Journal of Visualized Experiments

Deriving Retinal Pigment Epithelium from Induced Pluripotent Stem Cells by Different Sizes of Embryoid Bodies --Manuscript Draft--

Manuscript Number:	JoVE52262R2
Full Title:	Deriving Retinal Pigment Epithelium from Induced Pluripotent Stem Cells by Different Sizes of Embryoid Bodies
Article Type:	Invited Methods Article - JoVE Produced Video
Keywords:	induced pluripotent stem (iPS) cells, retinal pigment epithelium (RPE), retinal pigment epithelium derived from induced-pluripotent stem (iPS-RPE) cells, tissue engineering, embryoid bodies (EBs)
Manuscript Classifications:	95.51.24: life sciences; 95.51.8: bioengineering (general)
Corresponding Author:	Heuy-Ching Wang, Ph.D. US Army Institute of Surgical Research Fort Sam Houston, TX UNITED STATES
Corresponding Author Secondary Information:	
Corresponding Author E-Mail:	heuy-ching.h.wang.civ@mail.mil
Corresponding Author's Institution:	US Army Institute of Surgical Research
Corresponding Author's Secondary Institution:	
First Author:	Alberto Muniz, Ph.D.
First Author Secondary Information:	
Other Authors:	Alberto Muniz, Ph.D.
	Kaini R Ramesh, M.D., Ph.D.
	Whitney A Greene, Ph.D.
	Jae-Hyek Choi, Ph.D.
Order of Authors Secondary Information:	
Abstract:	Pluripotent stem cells possess the ability to proliferate indefinitely and to differentiate into almost any cell type. Additionally, the development of techniques to reprogram somatic cells into induced pluripotent stem (iPS) cells has generated interest and excitement towards the possibility of customized personal regenerative medicine. However, the efficiency of stem cell differentiation towards a desired lineage remains low. The purpose of this study is to describe a protocol to derive retinal pigment epithelium (RPE) from iPS cells (iPS-RPE) by applying a tissue engineering approach to generate homogenous populations of embryoid bodies (EBs), a common intermediate during in vitro differentiation. The protocol applies the formation of specific size of EBs using microwell plate technology. The methods for identifying protein and gene markers of RPE by immunocytochemistry and reverse-transcription polymerase chain reaction (RT-PCR) are also explained. Finally, the efficiency of differentiation in different sizes of EBs monitored by fluorescence-activated cell sorting (FACS) analysis of RPE markers is described. These techniques will facilitate the differentiation of iPS cells into RPE for future applications.
Author Comments:	
Additional Information:	
Question	Response
If this article needs to be "in-press" by a	Sep 30, 2014

certain date to satisfy grant requirements, please indicate the date below and explain in your cover letter.	
If this article needs to be filmed by a certain date to due to author/equipment/lab availability, please indicate the date below and explain in your cover letter.	

Manuscript type: Article

Title: MicroRNA Expression Profiles of Human iPS cells, Retinal Pigment Epithelium derived from iPS, and Fetal Retinal Pigment Epithelium

Authors: Muniz, Alberto, Greene, Whitney A., Ramesh, Kaini R, Choi, Jae-Hyek and Wang, Heuy-Ching

Corresponding Author: Heuy-Ching Wang, PhD Ocular Trauma
U.S. Army Institute of Surgical Research
3698 Chambers Pass Ave., Bldg 3610
JBSA Fort Sam Houston TX 78234-6315

Tel.: 210- 539-9692

E-mail: heuy-ching.h.wang.civ@mail.mil

Explanation of manuscript significance:

The technology to derive retinal pigment epithelium (RPE) from induced-pluripotent stem cells (iPS) shows great promise toward treatment of retinopathies by patient specific regenerative medicine. Indeed, a very recent Phase I clinical trial to establish the safety and tolerability of subretinal transplantation of human ES-derived retinal pigment epithelium in patients with Stargardt's macular dystrophy and dry age-related macular degeneration showed no signs of hyperproliferation, tumorigenicity, ectopic tissue formation, or apparent rejection after 4 months One attractive approach for in vitro differentiation of ES/iPS cells is to make embryoid bodies (EBs) to simulate normal embryological development. The focus of this study is to characterize the influence of EBs size on the iPS-RPE differentiation process.

Sincerely yours, Heuy-Ching Wang, PhD Ocular Trauma U.S. Army Institute of Surgical Research 3698 Chambers Pass Ave., Bldg 3610 Fort Sam Houston TX 78234-6315

TITLE:

Deriving Retinal Pigment Epithelium from Induced Pluripotent Stem Cells by Different Sizes of Embryoid Bodies.

AUTHOR AFFILIATION:

Muñiz, Alberto Ocular Trauma, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234-6315 Albmuniz1@gmail.com

Ramesh, Kaini R
Ocular Trauma,
U.S. Army Institute of Surgical Research,
JBSA Fort Sam Houston, TX
78234-6315
Ramesh.r.kaini.vol@mail.mil

Greene, Whitney A.
Ocular Trauma,
U.S. Army Institute of Surgical Research,
JBSA Fort Sam Houston, TX
78234-6315
Whitney.A.Greene2.vol@mail.mil

Choi, Jae-Hyek
Ocular Trauma,
U.S. Army Institute of Surgical Research,
JBSA Fort Sam Houston, TX
78234-6315
Jae-Hyek.Choi.vol@mail.mil

Wang, Heuy-Ching
Ocular Trauma,
U.S. Army Institute of Surgical Research,
JBSA Fort Sam Houston, TX
78234-6315
Heuy-ching.h.wang.civ@mail.mil

CORRESPONDING AUTHOR

Wang, Heuy-Ching Ocular Trauma, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, TX 78234-6315 Heuy-ching.h.wang.civ@mail.mil

KEYWORDS:

Induced pluripotent stem (iPS) cells, retinal pigment epithelium (RPE), retinal pigment epithelium derived from induced pluripotent stem (iPS-RPE) cells, tissue engineering, embryoid bodies (EBs).

SHORT ABSTRACT:

The objective of this report is to describe the protocols to derive the retinal pigment epithelium (RPE) from induced pluripotent stem (iPS) cells using different sizes of embryoid bodies.

LONG ABSTRACT:

Pluripotent stem cells possess the ability to proliferate indefinitely and to differentiate into almost any cell type. Additionally, the development of techniques to reprogram somatic cells into induced pluripotent stem (iPS) cells has generated interest and excitement towards the possibility of customized personal regenerative medicine. However, the efficiency of stem cell differentiation towards a desired lineage remains low. The purpose of this study is to describe a protocol to derive retinal pigment epithelium (RPE) from iPS cells (iPS-RPE) by applying a tissue engineering approach to generate homogenous populations of embryoid bodies (EBs), a common intermediate during *in vitro* differentiation. The protocol applies the formation of specific size of EBs using microwell plate technology. The methods for identifying protein and gene markers of RPE by immunocytochemistry and reverse-transcription polymerase chain reaction (RT-PCR) are also explained. Finally, the efficiency of differentiation in different sizes of EBs monitored by fluorescence-activated cell sorting (FACS) analysis of RPE markers is described. These techniques will facilitate the differentiation of iPS cells into RPE for future applications.

INTRODUCTION:

Induced pluripotent stem (iPS) cells are a type of pluripotent stem cell derived by reprogramming adult cells with extrinsic factors¹. In contrast, embryonic stem cells (ESCs), another type of pluripotent stem cell, are generated from the inner cell mass of the blastocyst²⁻³. Despite their different origins, iPS cells and ESCs are comparable in their unlimited capacity to replicate *in vitro* and in their capacity to differentiate into any cell type⁴⁻⁵. These characteristics of iPS cells make them ideal candidates for applications in personalized regenerative medicine. Recent research efforts are focused on developing robust differentiation protocols for producing specialized adult cells including retinal pigment epithelium (RPE)⁶⁻¹¹.

