

microRNA Extraction Kit

I. Kit Content, Storage, and Stability

Content	Storage	50 preps	100 preps
Buffer MRL	4°C in the dark	55 ml	110 ml
		15 ml	25 ml
Buffer RW	RT	Add the ra	tion ethanol before
		use.	
RNase-free H ₂ O	RT 10 m	l	20ml
70% ethanol	RT	9ml RNase-free	9ml RNase-free
7070 Cilianoi	KI	H_2O	H₂O×2
		Add the ration ethanol before use.	
RNase-free	RT 50		100
Spin-column RA			
RNase-free	RT 50		100
Spin-column RB			
Collection Tube	RT 50		100
(2ml)			

All reagents will be stable for 12 months when stored properly.

Notes:

- 1. Please add proper volume ethanol to buffer RW and 70% ethanol before use, vortex adequately, and then tick on the blocks, avoiding multi-adding!
- 2. All reagents should be clear, which may precipitate under low temperature, then incubate at 37 for a moment **until clear**, then cool down to RT for use.
- 3. Some reagents will form precipitation, which affects RNA yield, under improper low temperature (4°C or -20°C) condition. So the transportation and saving of reagents are under room temperature (15°C-25°C). Buffer RL can be transported at RT, then keep it at 4°C in the dark upon arrival.
- 4. Please keep the lids of all reagents tightly after use, preventing reagents evaporation, oxidation and pH change.

II. Principle

The Kit applies improved guanidine thiocyanate-phenol one-step method to lyse samples and inactivate ribonucleases, then genomic DNA and 18 and 28s RNA are removed by the first spin-column. Then microRNA (including miRNA, snRNA, and other RNA less than 200bp) is absorbed by the second spin-column. After a serial of

elution- centrifugation steps to remove cellular metabolite and proteins etc, finally microRNA will be eluted from silica membrane using low salt RNase-free water.

III. Features

- 1. The silica membranes in the spin-column are produced by the world-famous company. There is little variation among different spin-columns, so repeatability of tests is reliable!
- 2. MicroRNA can be eluted from silica membrane without ethanol precipitation and dissolve.
- 3. The buffer MRL contains some special components can clean up the contamination of genomic DNA efficiently.
- 4. Multi-elution can ensure high-purity microRNA.

IV.Notes

- 1. For preventing RNA degradation, all the centrifugation steps should be made under -4, excluding having special notes, suggest using up to 13,000 rpm traditional centrifuge, for example Eppendorf 5415C and the similar.
- 2. Buffer RL and Buffer RE contain the stimulating compounds; please wear latex gloves, avoiding skin, eyes and cloth to be contaminated. *If that, please wash with use water or physiological saline.*
- 3. Due to the prevalence of RNases, wear gloves at all times and change them whenever may have been contacted, please follow standard laboratory procedures of "Molecular Clone" rules.
- * Wear gloves in whole process. There are many bacteria on the skin of our hands, which will be the main source of RNase affecting RNA extracting.
- * Whenever possible, sterile disposable plasticware should be used for handling RNA, avoiding contaminating by public equipments
- * Treat non-disposable glassware and plasticware before use to ensure that it is RNase-free. Bake glassware at 200°C overnight, and thoroughly rinse plasticware with 0.1N NaOH, 1mM EDTA followed by RNase-free water.
- 4. Considering environmental problem, the kit doesn't have chloroform, please prepare it by yourself.
- 5. The integrity of purified RNA may be determined by denaturing agarose gel electrophoresis (or agarose gel electrophoresis). The ratio of ~5Kb (28S) to ~2Kb (18S) ribosomal RNA should be approximately 2:1 by ethidium bromide staining.
- 6. The routine method to determine the yield and purity of RNA is spectrophotometry (OD₂₆₀/OD₂₈₀). Please dissolute RNA by TE, water will make OD₂₈₀higher because of lower ion intensity and PH.
- 7. The sample, which had mixed with Buffer MRL and homogenized, but without chloroform, can store under -60°C -70 for a month even more.

