions occur at the Earth's surface. Many weather and climate phenomena (e.g., hurricanes, El Nino, droughts, etc.) are principally driven by processes associated with atmospheric-land surface interactions¹. As more than half of the land surface on the Earth is arid or semiarid²⁻⁴, accurately describing the water cycle in these regions on the basis of heat and water exchanges between the atmospheric air and the soil surface is critical to improving our understanding of the aforementioned issues, particularly in regions vulnerable to extended drought and desertification. However, despite decades of research, there still remain many knowledge gaps in the current understanding of how the shallow subsurface and atmosphere interact⁵.

Transport processes involving liquid water, water vapor, and heat in soil are dynamic and strongly coupled with respect to interactions with the soil and enforced boundary conditions (i.e., temperature, relative humidity, thermal radiation). Numerical heat and mass transfer models commonly oversimplify or overlook a number of these complexities due in part to a lack of testing and refinement of existing theories resulting from a paucity of high temporal and spatial resolution data. Datasets developed for model validation are oftentimes lacking critical atmospheric or subsurface information to properly test the theories, resulting in numerical models that do not properly account for important processes or depend on the use of poorly understood parameters that are adjusted or fitted in the model. This approach is widely used due to its simplicity and ease of use and has in some applications shown much merit. However, this approach can be improved upon by better understanding the physics behind these "lumped parameterizations" by performing well controlled experiments under transient conditions that are capable of testing heat and water transfer theory.

Careful experimentation in the laboratory allows precision datasets to be generated that can subsequently be used to validate numerical models. Data available from field sites are often incomplete and costly to obtain, and the degree of control needed to obtain a fundamental understanding of processes and to generate data for model validation could be considered inadequate in some cases. Laboratory experimentation of natural phenomena such as soil evaporation allows atmospheric conditions (i.e., temperature, relative humidity, wind speed) and soil conditions (i.e., soil type, porosity, packing configuration) to be carefully controlled. Many laboratory techniques used to study soil evaporation and soil thermal and hydraulic

properties use destructive sampling⁷⁻¹⁰. Destructive sampling methods require that a soil sample be unpacked to obtain point data, preventing the measurement of transient behavior and disrupting soil physical properties; this approach introduces error and uncertainty to the data. Nondestructive measurements, like the method presented here, allow for more accurate determination and study of the interdependency of soil properties and processes¹¹.

The goal of this work is to develop a soil tank apparatus and associated protocol for the generation of high spatial and temporal resolution data pertaining to the effects of changes in atmospheric and subsurface conditions on bare-soil evaporation. For this work, a small wind tunnel capable of maintaining a constant wind speed and temperature is interfaced with a soil tank apparatus. The wind tunnel and soil tank are instrumented with a suite of state of the art sensor technologies for autonomous and continuous data collection. Wind speed is measured using a stainless steel pitot-static tube attached to a pressure transducer. Temperature and relative humidity are monitored in the atmosphere using two types of sensors. Relative humidity and temperature are also monitored at the soil surface. Sensors in the subsurface measure soil moisture and temperature. Weight measurements of the tank apparatus are used to determine evaporation through a water mass balance. To demonstrate the applicability of this experimental apparatus and protocol, we present an example of bare-soil evaporation under varying wind speed conditions. The soil tank, packed homogeneously with a well characterized sand, was initially fully saturated and allowed to evaporate freely under carefully controlled atmospheric conditions (i.e. temperature, wind speed).

PROTOCOL:

Note: Laboratory testing is performed using a two-dimensional bench scale tank interfaced with a climate controlled wind tunnel apparatus. Both the bench scale tank and wind tunnel are instrumented with various sensor technologies. The following protocol will first discuss the construction and preparation of the soil tank, followed by a discussion of the wind tunnel and the instrumentation of both. The tank dimensions, wind tunnel dimensions, number of sensors, and sensor technology type presented can be modified to suit the needs of a specific experimental set-up. The protocol presented below was used to experimentally study the effects of wind speed on bare-soil evaporation.

1. Construction and preparation of porous media soil tank.

- 1.1) Cut a large piece of 1.2 cm thick acrylic glass into five individual panes. Assemble these panes into an open-topped soil tank with internal length, width and height of 25, 9.1 and 55 cm, respectively. Acrylic glass allows processes in the subsurface to be visually observed.
- 1.2) Draw a 5x5 grid that is 25 cm by 25 cm on each of the two large glass panes (length 25 cm and height 55 cm) as shown in Figure 1. Ensure that each square within the grid has an area of 25 cm² (Figure 1). The grid will be used to properly space the sensors within the soil tank.

[Place Figure 1 here]

- 1.3) On one of the large glass planes, drill a total of twenty-five 1.9 cm (3/4 inch) diameter holes for the soil moisture sensors.
- 1.3.1) Drill each hole in the center of every square in the grid established in Step 1.2 so that the centers of the holes of two abutting squares are 5 cm apart; the first set of holes is 2.5 cm below the top of the tank. Use appropriately sized taps to cut threads into each of the newly created holes. The 5 cm spacing between sensors ensures that each sensor is outside of the sampling volume of the next closest sensor.
- 1.4) Similarly, drill and tap a total of twenty-five 0.635 cm (¼ inch) diameter holes in the center of each grid box created during Step 1.2. Make sure that the center of each hole is spaced 5 cm apart with the first row of holes located 2.5 cm below the top of the soil tank. The 5 cm spacing between sensors ensures that each sensor is outside of the sampling volume of the next closest sensor.
- 1.5) On the acrylic pane used as the bottom of the tank, drill and tap a single ½ inch diameter hole in the middle of the pane. Glue a mesh screen (finer than the test soils to be used) over the hole on the internal side of the glass. On the external side of the bottom plane, install a 90° elbow that is attached to flexible tubing with an adjustable valve. This valve and tubing is used to drain water from the tank at the termination of an experiment or as a way to install constant head devices for maintaining constant water table depths.
- 1.6) Use marine grade glue or similar water resistant polymer adhesive to attach and seal the tank together as shown in Figure 1. Allow the adhesive to cure for one day.
- 1.7) To raise the tank off of the ground and make room for the 90° elbow (Figure 1), attach two additional pieces of 1.2 cm thick acrylic glass with length 12 cm and height 5 cm to the bottom of the tank.

2. Construction and preparation of climate controlled wind tunnel.

- 2.1) Construct the 215 cm long upstream portion of the wind tunnel out of rectangular galvanized steel ducting material that has a width of 8.5 cm and a height of 26 cm. Surround the outside of the duct with polystyrene insulation.
- 2.2) Drill a small hole in the side of the duct work near the downstream exit of the upstream portion of the wind tunnel for the insertion of a relative humidity-temperature sensor (Figure 2).