For potential clinical applications of iPS derived cells, a directed differentiation for that specific cell type is essential. There are various methods published for directed differentiation of both ESCs and iPS cells into RPE that varies greatly in their efficiency^{6-7, 12-16}. We still do not know many of the molecular events that govern the cell/tissue fate during development or differentiation. In recent years, efforts have been made to develop the differentiation protocol that can mimic the embryological development as

much as possible. During the blastocyst phase, uncommitted population of stem cells are together in a three dimensional microenvironment. So, various strategies were applied to make the ESC/iPS cells assembled together and grow them in three dimensions. These stem cell aggregates are called embryoid bodies (EBs). Studies have shown that EB differentiation of stem cells mimic early stage of embryo development and can spontaneously give rise to primitive endoderm on its exterior surface. Later, as EB development progresses, differentiated cell phenotypes of all three germ lineages appear¹⁷⁻¹⁸. Therefore, EBs based differentiation protocols have attracted a lot of attention for *in vitro* differentiation of ESC/iPS cells and are a good candidate for RPE generation from pluripotent stem cells¹³.

EBs can be made using several methods from ESC/iPS cells. Initially, EBs were made by scraping off adherent colonies and maintaining them in non-adherent suspension culture. However, this approach yields heterogeneous population of EBs that causes low reproducibility. Hanging drop cell culture and microwell based EBs formation are other popular techniques for EBs formation which yield homogeneous EBs of defined sizes that are highly reproducible. Furthermore, the microwell technique can yield large number of aggregates with less effort.

Differentiation of cells within EBs is regulated by a multiplex of morphogenic cues from the extracellular and intracellular microenvironment. In contrast to differentiation in a monolayer format, EBs provide a platform for complex assembly of cells and intercellular signaling to occur¹⁷. Interestingly, the number of pluripotent stem cells used to make individual EBs was observed to influence the fate of cells. For example, in a hematopoetic differentiation study of human ESCs, it was observed that 500 cell EB promoted differentiation towards myeloid lineage whereas 1000 cell EB pushed towards erythroid lineage²⁰. In another study, smaller EBs favored endoderm differentiation whereas larger EBs promoted towards neuro-ectoderm differentiation^{11, 17}.

These past studies strongly suggest that the number of ESC/iPS cells used to make individual EBs affect the EBs based differentiation to any cell types. However, to our knowledge, there are no current studies that have elucidated the impact of EBs size in its propensity to differentiate towards RPE. The goal of this study is to characterize the influence of EBs size on induced pluripotent stem (iPS) cells - retinal pigment epithelium (iPS-RPE) differentiation and to identify the optimum cell number to make the EBs for directed differentiation towards RPE lineage.

PROTOCOL:

- 1. Preparation of culture reagents and culture plates
- **1.1** Prepare feeder-free stem cell culture medium by adding 100 ml of 5X serum-free supplement to 400ml of stem cell basal medium. The medium is stable at 4°C for up to 2 weeks and at -20°C for 6 months.
- **1.2** Add 10 μM solution of rho-associated, coiled-coil containing protein kinase (Rock) inhibitor (Y-27362) to commercially available embryoid body (EB) formation medium.

- 1.3 Prepare differentiation medium by adding 0.1 mM β -mercaptoethanol, 0.1 mM nonessential amino acids, 2 mM L-glutamine, 10% knockout serum replacement (KSR) and 10 μ g/ml gentamicin to Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12 (DMEM/F12).
- **1.4** Prepare iPS-RPE medium by adding 1x N1 supplement, 0.1mM nonessential amino acids, 250 μ g/ml taurine, 13 ng/ml triiodo-L-thyronine sodium salt, 20 ng/ml hydrocortisone, 5 μ g/ml gentamicin, and 15% Fetal bovine serum (FBS) ²¹ to Minimum Essential Medium Eagle (MEM). Adjust the pH to 7.4.
- **1.5** Prepare triiodo-L-thyronine sodium salt stock solution. Dissolve 1 mg of triiodo-L-thyronine sodium salt in 1N sodium hydroxide by gently swirling. Add 49 ml of MEM to make 50 ml of 20 μ g/ml of triiodo-L-thyronine sodium salt. Prepare aliquots and freeze at -20° C until needed. Use appropriate volume to achieve desired concentration in final culture medium.
- **1.6** Prepare hydrocortisone stock solution. Solubilize 1 mg of hydrocortisone in 1 ml of 100% ethanol by gentle agitation. Add 19 ml of MEM to make 20 ml of 50 ug/ml hydrocortisone stock solution. Aliquot and freeze at -20°C until needed. Use appropriate volume to achieve the desired concentration in the final culture medium.
- **1.7** Prepare a working solution of dispase of 1 mg/ml in DMEM/F12.
- **1.8** Preparation of matrix coated plates
- **1.8.1** Prepare protein matrix extracted from Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells in DMEM/F12 to 0.08 mg/ml. Coat each well of a 6-well plate with 1 ml of the matrix solution. Incubate the coated plates at room temperature for 1 hour.
- **1.8.2** After the 1 hour incubation, aspirate the excess DMEM/F12. Add 0.5 ml of feeder-free stem cell culture medium to prevent drying of the wells. The matrix coated plates are ready for use.
- **1.9** Prepare microwell plates, by rinsing each well with 2 ml of DMEM/F12. Remove DMEM/F12 and add 0.5 ml of EB formation medium supplemented with Rock inhibitor to each well. Centrifuge the plate at 2000 x g for 5 minutes to remove any air bubbles.
- **1.10** Prepare FACS staining buffer by mixing 2% FBS, and 0.09% sodium azide in phosphate buffered saline (PBS). Adjust the buffer to pH 7.4.
- **1.11** Prepare Trypsin neutralizing solution by adding 10 % FBS to DMEM/F12.

2. iPS culture

2.1 Prior to iPS cell seeding, warm feeder-free stem cell culture medium to 37°C, and

have the matrix coated plates ready.

- **2.2** Quickly thaw the IMR90-1 iPS cells in a 37°C water bath. Then remove the cryo-vial from the water bath and wipe the vial with 70% ethanol. Transfer the cells to a 15 ml conical tube using a 2 ml pipette to minimize breaking of cell clumps.
- **2.3** Add 5 ml of warm feeder-free stem cell culture medium to the cells dropwise and gently mix. Centrifuge the cells at 300 x g for 5 minutes at room temperature and remove the supernatant.
- **2.4** Carefully resuspend the cell clumps in 2 ml of feeder-free stem cell culture medium and seed the cell clumps in the wells of matrix-coated plate. Place the plate into a 37°C incubator with 5% CO₂, 95% humidity.
- **2.5** Change the iPS cell culture medium daily. Observe undifferentiated colonies five to seven days after seeding. Check for undifferentiated colonies that are ready for passage (colonies with a dense center) under a light microscope.

3. Passaging of iPS cells

- **3.1** Prior to beginning to passage the iPS cells, warm the dispase solution, DMEM/F12 and feeder-free stem cell culture medium to 37°C in water bath.
- **3.2** Before passaging iPS cells, remove any areas of differentiation by scraping the area and aspirating the medium. Carefully rinse the iPS cells with 2 ml DMEM/F12.
- **3.3** Add 1 ml of 1 mg/ml dispase to each well and incubate at 37°C for 7 minutes. Aspirate the dispase and gently rinse the cell colonies with 2 ml of DMEM/F12 two times. After rinsing, add 2 ml of feeder-free stem cell culture medium to each well.
- **3.4** Using a 5 ml pipette gently scrape the colonies of the plate to form cell clumps. Transfer the detached cell clumps to a 15 ml conical tube. Add sufficient feeder-free stem cell culture medium to seed the next passage of cells.

4. Generation of EBs using microwell plates

- **4.1** Preparation of a single cell suspension of iPS cells
- **4.1.1** Remove the medium from the iPS cells and rinse the iPS cells with 2 ml of DMEM/F12. Add 750 μ l of accutase to iPS cells at each well of the 6-well plate. Incubate the cells at 37°C and 5% CO₂ to allow the cells to detach from the plate (approximately 5- 10 minutes).
- **4.1.2** Use a pipette to gently dissociate any remaining cells and to detach any remaining cells on the plate surface. Transfer the cells to a 50 ml conical tube. Rinse the plate with 5 ml of DMEM/F12and combine the rinsed DMEM/F12 with the cells in the conical tube.

Pass the cell suspension through a 40 µm cell strainer to remove any possible residual cell clumps.

- **4.1.3** Centrifuge the cells at 300 x g for 5 minutes at room temperature to remove the accutase. Resuspend the cell pellet in EB formation medium so that the cell concentration is approximately 0.5- 1.0 x 10⁷ cells/ml.
- **4.1.4** Determine the number of viable cells by counting the cells with Trypan Blue and a hemocytometer.
- **4.2** Adjusting cell density in microwells to form size-controlled EBs
- **4.2.1** Adjust the number of cells to each well of the microwell plate to generate the desired EB sizes. Add cells to the microwells of the plates prepared in step 1.9., Evenly distribute the cells by gently pipetting the cells several times.

NOTE: Number of cells required per well = desired number of cells per EB x number of microwells per well.

- **4.2.2** Adjust the EB formation medium supplemented with Rock inhibitor in the wells to a final volume of 2.0 ml. Redistribute the cells by gently pipetting each well. Centrifuge the microwell plates at 100 x g for 3 minutes. Place the plates in an incubator at 37°C with 5% CO₂ and 95% humidity for 24 hours.
- **4.3.** Harvesting EBs from the microwell plates
- **4.3.1** Harvest EBs from microwells by pipetting medium in the well up and down with a 1 ml micropipettor to remove most of the EBs. Pass the EB suspension through an inverted 40 µm cell strainer on top of a 50 ml conical tube to remove single cells.
- **4.3.2** Wash the microwell plate 5 times with 1 ml of DMEM/F12 to remove all the EBs. Collect washes and pass over the inverted cell strainer. Turn the cell strainer right-side up to a new 50 ml conical tube. Collect the EBs by washing with EB formation medium. Count EBs to determine the yield.

5. Plating EBs and initiating differentiation

- **5.1** Plate the EBs on protein matrix coated six well plates (as in step 1.8.1) at a density of \leq 1000 EBs/well in EB formation medium plus 10 μ M Rock inhibitor. Incubate the EBs at 37°C with 5% CO₂ and 95% humidity for 24 hours.
- **5.2** 24 hours after EB plating, replace with differentiation medium to initiate differentiation. Change half of the differentiation medium every other day until the cells are collected for further analysis.

5.3 Collect samples at day 6, 17, 29 and 60 to conduct RT-PCR, immunocytochemistry and FACS to validate expression of characteristic RPE genes and proteins.

6. RNA Extraction and PCR

- **6.1** Extract RNA from the EB samples according to instructions provided in the commercially available kit. Determine RNA concentration by using a spectrophotometer.
- **6.2** Perform reverse transcription on 100 ng of total RNA according to commercially available RNA to cDNA reverse transcript kit.
- **6.3**. Perform PCR with 10 ng of cDNA using the following primers (Table 1) at a concentration of 10 μ moles/ 10 ng of cDNA. Set the PCR as follows: denature DNA at 95° C for 5 minutes, amplify with 35 cycles at 95° C for 15 sec, 60° C for 30 sec, 72° C for 1 minute, followed by a final cycle at 72° C for 10 minutes. Run the PCR product on a 1% Agarose gel.

7. Immunocytochemistry

- **7.1** Wash the EBs with PBS two times at room temperature. Fix the EBs at room temperature in 4% paraformaldehyde for 10 minutes. Rinse once with PBS at room temperature. Store samples in PBS at 4°C until used for staining.
- **7.2** On staining day, treat the fixed cells with fixation and permeabilization reagents. Incubate the samples with blocking solution (10% goat serum in permeabilization solution) for 1 hour at room temperature.
- **7.3** Perform immunochemistry in 10% goat serum in permeabilization solution using the following primary antibodies at the indicated dilutions:anti-Pax6 (1:10), anti-RX (1:200), anti-MITF (1:30), and anti-ZO1 (1:100). Incubate samples with corresponding antibodies overnight at 4°C.
- **7.4** Next day, remove the primary antibody from the cells and rinse the samples three times with PBS. Incubate samples with fluorophore-conjugated secondary antibodies for 1 hour at room temperature.
- **7.5** Remove the secondary antibody from the cells and rinse the samples three times in PBS. Mount the cover slips on glass slides with DAPI containing mounting medium and allow samples to set over night in a dark chamber. Use a fluorescence microscope to visualize the staining.

8. Staining for FACS Analysis

8.1 Wash the cultured EBs in PBS two times. Incubate the EBs with 0.5 ml of 0.25% trypsin for 5-10 minutes to make a single cell suspension. Neutralize the trypsin with trypsin neutralizing solution (1 ml/well).

- **8.2** Transfer the single cell suspension to a 15 ml conical tube and centrifuge at 600 x g for 10 minutes.
- **8.3** Discard the supernatant and add 10 ml of DMEM/F12 to the cells in the tube. Gently invert to mix the cells. Centrifuge at 600 xg. After centrifugation, discard the supernatant and resuspend the cells in FACS staining buffer.
- **8.4** Count the total number of cells. Centrifuge at 600 x g for 10 minutes. After centrifugation discard supernatant. Fix the cells immediately by adding 0.5 ml of 4% paraformaldehyde. Mix well by gentle vortexing. Incubate the cells at 4°C for 20 minutes.
- **8.5** Centrifuge at 600 x g for 10 minutes and remove the supernatant. Vortex gently to disrupt the cell pellet. Permeabilize the cells by adding 1 mL of chilled permeabilizationsolution. Vortex gently to mix and incubate on ice for 30 minutes.
- **8.6** Centrifuge at 600 x g for 10 minutes and remove the supernatant. Add 3 ml of FACS staining buffer and resuspend. Repeat this step for one more time. Resuspend the cells in FACS staining buffer at a final concentration of $5x10^6$ cells/ml.
- **8.7** Transfer 100 μ L of the cell suspension (0.5 x 10⁶cells) to each microfuge tubes and add the recommended volume of primary antibody. For Pax6, add 5 μ l of PE anti- Pax6 in 100 μ l of cell suspension. For MITF, add 5 μ l of anti-MITF in 100 μ l of cell suspension.
- **8.8** Mix and incubate at room temperature for 60 minutes. Add 3 ml of FACS staining buffer. Mix and centrifuge at $600 \times g$ for 10 minutes. Remove the supernatant and repeat 8.16 for two additional times.
- **8.9** For MITF staining, incubate the cells in secondary antibody, goat anti-mouse alexa fluor 488 at a dilution of 1:2000 for 1 hour at 4°C. For Pax6 staining, avoid this step.
- **8.10** Wash the cells with 5 ml of FACS staining buffer and centrifuge at 600 xg for 10 minutes. Repeat the process for two more times.
- **8.11** Resuspend the cells in 500 μ L of FACS staining buffer and vortex gently to disrupt the cell pellet. Samples are ready for flow cytometric analysis.

9. iPS-RPE isolation and culture

9.1 At day 29, carefully cut around the selected pigmented colonies from the culture plate using a 200 μ l pipette tip. Transfer the floating colonies to a 15 ml conical tube. Centrifuge the colonies at 600 x g for 10 minutes at room temperature and remove the supernatant.

- **9.2** Resuspend the cell colonies in 10 ml of DMEM/F12 and centrifuge at 600 xg for 10 minutes. Remove the supernatant.
- **9.3** Prepare a single cell suspension by incubating the colonies with 2 ml of 0.25% trypsin at 37°C for 7-10 minutes. Gently vortex the cell suspension to dissociate the colonies.
- **9.4** Neutralize the trypsin by adding 2 ml of iPS-RPE medium. Centrifuge at 600 xg for 10 minutes and discard the supernatant. Resuspend the single cells in 2 ml of iPS-RPE medium. Transfer the cells into a protein matrix coated 6-well plate and place in an incubator at 37 °C, 5% CO₂ and 95% humidity.