[Place Figure 2 here]

- 2.3) Install five ceramic infrared heating elements positioned in parallel within a reflector along the length of the upstream portion of the wind tunnel. Connect the infrared heating elements to a temperature control system regulated by an infrared temperature sensor.
- 2.4) Construct the mid-section of the wind tunnel out of two 1.2 cm thick acrylic panels with a length and height of 25 cm and 26 cm respectively. Drill two 0.635 cm (¼ inch) diameter holes in one of the mid-section panels to insert temperature and/or relative humidity-temperature sensors at the locations shown in Figure 2.
- 2.4.1) Secure the acrylic panels to the top of the soil tank side walls (i.e., panels with dimensions $25 \text{ cm} \times 55 \text{ cm}$) using a strong adhesive tape, ensuring that the wind tunnel and soil tank panels sit flush with one another.
- 2.5) Construct the first 50 cm of the downstream portion of the wind tunnel out of the same size rectangular ducting material described in Step 2.1. On the terminating side, reduce the rectangular ducting material to a 15.3 cm diameter round duct with length of 170 cm. Install a galvanized steel damper, used to adjust wind speeds, at the far downstream end of the round duct for aid in wind speed control.
- 2.6) As in Step 2.2, drill one 0.635 cm diameter hole in the side of the downstream rectangular duct near the entrance for the insertion of a relative humidity-temperature sensor. Drill a second 0.635 cm diameter hole from the top of the rectangular duct along the centerline of the wind tunnel.
- 2.7) Install an in-line duct fan in the middle of the round duct (i.e., 85 cm downstream from reduction described in Step 2.4) oriented to expel air from the downstream portion of the wind tunnel. Interface the fan with a variable speed controller for more precise control of rotational frequency and as a result wind speed.
- 2.8) Use weldment material and adjustable shelving units to elevate and secure the wind tunnel apparatus. Ensure that the bottom of the upstream and downstream ductwork are flush with the top of the soil tank (Figure 2).

3. Installation of Sensors.

- 3.1) Prior to installation within the soil tank, secure each soil moisture and temperature sensor within a threaded NPT housing (1.9 cm and 0.635 cm housings, respectively) and seal with flashing sealant to prevent moisture intrusion. Do not use silicone-based sealant products as they can interfere with the electronics within some sensors. Cure the sensors for approximately one week.
- 3.2) Prior to installation in the soil tank, calibrate the soil moisture sensors in accordance with the two point α -mixing method developed by Sakaki et al. ¹².

- 3.3) Wrap the threads of each NPT housing with plumbers tape prior to installation in the tank to help provide a better seal between the NPT threading and acrylic glass.
- 3.4) Install a total of 25 soil moisture and temperature sensors each horizontally through the walls of the tank at the locations discussed in Step 1.2. Twist the sensor cables in sync with the NPT fitting/housing so as not damage the internal wiring within the cables. Do not over-torque the NPTs so as to prevent the glass from cracking. Connect the soil moisture sensors and temperature sensors to their designated data loggers.
- 3.5) Install 3 relative humidity-temperature sensors on the soil surface at distances of 2.5, 12.5 and 21.5 cm from the leading edge of the tank. Place the sensors in good contact with the soil surface so that the relative humidity readings reflect the conditions at the soil surface rather than the surrounding air. Connect the sensors to data loggers.
- 3.6) To obtain the requisite air temperature and relative humidity measurements in the atmosphere, install relative humidity-temperature sensors in the free flow section of the wind tunnel, using the holes drilled through the upstream and downstream sections of the wind tunnel as well as the panels.
- 3.7) Install a pitot-static tube directly downstream of the soil tank through the 0.635 cm hole drilled in the top of the downstream wind tunnel section. Hold the pitot-static tube at a height of 13 cm from the floor of the section. Connect the pitot-static tube to a differential pressure transducer.
- 3.8) Calibrate the differential pressure transducer. The pitot-static tube measures dynamic pressure which is defined as the difference of the stagnation and static pressures. The pressure differential is interpreted by the pressure transducer as a voltage differential.
- 3.8.1) Measure the voltage under no flow conditions (voltage should be approximately equal to 0) and for flow of a known dynamic pressure; this allows a linear relationship to be established between dynamic pressure and voltage. Determine wind speed by applying Bernoulli's equation:

$$V = \sqrt{\frac{2P_{dynamic}}{\rho}} \tag{1}$$

where V (m/s) is wind speed, $P_{dynamic}$ (Pa) is dynamic pressure, and ρ (kg/m³) is the density of air.

3.8.2) Compare the velocity calculated using Equation (1) with another measurement device. Here, compare the pitot-static tube differential pressure transducer with Laser Doppler Velocimetry (LDV) measurements which has an accuracy of \pm 0.01 m/s.

Note: A summary of sensors employed and their associated sampling frequencies can be found in Table 1. For sensor specifications and other information, refer to the enclosed materials/equipment table.

[Place Table 1 here]

4. Pack the soil tank and prepare for the start of the experiment.

- 4.1) Prior to packing the tank with soil, test its integrity by performing a leak test. Fill the tank with water and wait for 4-6 hours to ensure that no leaks in the structure or sensors have developed.
- 4.1.1) If leaks develop, drain the tank, let it dry overnight and fix the leaks using the same marine adhesive used during original construction. If no leaks develop, drain the soil tank and prepare for the steps below.
- 4.2) Determine the total volume of the tank with sensors in place. Carefully fill the tank with water using a graduated cylinder, making sure to record the amount of water added. Convert the recorded total volume to cubic centimeters for use in Step 4.5.
- 4.3) Obtain dry soil to pack the soil tank. Characterize the hydraulic and thermal properties of the selected soil separately in accordance with the methods discussed in Smits et al.¹¹.
- 4.4) Carefully wet-pack the soil tank using soil and deionized water.
- 4.4.1) To wet-pack the soil tank, first pour approximately 5 cm of water into the tank. Slowly add dry soil to the water in the tank, using a scoop, in 2.5 cm depth increments. Record the weight of the sand added during each lift so the porosity of the soil packing can be calculated.
- 4.4.2) Upon completion of each layer, repeatedly tap the tank walls using a rubber mallet, 100-200 times, to obtain a uniform bulk density throughout. While tapping, avoid contact with the sensors and sensor wires. The use of vibratory devices should be avoided so as not to damage the network of sensitive sensors.
- 4.5) Upon completion of packing the tank, sum together the weights of each soil layer (see Step 4.4) to get the total mass of soil. Divide the total mass by the bulk density of soil (e.g. the bulk density of quartz sand is 2.65 g/cm³) to determine the volume of the sand (V_s , cm³). Calculate the porosity (η , m³/m³) of the soil in the tank according to:

$$\eta = \frac{V_T - V_S}{V_T} \tag{2}$$

where (V_T, m^3) is the total volume of the empty tank determined in Step 4.2.

- 4.6) Once the tank is fully packed, place a plastic cover such as saran wrap over the tank until the experiment is ready to start to prevent the onset of evaporation.
- 4.7) Place the tank on a weighting scale to monitor cumulative water loss which can in turn be used to calculate evaporation rate.
- 4.8) Calculate the hourly evaporation rate by dividing the hourly weight loss by the product of the density of water and the cross sectional area of the evaporating surface.

5. Start the experiment and begin data collection.

- 5.1) Once the set-up is complete, determine the desired atmospheric conditions (i.e. temperature, wind speed). Ensure that the data loggers and other data acquisition systems are turned on and set to the correct sampling intervals (e.g., every 10 minutes).
- 5.2) Start the fan and temperature control system. Allow the climate conditions to equilibrate before removing the plastic cover on the surface of the soil tank. Run the experiment for the desired length of time (e.g., 15 days).

REPRESENTATIVE RESULTS:

The objective of the experiment presented here was to study the effect of wind speed on evaporation from bare soil. Key properties of the test soil used in the present study are summarized in Table 2. A series of experiments were performed in which different boundary conditions at the soil surface (i.e., wind speed and temperature) were applied (Table 2). Although four experiments at different wind speeds and temperatures were performed, the majority of experimental results presented here are for a wind speed of 1.22 m/s. Cumulative evaporation data is shown for all four experiments.

[Place Tables 2 and 3 here]

Time-dependent relative humidity and temperature measured at the soil surface are presented in Figure 3. The relative humidity remains relatively constant at around 0.80 for approximately two days before steeply decreasing over the next four days, beyond which a stable relative humidity value of 0.35 is obtained. The temperature of the soil surface shows an increasing trend over a four-day period before stabilizing. These trends were observed in all four experiments and can be explained in terms of the soil drying. Relative humidity decreases in conjunction with a decrease in evaporation rate because there is less water vapor present over time. The temperature increases as the available water decreases (i.e., evaporation rate decreases) because the process of evaporation no longer cools the soil surface. During the first three days, the relative humidity of downstream air was higher than upstream air due to the presence of more water vapor resulting from upstream evaporation. This trend was reversed later, most likely due to the upstream sensor losing contact with the soil surface; the sensor cables are flexible and occasionally pull the sensor from the soil surface, changing the humidity reading. The relative humidity measured downstream is greater than that measured upstream

because the process of evaporation along the first 21.5 cm of the tank increased the amount of moisture present in air.

[Place Figure 3 here]

The free flow air temperature in this experiment was set to a constant value of 40 °C using the previously described temperature control system. The time-dependent temperature and relative humidity of the air in the free flow, at a height of 8.5 cm above the soil surface, are shown in Figure 4. The observed diurnal fluctuations in temperature are due to the variability of heater outputs in response to the temperature measured by the infrared temperature sensor that regulates the temperature control system (see Step 2.3). Diurnal fluctuations can be avoided, if desired, by setting the infrared temperature sensor to a set temperature value. The difference in atmospheric temperature along the length of the tank is the result of evaporative cooling (Figure 4).

[Place Figure 4 here]

In Figure 5a, the time dependent soil temperature is shown for the depths of 2.5 cm, 7.5 cm and 12.5 cm below the soil surface as well as the ambient temperature; see Figure 1 for sensor identification. As seen in Figure 5a, surface temperature and wind velocity are less influential on local temperatures at greater depths – showing no effect at depths below 12.5 cm. Figure 5b shows temperature as a function of time for three sensors located at a depth of 2.5 cm. There is a slight difference in temperature for sensors at this depth with the upstream sensor 5 showing a higher temperature than the downstream Sensor 1. This is because the free flow temperature is always higher upstream than downstream (Figure 4). The differences in temperature also results in an asymmetrical saturation profile in the soil tank as will be subsequently shown.

[Place Figure 5 here]

Figure 6a shows the time-dependent saturation versus time at soil depths of 2.5, 7.5, 12.5, and 17.5 cm. For depths greater than 12.5 cm, the saturation remained at 100% for the duration of the experiment; closer to the soil surface however, saturation decreased over time. The saturation shown in Figure 6a can be related to the different stages of evaporation (i.e. Stage I and Stage II), defined by differences in evaporation rates, location of the drying front, and dominant transport mechanisms¹⁴. During Stage I evaporation, the drying front rapidly retreats away from the soil surface as gravitational and viscous forces begin to dominate capillary forces. This is observed in the first day by the measured decrease in soil saturation by the first row of soil moisture sensors corresponding to a depth of 2.5 cm. After Day 1, the rate at which the drying front continues to retreat slows as shown in the gradual shape of the saturation curves for sensors 6 - 10 located at a depth of 7.5 cm (Figure 6a). This marks the transition of evaporation to vapor diffusion limited Stage II evaporation. The initial part of the Stage II is often called the falling rate period¹⁵⁻¹⁷. Eventually, the saturation curves level out and change very little as the drying front reaches a depth of 12.5 cm (e.g., Sensor 13) by Day 3.

[Place Figure 6 here]

Figure 6b shows saturation versus time for three sensors located at constant depth of 2.5 cm. The saturation curves are nearly identical and consistent across the entire length of the tank at this depth. The slight asymmetric distribution is due to the air temperature difference between the upstream and downstream sections of the wind tunnel. Since upstream temperatures were consistently a few degrees warmer, atmospheric demand, which drives evaporation, would be higher and therefore there would be a slightly faster rate of drying.

Figure 7 shows wind speed, mean value of 1.22 m/s, as a function of time. The observed sinusoidal diurnal trend in the wind speed is the result of changes in atmospheric conditions such as barometric pressure and air density. The average wind speed was used in modeling efforts because the effects of diurnal fluctuations of atmospheric variables were not the focus of the present study. This does not mean however, that time-dependent data could not be used. As part of the series of evaporation experiments, four different mean wind velocities were applied; see Table 3 for a summary. The calculated Reynolds numbers for all experiments in this study were within the laminar and transitional flow regimes. However, it is well know that surface turbulence can affect the evaporation rates and should be addressed in future studies.

[Place Figure 7 here]

The effect of the airflow in the free fluid region (i.e. atmosphere) on cumulative evaporation is shown in Figure 8. Cumulative evaporation is plotted for four different free flow average wind speeds (Vw) of 0.50, 1.20, 3.00 and 3.60 m/s. Results demonstrate that wind speed has a very prominent effect on cumulative evaporation and the amount of water loss during the different evaporative stages. As shown in Figure 8, increasing the wind speed increases the total evaporation. By comparing the slopes of the curves, the greatest influence was on the initial evaporation rate, here referred to as stage 1. Stage 1 evaporation is often defined by high and relatively constant evaporation rates¹⁷ and is predominantly influenced by atmospheric demand rather than soil conditions. As wind speed is further increased from 3 to 3.6 m/s, evaporation shows much less dependency on incremental changes in wind speed than was observed for changes at low wind speeds. Increasing wind speed leads to an increase in Stage I evaporation rate while simultaneously decreasing the transition time from Stage I to Stage II². The influence of wind speed on evaporation is less significant for Stage II evaporation which is controlled predominantly by the porous medium. During this stage, evaporation is controlled by the rate at which water can be transmitted to the soil surface via diffusion rather than atmospheric demand.

[Place Figure 8 here]

Figure 1: Schematic front and side views of the soil tank used for the experimental set-up (dimensions are in centimeters) (a) The front view of the soil tank displaying the grid system consisting of twenty-five 5 cm \times 5 cm squares. (b) The side view of the soil tank, showing the

installed temperature, relative humidity and soil moisture sensor network as a function of depth. Note that the schematics are not drawn to scale.

Figure 2: Complete experimental set-up, including tank, ductwork, sensors grid (dimensions are in centimeters).

Complete experimental set up of the combined wind tunnel and soil-tank apparatus. The wind tunnel is elevated and sits flush with the surface of the soil tank. The soil tank is instrumented with a network of sensors used to measure a variety of subsurface and atmospheric variables. The grid circles represent the locations for inserting these sensors. A heating control system and an in-line duct fan are used to control temperature and wind speed, respectively. The pitot-static tube is used to measure wind speed. The entire apparatus sits on a weighting scale to obtain a mass balance during experimentation. Note that the schematic is not drawn to scale.