REPRESENTATIVE RESULTS:

In this experiment, iPS cells were cultured and differentiated into the RPE lineage from EBs. EBs of controlled sizes were formed using microwell plates. As seen in **Figure 1** EB formation was homogenous in the microwell plates. These EBs were then collected and plated on 6-well plates (**Figure 2**).

RPE can be identified by their classical hexagonal morphology, pigmentation, and expression of RPE markers. After 12 weeks of culture, the 200 cell EBs had developed astrocyte and fibroblast morphology. No pigmentation was observed in these cells (**Figure 3A**). Larger EBs developed a monolayer of classical RPE morphology and pigmentation (**B.** and **C.**) Immunocytochemistry to detect RPE markers, MITF and ZO1 revealed co-expression of these proteins that had been derived from 500 cell and 3000 cell EBs (**Figure 4**).

Expressions of eye field and RPE genes were monitored by PCR. **Figure 5** shows the gene expression profile of neuroectodermal, eye field precursors, and RPE markers in different sizes of EBs. Importantly, the specific RPE marker, RPE65 was detected beginning at day 17.

To quantify the yield of cells that had differentiated into RPE lineage, FACS analysis was performed to detect the neuroectodermal and RPE precursor markers, PAX6 and MITF respectively. **Figure 6A** shows neuroectodermal marker PAX6 in different sizes of EBs at different time points. Approximately 50% of the analyzed cells were positive for Pax6 on day 6 of culture in the 3000 cell EBs. Additionally, FACS analysis of RPE marker, MITF on varied EB sizes revealed that 20% of the cells expressed MITF by Day 60 of differentiation.

Cultured RPE are also characterized by their ability to lose their pigment and polygonal morphology and obtain a fibroblast phenotype upon passaging. Therefore, to determine if the iPS derived RPE possess these characteristics, we mechanically isolated and passaged the cells. **Figure 7A** shows the newly passaged cells have lost pigment and gained fibroblast morphology. Additionally, these cells proliferated and regained the classical polygonal morphology upon confluence (**Figure 7B**). Within a few weeks, these cells regained their pigmentation (**Figure 7C**).

FIGURE LEGENDS:

Table 1: PCR primer sequences for Pax6, RPE65, RX, MITF and GAPDH genes.

- Figure 1: Formation of EBs with microwell plates. Each microwell contains A. 100 cells, B. 200 Cells, C. 500 Cells, and D. 3,000 Cells. Cells were incubated 24 hours at 37° C and 5% CO₂ for the formation of EBs. (Magnification 100x, scale bar = 400 μ m)
- **Figure 2: EBs harvested from microwell plates.** A. 200 cell EB, B. 500 cell EB, C. 3,000 cell EB, and D. 15,000 cell EB. (Magnification 200x, scale bar = 200 μ m)
- Figure 3: iPS-derived RPE from different sizes of EBs. EBs were cultured for 12 weeks. A. 200 cell EBs had only developed astrocyte and fibroblast morphology without pigmentation; while 80-90% of the cells in the 500 cell EBs (B. and C.) developed a monolayer of polygonal pigmented cells. (A. & B. Magnification 100x, scale bar = 400 μ m C. Magnification 200x, scale bar = 200 μ m)
- Figure 4: Co-expression of MITF and ZO1. 500 and 3000 cell EBs expressed MITF and ZO1 after 17days of differentiation. (Magnification 400x, scale bar = $20 \mu m$)
- **Figure 5:** Gene expression profile of different sizes of EBs at different time points of differentiation.
- **Figure 6: FACS analysis of varied EB size for RPE differentiation**. A. FACS data of neuroectodermal marker PAX6 in different sizes of EBs during differentiation. B. FACS analysis of RPE marker MiTF on varied EB sizes at day 60 of differentiation. The highest level of MITF reached 20% and was constant between EB size of 500, 3000, and 15000 cells.
- Figure 7: Continued culture of manually isolated RPE. A. RPE was subcultured and acquired fibroblast morphology after passage. B. & C. Cells developed polygonal morphology and pigmentation over time. (Magnification 100x, scale bar = $400 \mu m$)

DISCUSSION:

To realize the full promise of pluripotent stem cells for cell therapy, it is necessary to regulate their differentiation in a consistent and reproducible way. This report describes protocols to form size-controlled EBs using microwell plate technology, initiate differentiation toward RPE and identify protein and gene markers of RPE. To synchronize the *in vitr* o differentiation, homogenous sizes of EBs were formed by known numbers of iPS cells centrifuged in microwell plates by forced aggregation. Immunocytochemistry and reverse-transcription polymerase chain reaction (RT-PCR) are used to monitor the expressions RPE proteins and genes of explained. Finally, the efficiency of differentiation in different sizes of EBs was analyzed by FACS analysis. These techniques can facilitate the differentiation of iPS cells into RPE for future applications.

There are several crucial points in this method that must be carefully executed to ensure the success of this protocol and attainment of accurate data. The first key step occurs during the iPS cell culture. iPS cells must be maintained in a pluripotent state to maintain their stemness. The cells must have the medium changed daily in order to maintain appropriate levels of bFGF and be carefully inspected daily for signs of differentiation. Undifferentiated iPS cells grow as compact multicellular colonies. The cells should have a high nuclear to cytoplasm ratio and prominent nucleoli. The iPS colonies are characterized by a distinct border, with several layers of cells at the center. Signs of differentiation include loss of defined colony borders, non-uniform cell morphology, and the appearance of obvious cell types, such as neurons and fibroblasts. Single cells that have differentiated can be removed by dispase and rinsing, however, colonies with these characteristics must be manually removed from the culture²². Preparation of a single iPS cell suspension for forming the EBs is the next critical step. It is important to prepare a suspension without cell aggregates in order to accurately deliver the desired number of cells to the microwell plate and prepare the desired size EB. RNA preparations for PCR analysis are also important. Inconsistent RNA quality is a significant source of variability in PCR data. RNA extraction should yield minimally degraded RNA for best results. Successful RNA extraction will yield total RNA with minimal degradation and free of any contaminating RNases. After determination of the RNA concentration by spectrophotometry at 260 nm, the purity of the sample should be determined at 230 and 280 nm to detect contamination with polysaccharides or protein. The 230:260:280 ratio for RNA should be 1:2:1 to indicate high quality RNA with no . Finally, it is important to adequately fix the cells for FACS staining. contamination²³ During this fixation step, the cells must be separated to prevent clumping. Insufficient cell resuspension prior to permeabilization will lead to cell clumping and inaccurate staining.

We recommend that the protocol be followed as described, however a few modifications During the generation of EBs described in Step 4, the can be made if necessary. number of cells per EB can range between 500 to 3000 to achieve a high yield of cells differentiated into RPE. If the number of iPS cells is limited, 500 cell EBs will produce RPE comparable to the 3000 cell EBs. Extra care must be taken during the RNA extraction process described in Step 6. Samples should be run in triplicate to ensure that high quality RNA can be acquired. During immunocytochemistry as described in Step 7, the primary and secondary antibody concentrations can be adjusted as necessary to improve signal intensity and reduce background. The appropriate positive and negative controls should be included in the assay. During Step 8, FACS analysis, if the expected results are not acquired after staining, a small sample of the stained cells can be placed on a slide and viewed with a microscope to visualize staining. The appropriate positive and negative controls should be included in the assay. If the cells are not stained as expected, the antibody concentrations can be increased or decreased as needed.

The technique described in this report will result in a higher yield of RPE than spontaneous differentiation, without the use of added chemicals. However, the main limitation of this approach is that there will also be a large number of non-RPE cells

generated. Therefore, the RPE must be carefully selected out and enriched as described in Step 9 to ensure a homogenous population.

The significance of this approach is that a higher yield of RPE can be derived from iPS cells than spontaneous differentiation techniques. The use of small molecules to derive RPE from iPS has also been reported to give a high yield of differentiated cells, however, that technique is much more complex and requires the timing and concentrations of the small molecules to be optimized to achieve the desired results ^{7,10}. In addition, the small molecules used in those methods have pleiotropic effects which can confound the results.