- Figure 3: Relative humidity and temperature measured on the soil surface (This figure has been modified from Davarzani et al.⁵).
- Figure 4: Relative humidity and temperature measured 7.5 cm above the soil surface upstream and downstream of the tank (This figure has been modified from Davarzani et al.⁵).
- Figure 5: Evolution of measured soil temperature as a function of time (a) vertically at the middle of the tank and (b) horizontally at a depth of 2.5 cm (This figure has been modified from Davarzani et al.⁵).
- Figure 6: Time evolution of measured subsurface soil saturation (a) vertically at the middle of the tank and (b) horizontally at a depth of 2.5 cm (This figure has been modified from Davarzani et al.⁵).
- Figure 7: Time-dependent wind speed over the soil surface with mean value of 1.22 m s⁻¹ (This figure has been modified from Davarzani et al.⁵).
- Figure 8: The effect of different mean wind speeds on cumulative evaporation (This figure has been modified from Davarzani et al.⁵).
- Table 1: Summary of sensors used in experimental portion of present study.
- Table 2: Key properties of experimental test soil used.
- Table 3: Experimental wind velocities applied.

DISCUSSION:

The purpose of this protocol was to develop an experimental apparatus and associated procedures for the generation of high spatial and temporal resolution data required for studying land-atmospheric interactions with respect to heat and mass transfer processes. The experimental apparatus described consisted of a soil tank and a small wind tunnel, both of

which were outfitted with an array of sensors for the measurement of pertinent soil and atmospheric variables (e.g., wind speed, relative humidity, soil and air temperature and soil moisture). The following are some of the most critical components of the protocol presented in this study.

The tank dimensions and sensor placement were specifically chosen to maximize the number of sensors employed while accounting for the sensor's respective sample volumes. The first row of sensors is 2.5 cm below the soil surface due to each sensor's sample volume (defined as the volume of soil around the sensor, within which a change in environmental conditions affects the sensor readings). The sensors, placed in NPT fittings, are installed horizontally through the walls of the soil tank so that the sensor wires are not within the soil itself; all the sensor wires are outside of the tank, preventing water channeling. The installation of a large network of temperature and soil moisture sensors allows horizontal and vertical distributions of these variables to be determined at a fine spatial resolution.

Placing the soil tank on a weighting scale allows cumulative water loss and the associated evaporation rate to be determined using the water mass balance approach described above. These values can then be compared to evaporation rates obtained using other methods such as the combined heat-pulse and sensible heat balance method employed in Trautz et al.¹⁸.

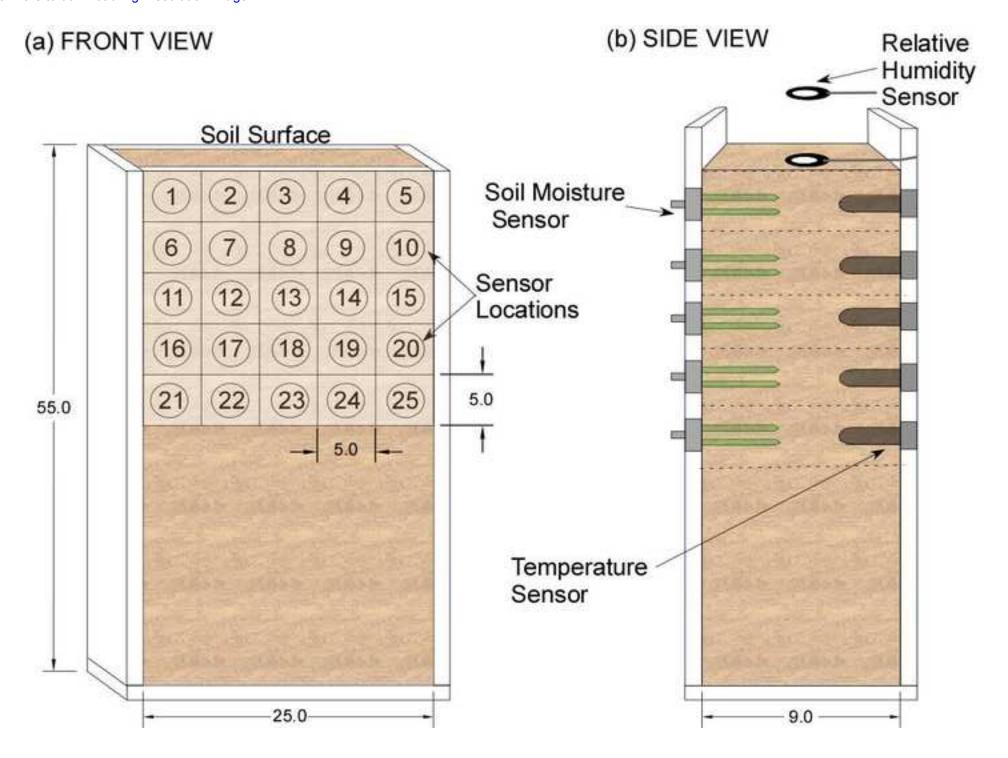
The wind tunnel portion of the apparatus is composed of three parts - an upstream, downstream and middle section. The upstream section is used to heat the air before it is drawn over the soil tank in the middle section with the help of a temperature control system. The middle section of the wind tunnel is outfitted with sensor technologies for the measurement of temperature and relative humidity. The downstream portion of the wind tunnel contains an inline duct fan and damper for controlling wind velocity which is monitored using a pitot-static tube.

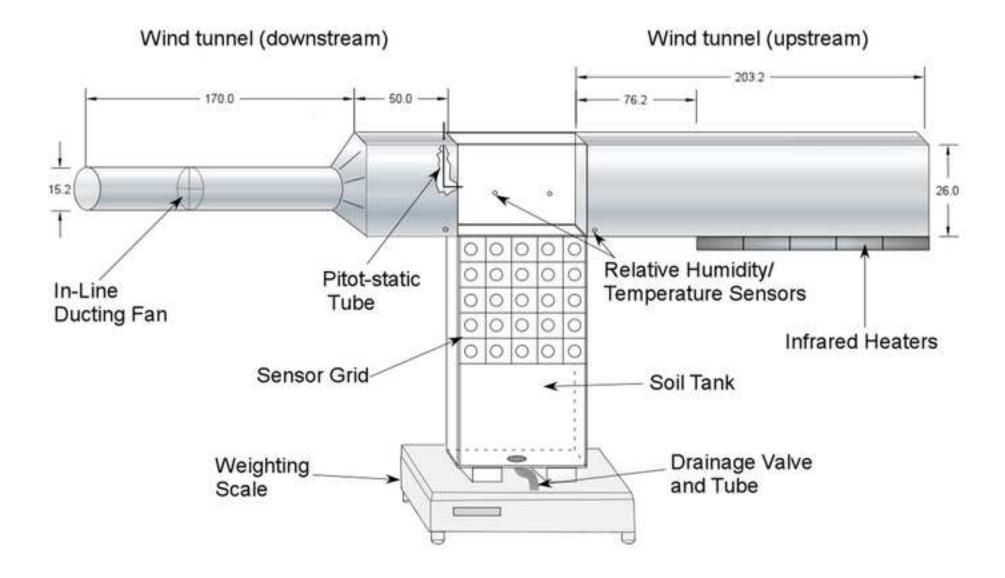
The applicability of the soil tank-wind tunnel apparatus described above was demonstrated in an experimental case study of the effects of wind speed on evaporation rate. Results show that increasing wind speed leads to an increased evaporation rate and shortened Stage I evaporation duration. Increasing wind speed beyond 3 m/s however, shows little additional impact on Stage I evaporation. Stage II evaporation, governed primarily by properties of the porous medium, appears to be independent of or only slightly influenced by wind speed.