The described method can be used to make EBs of desired sizes with high reproducibility. This technique generated EBs of uniform sizes which were used to optimize the differentiation of iPS cells towards the RPE lineage without the use of additional chemicals. The iPS-RPE cells derived from EBs can then be further used in transplantation studies to confirm their integration into the retina in a functional organization. These cells can also provide a good research model to study the pathogenesis of various RPE diseases *in vitro*. The utility of this approach can be applied to the directed differentiation into many other cell types, depending upon the size of the EBs and the *in vivo* origin of the cell in the blastocyst. Cells of the ectoderm will give rise to neurons, epidermis, hair and mammary gland cells; endoderm will give rise to stomach, colon, lungs, and intestinal cells; mesoderm will give rise to skeletal muscle, heart, kidney, and connective tissue cells ^{3,11,19}. Once the correct EB size has been determined, the differentiated cells need only to be analyzed by immunocytochemistry or FACS for the correct expression of marker proteins.

ACKNOWLEDGEMENTS:

The opinions or assertions contained herein are the private views of the authors and are not to be construed as official or as reflecting the views of the Department of the Army or the Department of Defense. This research was performed while the authors Alberto Muñiz, Ramesh R Kaini, Whitney A Greene and Jae-Hyek Choi held a National Research Council Postdoctoral Research Associateship at the USAISR. This work was supported by U.S. Army Clinical Rehabilitative Medicine Research Program (CRMRP) and Military Operational Medicine Research Program (MOMRP).

DISCLOSURES:

The authors have nothing to disclose.

REFERENCES:

- 1. Takahashi, K., *et al.* Induction of pluripotent stem cells from fibroblast cultures. *Nat Protoc.* **2** (12), 3081- 9, doi:10.1038/nprot.2007.418, (2007).
- 2. Reubinoff, B.E., *et al.* Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. *Nat Biotechnol.* **18**(4), 399-404, doi:10.1038/74447, (2000).
- 3. Thomson, J.A., *et al.* Embryonic stem cell lines derived from human blastocysts. *Science.* **282** (5391), 1145-7, doi: 10.1126/science.282.5391.1145, (1998).

- 4. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. *Cell.* **126** (4), 663-76, doi: 10.1016/j.cell.2006.07.024, (2006).
- 5. Yu, J., *et al.* Induced pluripotent stem cell lines derived from human somatic cells. *Science*. **318** (5858),1917-20, doi: 10.1126/science.1151526, (2007).
- 6. Buchholz, D.E., *et al.* Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. *Stem Cells.* **27** (10), 2427-34, doi: 10.1002/stem.189, (2009).
- 7. Ukrohne, T.U., *et al.* Generation of retinal pigment epithelial cells from small molecules and OCT4 reprogrammed human induced pluripotent stem cells. *Stem Cells Transl Med.* **1** (2), 96-109, doi: 10.5966/sctm.2011-0057, (2012).
- 8. Subba R.M., Sasikala M., Nageshwar R. D. Thinking outside the liver: induced pluripotent stem cells for hepatic applications. *World J Gastroenterol.* **19** (22), 3385-96, doi: 10.3748/wjg.v19.i22.3385, (2013).
- 9. Yoshida, Y., Yamanaka, S. iPS cells: a source of cardiac regeneration. *J Mol Cell Cardiol.* **50** (2), 327-32, doi: 10.1016/j.yjmcc.2010.10.026, (2011).
- 10. Mak, S.K., *et al.* Small molecules greatly improve conversion of human-induced pluripotent stem cells to the neuronal lineage. *Stem Cells Int.* **2012**, 140427, doi: 10.1155/2012/140427, (2012).
- 11. Bauwens, C.L., *et al.* Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. *Stem Cells.* **26** (9), 2300-10, doi: 10.1634/stemcells.2008-0183. (2008).
- 12. Cour la, M., Tezel, T. The Retinal Pigment Epithelium. *Advances in Organ Biology.* **10**, 253-273, doi:10.1016/S1569-2590(05)10009-3, (2006).
- 13. Vaajassari, V., *et al.* Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. *Mol Vis.* **17**, 558-75, (2011).
- 14. Carr, A.J., *et al.* Protective effects of human iPS-derived retinal pigment epithelium cell transplantation in the retinal dystrophic rat. *PLoS One.* **4** (12), e8152 doi: doi: 10.1371/journal.pone.0008152 (2009).
- 15. Muniz, A., et al. Retinoid uptake, processing, and secretion in human iPS-RPE support the visual cycle. *Invest Ophthalmol Vis Sci.* **55** (1), 198-209, doi: 10.1167/iovs.13-11740, (2014).
- 16. Meyer, J.S., *et al.* Modeling early retinal development with human embryonic and induced pluripotent stem cells. *Proc Natl Acad Sci U S A.* **106** (39), 16698-703, doi: 10.1073/pnas.0905245106, (2009).
- 17. Bratt-Leal, A.M., Carpenedo R.L., McDevitt T.C. Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. *Biotechnol Prog.* **25** (1), 43-51, doi: 10.1002/btpr.139, (2009).
- 18. Kurosawa, H. Methods for inducing embryoid body formation: in vitro differentiation system of embryonic stem cells. *J Biosci Bioeng.* **103** (5), 389-98, doi: 10.1263/jbb.103.389, (2007).
- 19. Itskovitz-Eldor, J., *et al.* Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. *Mol Med.* **6** (2), 88-95, (2000).

- 20. Ng, E.S., *et al.* Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. *Blood.* **106** (5), 1601-3, doi:10.1182/blood-2005-03-0987, (2005).
- 21. Maminishkis, A., *et al.* Confluent monolayers of cultured human fetal retinal pigment epithelium exhibit morphology and physiology of native tissue. *Invest Ophthalmol Vis Sci.* **47** (8), 3612-24, doi: 10.1167/iovs.05-1622, (2006).
- 22. Maintenance of hESCs and hiPSCs in mTESR1 and mTESR2. Stem Cell Technologies. http://www.stemcell.com/ (2010).
- 23. The Analysis of DNA or RNA using its wavelengths: 230 nm, 260 nm, 280 nm. About Biotechnology. http://archive.today/0qTh (2013).

Figure Click here to download Figure: HCWang_JoVE_figures_EBS_RPE scale bars_July2014.docx

Figure 1.

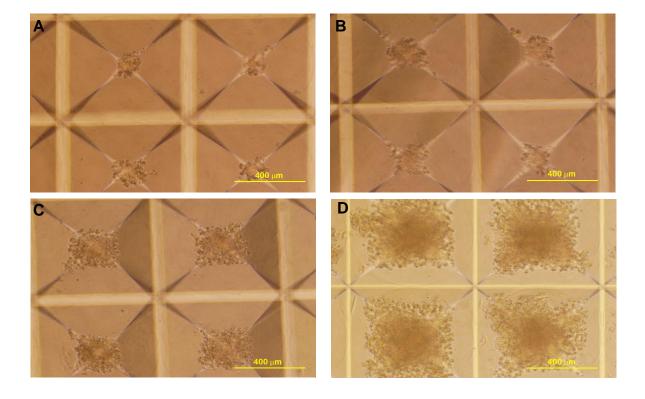


Figure 2.

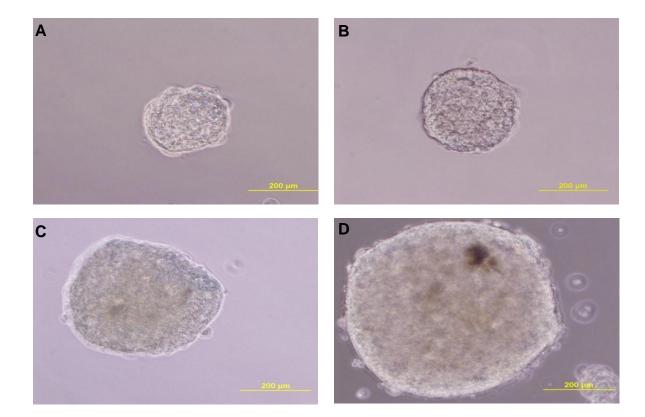


Figure 3.

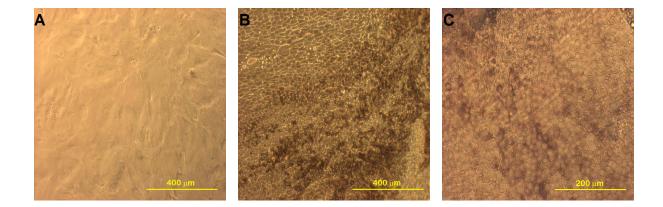


Figure 4.

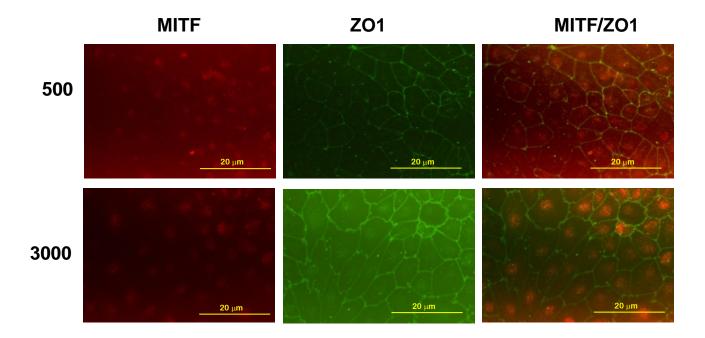


Figure 5.

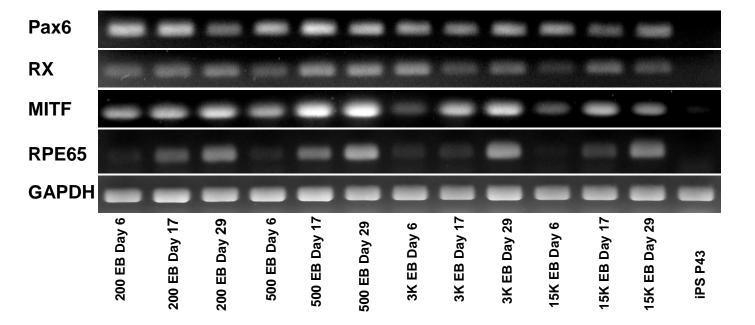
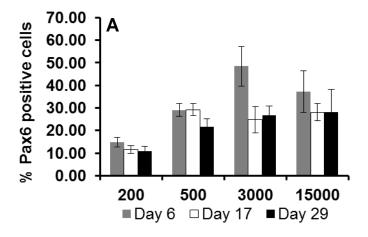



Figure 6.

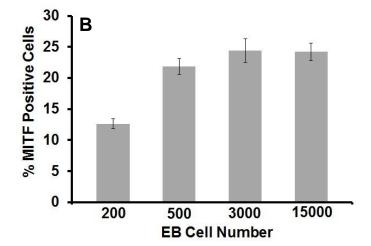


Figure 7.

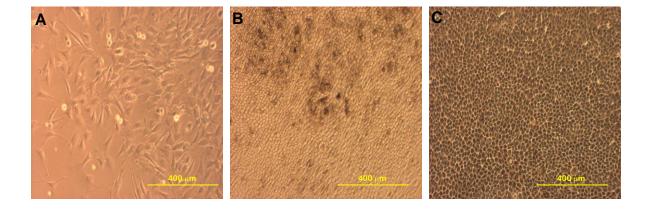


Table 1: PCR primer sequences for RPE genes

Gene	NICB reference		Sequence (5`-3`)	size (BP)
Pax 6	NM_001258465.1	F	CGGAGTGAATCAGCTCGGTG	300
		R	CCGCTTATACTGGGCTATTTTGC	
RPE65	NM_000329.2	F	GCCCTCCTGCACAAGTTTGACTTT	
		R	AGTTGGTCTCTGTGCAAGCGTAGT	259
RX	NM_013435.2	F	GAATCTCGAAATCTCAGCCC	279
		R	CTTCACTAARRRGCTCAGGAC	219
MITF	NM_198178.2	F	TTCACGAGCGTCCTGTATGCAGAT	106
		R ·	TTGCAAAGCAGGATCCATCAAGCC	100
GAPDH	NM_001256799.1	F	ACCACAGTCCATGCCATCAC	452
		R	TCCACCACCCTGTTGCTGTA	

Name of Material/ Equipment	Company	Catalog Number
mTeSR1 media + 5X supplement	Stem Cell Technologies	5850
Y-27632 (Rock Inhibitor)	Stem Cell Technologies	72304
DMEM/F12	Life Technologies	11330-032
2-Mercaptoethanol	Sigma	M-7154
Non essential amino acids	Hyclone(Fisher)	SH30853.01
Knockout serum replacement	Life Technologies	10828-028
Gentamicin	Life Technologies	15750-060
L-Glutamine	Life Technologies	25030-081
MEM media	Life Technologies	10370-021
N1 supplement	Sigma	N-6530-5ML
Taurine	Sigma	T-8691-25G
Hydrocortisone	Sigma	H0888-1G
Fetal bovine serum	Hyclone(Fisher)	SH3008803HI
Triiodo-l-thyronine sodium salt	Sigma	T6397
Sodium hydroxide	Sigma	S5881
Dispase	Life Technologies	17105-041
Matrigel	BD Biosciences	354277
Phosphate buffered saline	Hyclone(Fisher)	10010-023
Aggrewell 400 plate	Stem Cell Technologies	27940
AggreWell medium	Stem Cell Technologies	5893
Accutase	Stem Cell Technologies	7920
BD Cytofix/Cytoperm		
Fixation/Permeabilization Kit	BD Biosciences	554714
Mouse Anti-PAX6 antibody	Developmental Studies Hybrido	ma Bank
Rabbit Anti- RX antibody	Abcam	Ab23340
Mouse Anti-MITF antibody	Thermo Scientific	MS-772-P
Rabbit Anti-ZO-1 antibody	Invitrogen	40-2200
RNeasy plus mini kit	Qiagen	74134
PCR master mix	promega	M7502
High capacity RNA to c DNA kit	Life Technologies	4387406

Comments/Description

ARTICLE AND VIDEO LICENSE AGREEMENT

Title of Article:	Deriving Retinal Pigment Epitheliun from Induced-Pluripotent stem cells by Different sizes of Munix, Alberto; Greene, whitney A.; Ramesh, Kaini R; Choi, Tap-Hyek Embry oid Badies
Author(s):	
tem 1 (check one	box): The Author elects to have the Materials be made available (as described at
	jove.com/publish) via: X Standard Access Open Access
tem 2 (check one bo	x):
The Auth	or is NOT a United States government employee.
X The Aut	hor is a United States government employee and the Materials were prepared in the
course of his	or her duties as a United States government employee.
	nor is a United States government employee but the Materials were NOT prepared in the or her duties as a United States government employee.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 1. Defined Terms. As used in this Article and Video License Agreement, the following terms shall have the following meanings: "Agreement" means this Article and Video License Agreement; "Article" means the article specified on the last page of this Agreement, including any associated materials such as texts, figures, tables, artwork, abstracts, or summaries contained therein; "Author" means the author who is a signatory to this Agreement; "Collective Work" means a work. such as a periodical issue, anthology or encyclopedia, in which the Materials in their entirety in unmodified form, along with a number of other contributions, constituting separate and independent works in themselves, are assembled into a collective whole; "CRC License" means the Creative Commons Attribution-Non Commercial-No Derivs 3.0 Unported Agreement, the terms and conditions of which can be found http://creativecommons.org/licenses/by-ncnd/3.0/legalcode; "Derivative Work" means a work based upon the Materials or upon the Materials and other preexisting works, such as a translation, musical arrangement. dramatization, fictionalization, motion picture version, sound recording, art reproduction, abridgment, condensation, or any other form in which the Materials may be recast, transformed. or adapted; "Institution" means the institution, listed on the last page of this Agreement, by which the Author was employed at the time of the creation of the Materials: "JoVE" means MyJove Corporation, a Massachusetts corporation and the publisher of The Journal of Visualized Experiments; "Materials" means the Article and / or the Video; "Parties" means the Author and JoVE; "Video" means any video(s) made by the Author, alone or in conjunction with any other parties, or by JoVE or its affiliates or agents, individually or in collaboration with the Author or any other parties, incorporating all or any portion of the Article, and in which the Author may or may not appear.
- 2. <u>Background</u>. The Author, who is the author of the Article, in order to ensure the dissemination and protection of the Article, desires to have the JoVE publish the Article and create and transmit videos based on the Article. In furtherance of such goals, the Parties desire to memorialize in this Agreement the respective rights of each Party in and to the Article and the Video.
- 3. Grant of Rights in Article. In consideration of JoVE agreeing to publish the Article, the Author hereby grants to JoVE, subject to Sections 4 and 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Article in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Article into other languages, create adaptations, summaries or extracts of the Article or other Derivative Works (including, without limitation, the Video) or Collective Works based on all or any portion of the Article and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. If the "Open Access" box has been checked in Item 1 above, JoVE and the Author hereby grant to the public all such rights in the Article as provided in, but subject to all limitations and requirements set forth in, the CRC License.