This experimental protocol is applicable to a variety of environmental conditions to include changes in soil conditions (i.e. different soils, packing configurations, vegetation, and urban environments), climate boundary conditions (temperature, wind speed, precipitation) or subsurface conditions (e.g. varying water table levels). The dimensions and sensor layout of the described apparatus can be modified to address the needs of different experiments. The packing procedure described above can similarly be modified to account for different packing configurations such as varying porosity conditions and soil heterogeneity.

ACKNOWLEDGMENTS:

This research was funded by the U. S. Army Research Office Award W911NF-04-1-0169, the Engineering Research and Development Center (ERDC) and National Science Foundation grant EAR-1029069. In addition, this research was supported by a Summer Programs in Undergraduate Research grant from Colorado School of Mines. The authors wish to thank Ryan Tolene and Paul Schulte for their contributions.


DISCLOSURES:


The authors declare that they have no competing financial interests.

REFERENCES:

- 1. NOAA. Surface and Planetary Boundary Layer. *Web*. http://www.esrl.noaa.gov/research/themes/pbl/. (2014).
- 2. Verstraete, M.M., and S.A. Schwartz. Desertification and global change. *Vegetatio*. **91**, 3-13, (1991).
- 3. Warren, A. Desertification. In: *The Physical Geography of Africa*. Adams, W.M., A.S. Goudie and A.R. Orme, eds., Oxford University Press, 342-355 (1996).
- 4. Katata, G., H. Nagai, H. Ueda, N. Agam, and P. R.Berliner. Development of a land surface model including evaporation and adsorption processes in the soil for the land-air exchange in arid regions. *J. Hydrometeorol.* **8**, 1307-1324, doi: 10.1175/2007JHM829.1 (2007).
- 5. Davarzani, H., K.M. Smits, R. Tolene and T.H. Illangasekare. Study of the effect of wind speed on evaporation from soil through integrated modeling of atmospheric boundary layer and shallow subsurface. *Water Resour. Res.* **50**, doi: 10.1002/2013WR013952 (2014).
- 6. Heitman, J. L., R. Horton, T. Ren, I. N. Nassar, and D. D. Davis. A test of coupled soil heat and water transfer prediction under transient boundary temperatures. *Soil Sci. Soc. Am. J.* **72** (5), 1197–1207, doi: 10.2136/sssaj2007.0234 (2008).
- 7. Gurr, C. G., T. J. Marshall, and J. T. Hutton. Movement of water in soil due to a temperature gradient. *Soil Sci.* **74**, 335–345 (1952).
- 8. Nassar, I. N., and R. Horton. Water transport in unsaturated non-isothermal salty soil: experimental results. *Soil Sci. Soc. Am. J.* **53**, 1323–1329 (1989).
- 9. Prunty, L., and R. Horton. Steady-state Temperature Distribution in Nonisothermal unsaturated closed soil cells. *Soil Sci. Soc. Am. J.* **58**, 1358–1363 (1994).
- 10. Bachmann, J., R. Horton, T. Ren, and R. R. van der Ploeg. Comparison of the thermal properties of four wettable and four water-repellent soils. *Soil Sci. Soc. Am. J.* **65** (6), 1675–1679, doi: 10.2136/sssaj2001.1675 (2001).
- 11. Smits, K. M., T. Sakaki, A. Limsuwat, and T. H. Illangasekare. Thermal conductivity of sands under varying moisture and porosity in drainage-wetting cycles. *Vadose Zone J.* **9**, 1-9, doi: 10.2136/vzi2009.0095 (2010).
- 12. Sakaki, T., Limsuwat, A., Smits, K. M. and T.H. Illangasekare. Empirical two-point ①-mixing Model for calibrating the ECH2O EC-5 soil sensor in sands. *Water Resources Research.* **44**, W00D08, doi: 10.1029/2008WR006870 (2008).
- 13. Shokri, N., P. Lehmann, and D. Or. Evaporation from layered porous media. *J. Geophys. Res.* **115**, B06204, doi: 10.1029/2009JB006743 (2010).
- 14. Van Brakel, J. Mass transfer in convective drying. In: *Advances in Drying*. Volume **1.** Mujumdar, A.S., ed., Hemisphere, 217-267 (1980).

- 15. Yiotis, A.G., A.G. Boudouvis A.K. Subos, I.N. Tsimpanogiannis, and Y.C. Yortsos. The effect of liquid films on the drying of porous media. *AIChE J.* **50**, 2721-2737 (2004).
- 16. Ishihara, Y., E. Shimojima, and H. Harada, Water vapor transfer beneath bare soil where evaporation is influenced by a turbulent surface wind, J. Hydrol., **131**(1–4), 63–104 (1992).
- 17. Lehmann, P., S. Assouline, and D. Or. Characteristic lengths affecting evaporative drying of porous media. *Phys. Rev. E.* **77** (5 *Pt* 2), 056309, doi: 10.1103/PhysRevE.77.05609 (2008).
- 18. Trautz, A.C., K.M. Smits, P. Schulte, and T.H. Illangasekare. Sensible heat balance and heat-pulse method applicability to in situ soil-water evaporation. *Vadose Zone J.* **13**, doi: 10.2136/vzj2012.0215 (2014).