ARTICLE AND VIDEO LICENSE AGREEMENT

- 4. Retention of Rights in Article. Notwithstanding the exclusive license granted to JoVE in Section 3 above, the Author shall, with respect to the Article, retain the non-exclusive right to use all or part of the Article for the non-commercial purpose of giving lectures, presentations or teaching classes, and to post a copy of the Article on the Institution's website or the Author's personal website, in each case provided that a link to the Article on the JoVE website is provided and notice of JoVE's copyright in the Article is included. All non-copyright intellectual property rights in and to the Article, such as patent rights, shall remain with the Author.
- 5. Grant of Rights in Video Standard Access. This Section 5 applies if the "Standard Access" box has been checked in Item 1 above or if no box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby acknowledges and agrees that, Subject to Section 7 below, JoVE is and shall be the sole and exclusive owner of all rights of any nature, including, without limitation, all copyrights, in and to the Video. To the extent that, by law, the Author is deemed, now or at any time in the future, to have any rights of any nature in or to the Video, the Author hereby disclaims all such rights and transfers all such rights to JoVE.
- 6. Grant of Rights in Video Open Access. This Section 6 applies only if the "Open Access" box has been checked in Item 1 above. In consideration of JoVE agreeing to produce, display or otherwise assist with the Video, the Author hereby grants to JoVE, subject to Section 7 below, the exclusive, royalty-free, perpetual (for the full term of copyright in the Article, including any extensions thereto) license (a) to publish, reproduce, distribute, display and store the Video in all forms, formats and media whether now known or hereafter developed (including without limitation in print, digital and electronic form) throughout the world, (b) to translate the Video into other languages, create adaptations, summaries or extracts of the Video or other Derivative Works or Collective Works based on all or any portion of the Video and exercise all of the rights set forth in (a) above in such translations, adaptations, summaries, extracts, Derivative Works or Collective Works and (c) to license others to do any or all of the above. The foregoing rights may be exercised in all media and formats, whether now known or hereafter devised, and include the right to make such modifications as are technically necessary to exercise the rights in other media and formats. For any Video to which this Section 6 is applicable, JoVE and the Author hereby grant to the public all such rights in the Video as provided in, but subject to all limitations and requirements set forth in, the CRC License.
- 7. Government Employees. If the Author is a United States government employee and the Article was prepared in the course of his or her duties as a United States government employee, as indicated in Item 2 above, and any of the licenses or grants granted by the Author hereunder exceed the scope of the 17 U.S.C. 403, then the rights granted hereunder shall be limited to the maximum rights permitted under such

- statute. In such case, all provisions contained herein that are not in conflict with such statute shall remain in full force and effect, and all provisions contained herein that do so conflict shall be deemed to be amended so as to provide to JoVE the maximum rights permissible within such statute.
- 8. <u>Likeness, Privacy, Personality</u>. The Author hereby grants JoVE the right to use the Author's name, voice, likeness, picture, photograph, image, biography and performance in any way, commercial or otherwise, in connection with the Materials and the sale, promotion and distribution thereof. The Author hereby waives any and all rights he or she may have, relating to his or her appearance in the Video or otherwise relating to the Materials, under all applicable privacy, likeness, personality or similar laws.
- 9. Author Warranties. The Author represents and warrants that the Article is original, that it has not been published, that the copyright interest is owned by the Author (or, if more than one author is listed at the beginning of this Agreement, by such authors collectively) and has not been assigned, licensed, or otherwise transferred to any other party. The Author represents and warrants that the author(s) listed at the top of this Agreement are the only authors of the Materials. If more than one author is listed at the top of this Agreement and if any such author has not entered into a separate Article and Video License Agreement with JoVE relating to the Materials, the Author represents and warrants that the Author has been authorized by each of the other such authors to execute this Agreement on his or her behalf and to bind him or her with respect to the terms of this Agreement as if each of them had been a party hereto as an Author. The Author warrants that the use, reproduction, distribution, public or private performance or display, and/or modification of all or any portion of the Materials does not and will not violate, infringe and/or misappropriate the patent, trademark, intellectual property or other rights of any third party. The Author represents and warrants that it has and will continue to comply with all government, institutional and other regulations, including, without limitation all institutional, laboratory, hospital, ethical, human and animal treatment, privacy, and all other rules, regulations, laws, procedures or guidelines, applicable to the Materials, and that all research involving human and animal subjects has been approved by the Author's relevant institutional review board.
- 10. JoVE Discretion. If the Author requests the assistance of JoVE in producing the Video in the Author's facility, the Author shall ensure that the presence of JoVE employees, agents or independent contractors is in accordance with the relevant regulations of the Author's institution. If more than one author is listed at the beginning of this Agreement, JoVE may, in its sole discretion, elect not take any action with respect to the Article until such time as it has received complete, executed Article and Video License Agreements from each such author. JoVE reserves the right, in its absolute and sole discretion and without giving any reason therefore, to accept or decline any work submitted to JoVE. JoVE and its employees, agents and independent contractors shall have

1 Alewife Center #200 Cambridge, MA 02140 tel. 617.945.9051 www.jove.com

ARTICLE AND VIDEO LICENSE AGREEMENT

full, unfettered access to the facilities of the Author or of the Author's institution as necessary to make the Video, whether actually published or not. JoVE has sole discretion as to the method of making and publishing the Materials, including, without limitation, to all decisions regarding editing, lighting, filming, timing of publication, if any, length, quality, content and the like.

11. Indemnification. The Author agrees to indemnify JoVE and/or its successors and assigns from and against any and all claims, costs, and expenses, including attorney's fees, arising out of any breach of any warranty or other representations contained herein. The Author further agrees to indemnify and hold harmless JoVE from and against any and all claims, costs, and expenses, including attorney's fees, resulting from the breach by the Author of any representation or warranty contained herein or from allegations or instances of violation of intellectual property rights, damage to the Author's or the Author's institution's facilities, fraud, libel, defamation, research, equipment, experiments, property damage, personal injury, violations of institutional, laboratory, hospital, ethical, human and animal treatment, privacy or other rules, regulations, laws, procedures or guidelines, liabilities and other losses or damages related in any way to the submission of work to JoVE, making of videos by JoVE, or publication in JoVE or elsewhere by JoVE. The Author shall be responsible for, and shall hold JoVE harmless from, damages caused by lack of sterilization, lack of cleanliness or by contamination due to the making of a video by JoVE its employees, agents or independent contractors. All sterilization, cleanliness or decontamination procedures shall be solely the responsibility of the Author and shall be undertaken at the Author's

expense. All indemnifications provided herein shall include JoVE's attorney's fees and costs related to said losses or damages. Such indemnification and holding harmless shall include such losses or damages incurred by, or in connection with, acts or omissions of JoVE, its employees, agents or independent contractors.