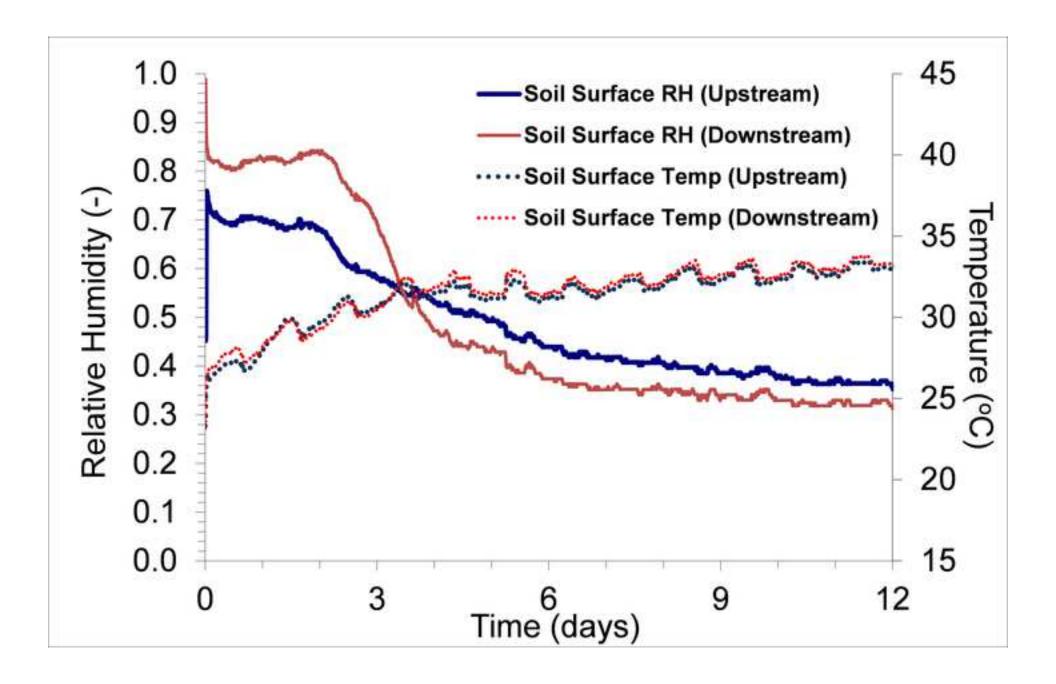


Figure4
Click here to download high resolution image

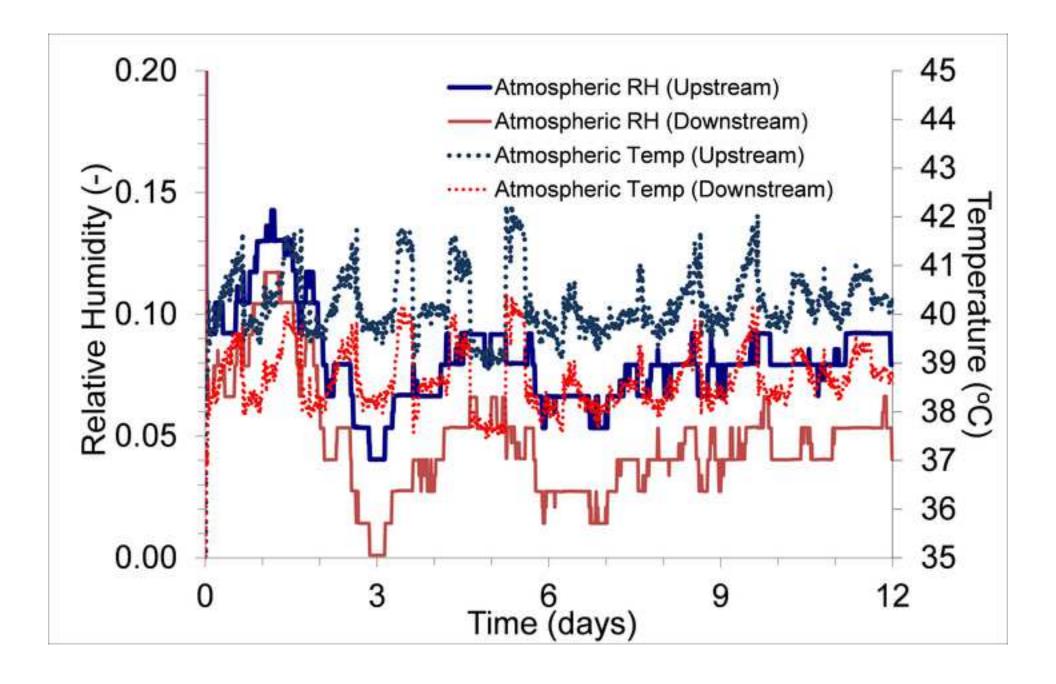


Figure5 Click here to download high resolution image

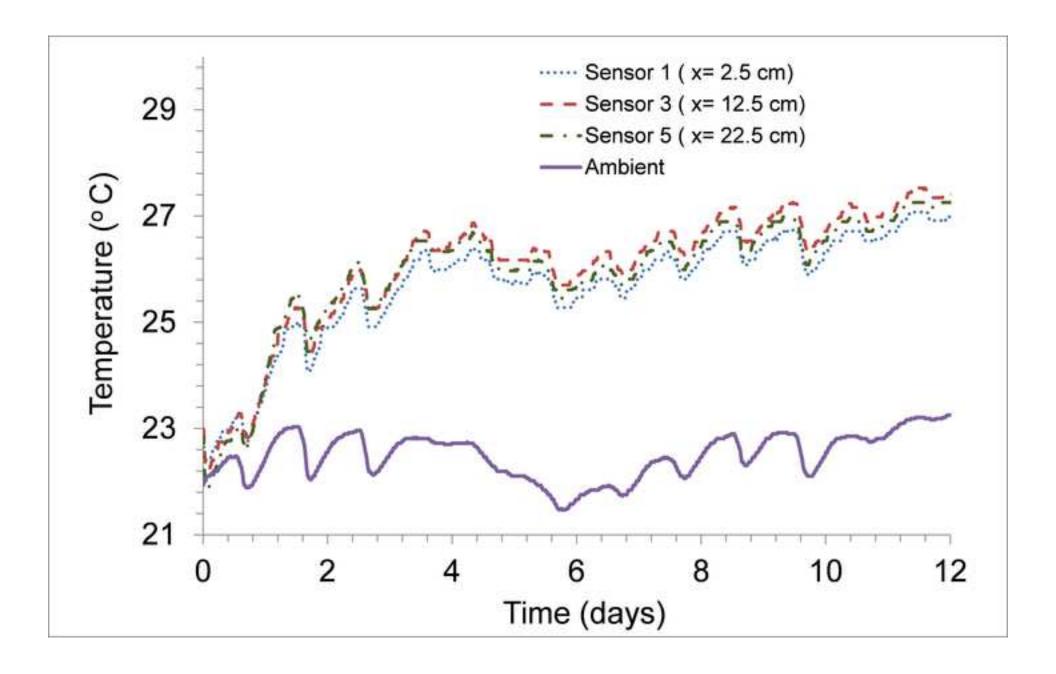
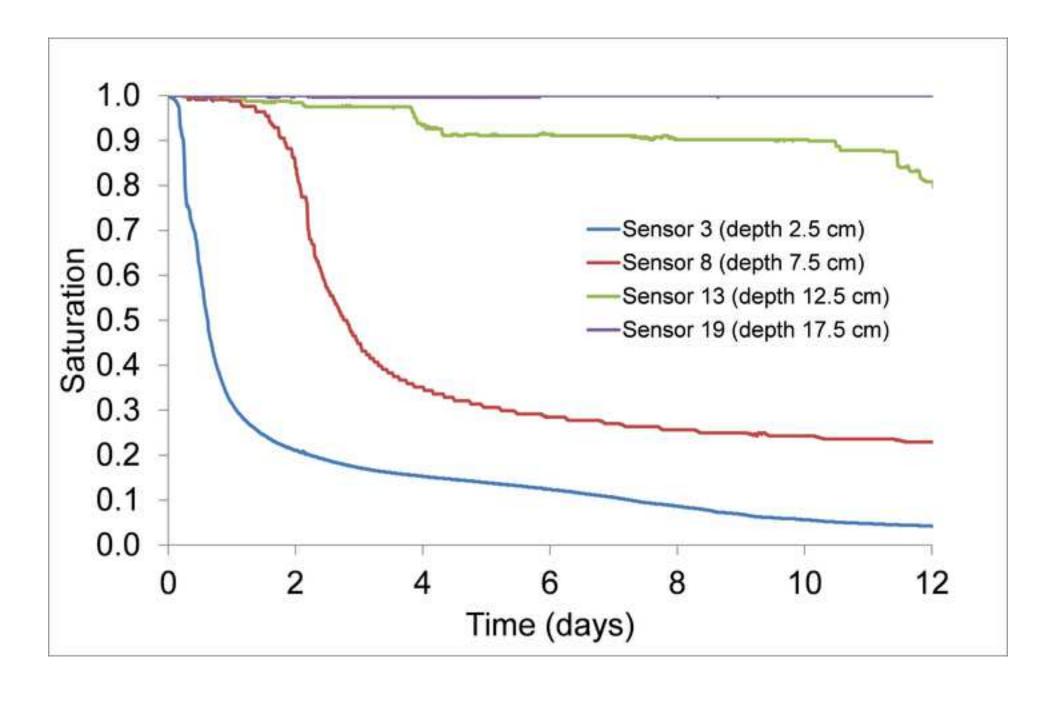



Figure6
Click here to download high resolution image

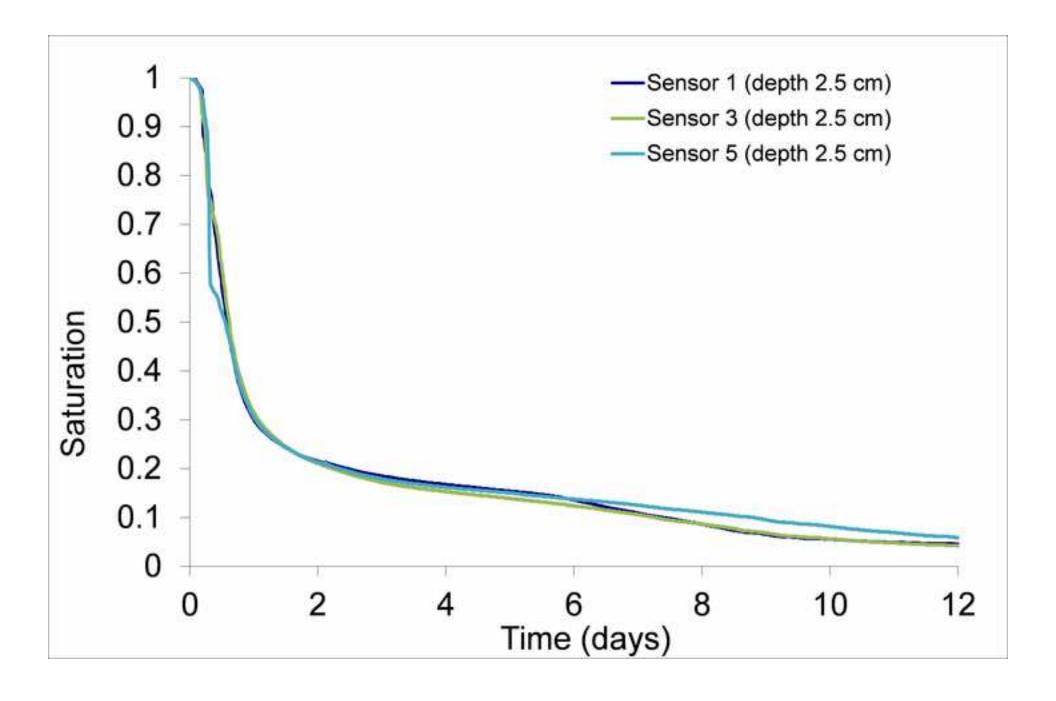
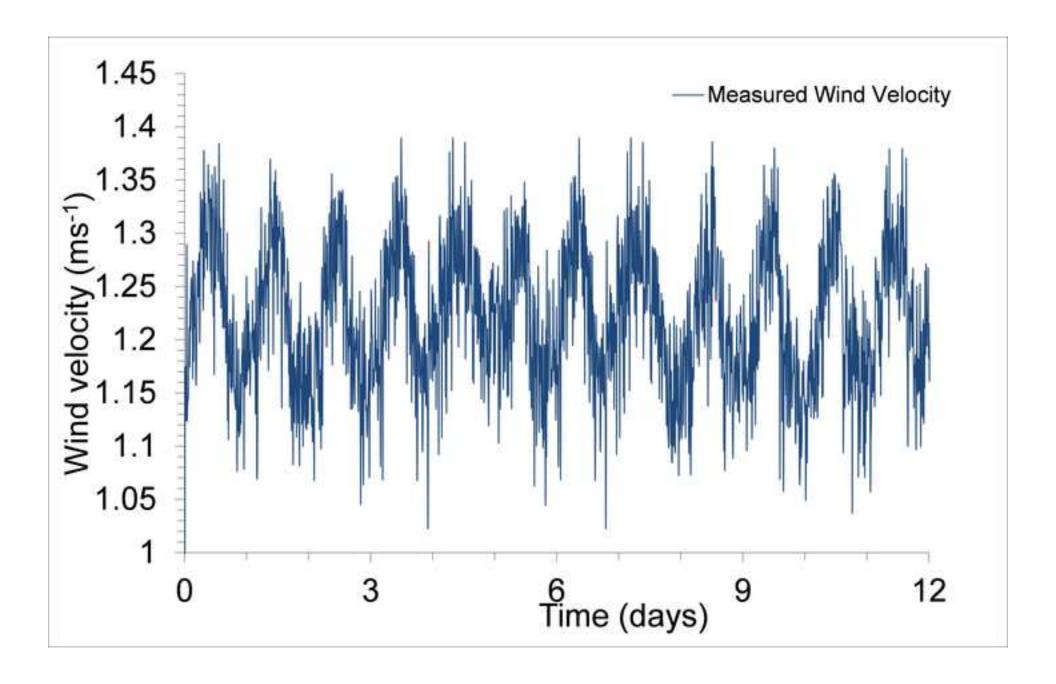
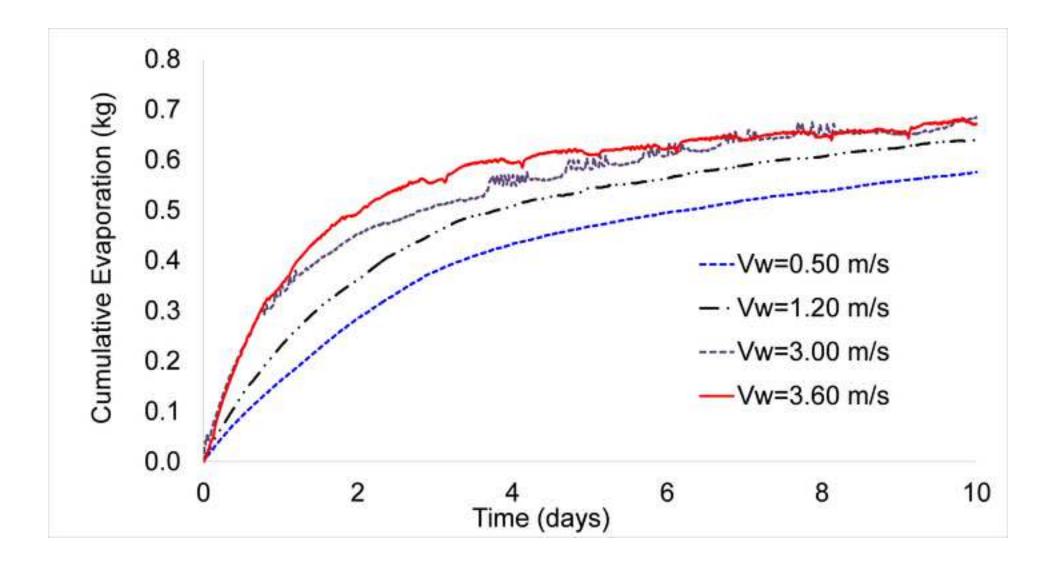