- 12. Fees. To cover the cost incurred for publication, JoVE must receive payment before production and publication the Materials. Payment is due in 21 days of invoice. Should the Materials not be published due to an editorial or production decision, these funds will be returned to the Author. Withdrawal by the Author of any submitted Materials after final peer review approval will result in a US\$1,200 fee to cover pre-production expenses incurred by JoVE. If payment is not received by the completion of filming, production and publication of the Materials will be suspended until payment is received.
- 13. <u>Transfer, Governing Law.</u> This Agreement may be assigned by JoVE and shall inure to the benefits of any of JoVE's successors and assignees. This Agreement shall be governed and construed by the internal laws of the Commonwealth of Massachusetts without giving effect to any conflict of law provision thereunder. This Agreement may be executed in counterparts, each of which shall be deemed an original, but all of which together shall be deemed to me one and the same agreement. A signed copy of this Agreement delivered by facsimile, e-mail or other means of electronic transmission shall be deemed to have the same legal effect as delivery of an original signed copy of this Agreement.

A signed copy of this document must be sent with all new submissions. Only one Agreement required per submission.

CORRESPONDING	AUTHOR:	
Name:	Heur-Ching Wang	
Department:	Deular Trauma	
Institution:	U.S. Army Institute of Sugrical Research	
Article Title:	Deriving Retinal Pigment Epithelium from Induced-Plunipoten Stem Cells by Differe	nt sizes of
Signature:	Hey-Pw Date: 4/29/2014	Embyard Bodies

Please submit a signed and dated copy of this license by one of the following three methods:

- 1) Upload a scanned copy of the document as a pfd on the JoVE submission site;
- Fax the document to +1.866.381.2236;
- 3) Mail the document to JoVE / Attn: JoVE Editorial / 1 Alewife Center #200 / Cambridge, MA 02139

For questions, please email submissions@jove.com or call +1.617.945.9051

Your manuscript JoVE52262R1 'Deriving Retinal Pigment Epithelium from Induced-Pluripotent Stem Cells by Different Sizes of Embryoid Bodies' has been peer-reviewed and the following comments need to be addressed.

Please keep JoVE's formatting requirements and the editorial comments from your previous revisions in mind as you revise your manuscript to address peer review comments. For instance, if formatting or other changes were made, commercial language was removed, etc., please maintain these overall manuscript changes.

Please use the "track-changes" function in Microsoft Word or change the text color to identify all of your manuscript edits. When you have revised your submission, please also upload a list of changes, where you respond to each of the comments individually, in a separate document at the same time as you submit your revised manuscript.

Editorial comments:

- Your Manuscript is on priority for us. Please reply to the peer review comments at your earliest.
- Please take this opportunity to thoroughly proofread your manuscript to ensure that there are no spelling or grammar issues. Your JoVE editor will not copy-edit your manuscript and any errors in your submitted revision may be present in the published version.
- •If your figures and tables are original and not published previously, please ignore this comment. For figures and tables that have been published before, please include phrases such as "Re-print with permission from (reference#)" or "Modified from.." etc. And please send a copy of the re-print permission for JoVE's record keeping purposes.

Reviewers' comments:

Reviewer #1:

Manuscript Summary:

The authors investigated how EB sizes impact their iPSC differentiate into RPE. They concluded the optimal range of the cell number per EB is 500 to 3000.

Major Concerns:

Figures 1-5 lack quantitatively data. Statistical analysis has not mentioned in the text as well as legends. This may become an issue if the comparison of EB sizes is the focus of this manuscript. Statistical analysis and error bar is added for figure 5.

Figure 4 does not have isotype or unstained control. Isotype staining was done during the experiment for negative control. It was not included for publication.

Minor Concerns:

Figure 1 missed A, B, and C. Corrected.

Reviewer #2:

Manuscript Summary:

The manuscript describes methods for the differentiation of retinal pigmented epithelial cells from iPS cells using a variation of the embryoid body technique.

Major Concerns:

No major concerns.

Minor Concerns:

- 1. Throughout the manuscript, "media" should be "medium" unless the plural is meant (e.g. a mixture of two kinds of media). Proper changes are made.
- 2. "induced-pluripotent stem" should not be hyphenated. Changes are made.
- 3. Line 134: which supplement? Which basal medium? Feeder free Stem Cell culture medium comes in two components, basal medium and growth factors supplement, because of their different storage conditions.
- 4. Line 138: which commercial medium? Aggrewell medium is the EB formation media as described in the reagents table. It was not included in the text because of the editorial policy.
- 5. Line 138: which ROCK inhibitor? It is rho-associated, coiled-coil containing protein kinase (Rock) inhibitor (Y-27632). It's added in the text.
- 6. Line 141: this should be KSR = knockout serum replacement. We have changed it.
- 7. Line 164: does this really mean "Prepare protein matrix from Engelbreth-Holm-Swarm (EHS) mouse sarcoma cells"? It means Matrigel presumably if so, which type? "Matrigel" was removed as per the request of the editor. It's mentioned in the reagent's table.
- 8. Line 183: "feeder-free stem cell culture media" which medium is this? It's mTeSR1 medium and is described in the reagent's table.
- 9. Line 265 onward: There seems to be a section missing from the protocol. This section deals with plating the EBs, using "ultra-low adherence" plates so they don't attach? But the next part of the protocol (line 360) refers to cutting around pigmented colonies. Where do these colonies come from? They are recognized by pigmentation presumably but how is this recognized in practice and the photos don't really show it clearly. Step 5.1 is rewritten. After these EBs were plated on a matrigel coated six well culture plate, black pigmented colonies appeared after 4 weeks. These polygonal and pigmented colonies can be recognized easily under the stereomicroscope and can be isolated manually for further culture.
- 10. Line 375: is this also Matrigel? Protein matrix used in this paper is matrigel. "Matrigel" was not used as it is a commercial name. It's denoted in the reagent's table.

Reviewer #3:

Why ultra-low adherent plates in step 5.1. Is it meant to be a suspended differentiation culture. But the images for differentiation culture shown (fig 3, 7) appears to be adherent cultures, probably derived by plating EB and culturing with retinal differentiation medium. And no mention about the culture substrate/matrix used. We have modified the step 5.1.

In 9.1, no mention about the days after differentiation RPE, cell isolation is done for enrichment. Time point is added in the text.

In 9.4, no mention about the culture matrix used for sub culture. Change has been made.

In results, the authors quote that 200 cell EBs had developed astrocyte and fibroblast morphology (line 386) (Figure 3A). Deffinitely they look fibroblastic but unless it express a specific marker it is not right to comment on astrocytic differentiation. Astrocyte has been removed.

It is better if they show representative FACS profiles for Fig 6A. Mitf data does not have error bars. Also, Pax6 being a common marker for CNS and eye field specification, it is not ideal to use it for quantifying RPE differentiation efficiency. RPE-specific markers like Bestrophin and RPE 65 will provide better evidence. Same is true for IHC examinations. ZO-1 is expressed by many epithelial cells. MITF staining is weak, though it appears to be nuclear (fig 4). Though PAX6 is a common marker for CNS and eye field specification and Mitf is an early marker for RPE, expression of both PAX6 and Mitf is usually used to confirm the RPE phenotype.

RT-PCR data does not show much of a difference between 200/500/3K/15K cell EBs and it is surprising to find RPE65 expression at d17 itself (Figure: 5). Mitf expression is more prominent in 500 and 3k cell EBs. Though RPE65 expression appears on day 17, it's more prominent after day 29.

Line: 410. Timeline for subculture, maturation and pigmentation time was not given.

RPE differentiation and enrichment details have to be specific and more clearly elaborated. Technical description on RT-PCR, IHC and FACS can be reduced. RPE colonies were manually isolated and passaged starting from day 29. The timeline for subculture varied based on the confluency of the cells.