Figure7 Click here to download high resolution image

Name of Material/ Equipment	Company	/	Catalog Number	Number Employed
ECH2O EC-5 Soil Moisture Sensor	Decagon Devices Inc.	Decagon.com	40593	25
ECT Soil/Air Temperature Sensor	Decagon Devices Inc.	Decagon.com	40651	19
EHT Relative Humidity and Temperature Sensor	Decagon Devices Inc.	Decagon.com	N/A	5
Em50 Data Logger	Decagon Devices Inc.	Decagon.com	40800	10
Sartorius Weighing Scale	Sartorius Corpo	oration	11209-95	1
Infrared SalamandernCeramic Radiative Heater	Mor Electric Heating Assoc., Inc. http://www.morelectricheating.com/		FTE 500-240	1
2104 Temperature Control System	Chromalox		2104	1
Infrared Temperature Sensor Regulator	Exergen Corporation		N/A	1
Stainless Steel Pitot-Static Tube	Dwyer Instruments, Inc. http://www.dwyer- inst.com/		Series 160	1
1/2 inch Acrylic	Colorado Plastics http://www.coloradoplastics.com/		N/A	1
Galvanized Steel Ducting Material	Home Depot		N/A	1
Variable Speed Controller Connected to an In- Line Duct Fan	Suncourt, Inc. http://www.suncourt.com/		VS200	1
Galvanized Steel Damper	Home Depot		N/A	1
Accusand #30/40	Unimin Corporation http://www.unimin.com/		N/A	1

Comments/Description

For specifics visit: http://www.decagon.com/products/soils/volumetric-water-content-sensors/ec-5-soil-moisture-small-area-of-influence/. Sampling frequency on 10 minute intervals, accuracy is $\pm 3\%$, and collect data using the Em50 dataloggers

For specifications visit http://www.decagon.com/products/canopy-atmosphere/temperature/ect-air-temperature/. Sampling frequency on 10 minute intervals, accuracy is ±0.5°C, Measure within a temperature of 5 and 40°C, and collect data using the Em50 dataloggers

Sampling Frequency on 10 minute intervals, accuracy is ±3% between 5 and 100% relative humidity, and collect data using Em50 data loggers. For more information visit decagon.com

For specifics visit http://www.decagon.com/products/data-management/data-loggers/em50-digital-analog-data-logger/. ECH2O decagon devices, pulls data from the ECT, EC-5, and EHT sensors, and each data logger has 5 sensor connections and a com port that connects from the logger to USB to computer

Sartorius Model 11209-95, Range = 65kg, Resolution = ±1g

5 heaters needed, adjust to ge thte right ambient/free-flow temperature

Controls the heaters

Monitors the heaters temperatures

For specifics visit http://www.dwyer-

inst.com/Product/%20TestEquipment/PitotTubes/Series160. Sensor sampling frequency is every 10 minutes, must be connected to differential pressure transducer and anemometer, and convert the pressure data collected into win velocities using Bernoulli's equation.

Specific heat of 1464 J kg^-1K^-1, thermal conductivity of 0.2 W m^-1K-1, and a density of 1150 kg m -3

Material used to build wind- tunnel, and both round and rectangular ducting were used in construction and connected using square-to-round reducer duct

15.3 cm in Diameter Placed in-line with round duct

Used to control/reduce speeds in the wind tunnel for low velocity data

This sand is silica sand and is 99.8% quartz, its grain shape is classified as rounded, the uniformity coefficient is approximately 1.2, and the grain density is 2.66 g/cm3.

Sensor	Sensor Measurements
EC-5	Soil moisture
ECT	Soil/air temperature
SH-1	Thermal properties
EHT	Relative humidity/temperature
Infrared camera	Surface temperature/evaporation
Digital camera	Visualization of drying front
Pitot static tube	Wind velocity
Weighting scale	Cumulative evaporation/evaporation rate

Number of Sensors Employed in Experimental Apparatus	Sensor Sampling Frequency (min)
25	10
25	10
1	10
5	10
1	1
1	60
1	10
1	10

Excel Spreadsheet- Table 2 Click here to download Excel Spreadsheet- Table of Materials/Equipment: Table 2.xlsx

	Dry Bulk	Air Entry
Packing	Density	Pressure
Conditions	(g cm ⁻³)	(cm H ₂ O)
Tight	1.79	16.1 / 22.5

Residual	Van Genuchten	
Water Content	Model Parameters*	
(m ³ m ⁻³)	α (cm ⁻¹)	n (-)
0.028	0.04	20.53

Experiment Run #	Average Maximum Wind Velocity (m/s)
1	0.55
2	1.22
3	3
4	3.65

•	Final Temperature on Soil Surface
(°C)	(°C)
27	31
26	33
29	37
33	44.5

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Exploring Effects of atmospheric forcings on evagoration
Author(s):	Smits, Km, V. Eagen, A. Travtz
	box): The Author elects to have the Materials be made available (as described at jove.com/publish) via: Standard Access
Item 2 (check one bo	x):
The Aut	nor is NOT a United States government employee. hor is a United States government employee and the Materials were prepared in the or her duties as a United States government employee.
	nor is a United States government employee but the Materials were NOT prepared in the or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work, such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement, dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed. or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials: "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. <u>JoVE Discretion</u>. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's

expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. <u>Fees</u>. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law.</u> This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDING AUTHOR:

Name:	Kathleen M Smits
Department:	CEE
Institution:	Colorado School of Mines
Article Title:	Exploring Effects of Atmospheric Forcings on Evap.
Signature:	Rathleen Momits Date: 9/8/14

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- 2) Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

Dear Editor and Reviewers,

Thank you very much for your careful review and helpful comments of our manuscript. We believe our revisions address all the major issues that were raised by the reviewers and hope that our manuscript is now suitable for publication. Our reply to each comment is written in **blue**. In addition, changes to the text in the manuscript are written in **blue**. We hope that our reply is clear and look forward to hearing from you on the status of our manuscript.

Editorial comments:

1. Please take this opportunity to thoroughly proofread the manuscript to ensure that there are no spelling or grammar issues. The JoVE editor will not copy-edit your manuscript and any errors in the submitted revision may be present in the published version.

We thoroughly proofread the manuscript and checked spelling and grammar issues.

Reviewers' comments:

Reviewer #1:

1. Line 389, first two words - "Figure 7b" should read "Figure 6b".

Corrected

Reviewer #2:

1. Further control over environmental variables should be possible. Eliminating ambient temperature variations should not be difficult for instance. Also, I wonder if the air flow turbulence should be defined as it could have an effect on the evaporation rate.

Thank you for the comment. Control over additional environmental variables in possible. We added a discussion on this topic to lines 354-355 for temperature control and a discussion on airflow turbulence was added to lines 403-406.

2. 102: I would use the present tense for uniformity

corrected

3. 136: perhaps "the" is not necessary here?

corrected

4. Because the procedures described could be applied to a variety of soils, perhaps soil characteristics could be defined within representative results" rather than in chapter 4.

Corrected, moved to line 321.

Reviewer #3:

1. The discussion part is weak, it looks more like a summary. The authors should pinpoint the limitations of the experimental method, and compare with others. The discussion part needs rewritten.

The discussion highlights many of the key design parameters and more critical components of the experimental apparatus. The discussion was clarified to read more clearly especially the purpose of the experimental method. As this experimental apparatus can be modified for a variety of climate and soil conditions as well as dimensions, this was further clarified in lines 514-521.

Supplemental File (as requested by JoVE) Copyright information Click here to download Supplemental File (as requested by JoVE): Copyright policies.docx