V. Procedure

Please add proper volume ethanol to buffer RW and bottle of 70% ethanol before use.

1. Homogenization

a. Tissues

Please homogenize tissue in an appropriate volume of Buffer MRL (50-100mg/mL) until no visible tissue; for tissue in liquid nitrogen, grind the tissue into a fine powder using a mortar and pestle. Pay attention to the volume of sample should not beyond 1/10 total volume of Buffer MRL.

b. Adherent cells

You can directly append an appropriate volume Buffer MRL to the culture plate, and completely lysis cell by pipetting. The volume of Buffer MRL is decided by the area of culture plate, about 10cm^2 per 1ml. In common situation, 1mL Buffer MRL is enough. Once appending not enough Buffer RL, it's possible to contaminated genomic DNA.

c. Suspending cells

Harvesting cells in Buffer MRL (animal, plant, fungus, maximum 5~10×10⁶ cells per 1mL; bacteria, maximum 1×10⁷ cells per 1mL) in a micro centrifuge tube by centrifuging.

- 2. Mix vigorously and incubate for 5 minutes under to lysate ribosomal particle comptelely.
- 3. **Alternative step** Centrifuge mixture at 12,000g for 10 minutes in a microfuge at 4°C. Remove upper, aqueous phase to a clean, sterile, DEPC-treated eppendorf tube.

When the sample is rich in proteins, fats, amylase and other extracellular substances (eg, muscle), or fatty tissue and plant tuber, it need another procedure.

- 4. Add 200µl chloroform per 1mL Buffer MRL, lid tightly and mix vigorously 15 sec, then incubate for 3 minutes under RT.
- 5. Centrifuge mixture at 12,000g for 10 minutes in a microfuge at 4°C. Remove upper, aqueous phase that RNA is present to a clean, sterile, DEPC-treated eppendorf tube.
- 6. Precipitate the aqueous phase by the addition of an equal volume (500μl) of 70% ethanol (**please check if or not add ethanol!**), mix gently then maybe appear the floculated precipitate.
- 7. Put last step solution and the flocculated precipitate into a Spin-column RA (place the spin-column to collection tube).
- 8. Centrifuge at 10,000rpm for 45 sec, collect flow-through (including micro RNA), check the volume of flow-through (**please more exactly**). Add 70% ethanol (2/3 times volume of flow-through) and mix gently, then put this mixed solution into a Spin-column RB, centrifuge at 10,000g for 30 sec in a

If you want separate macro RNA (18s and 28s), can gain from the spin column RA following steps:

- 9. Add 700µl buffer RW (**please check if or not add ethanol!**), centrifuge at 12,000g for 60 sec, and discard flow-through.
- 10. Add 500 μ l buffer RW, centrifuge at 12,000g for 60 sec , discard flow-through liquid.
- 11. Place spin-column RB back to collection tube, centrifuge at 12,000g for 2 min, and discard supernatant as far as possible to avoid ethanol inhibits the down-stream procedures.
- 12. Take the Spin-column RB out, then put a new RNase-free tube, add 60-80μl RNase-free water (having been incubated at 65-70), put for 2 min at RT, centrifuge at 12,000g for 1 min. Keep micro RNA at -20°C or -80°C.

VI.Trouble shooting

Problem	Possible Reason	Advices
Low microRNA	Tissue not homogenized	For tissue in liquid nitrogen,
	thoroughly	grind the tissue into a fine
		powder, after add buffer RL,
		then completely lyse cells by
		pipetting or vortexing; for the
		fresh tissue or plant tissue,
		grind the tissues in Buffer
		MRL using a mortar and
		pestle.
	RNA degraded	Take fresh samples for
		isolation.
	The sample is poor in RNA	There are different RNA
		percentage in all kinds' tissues
		and cells. So some "poor
		RNA" samples need more
		amount for homogenization.
	Beyond the binding	Using multiple spin-columns
	maximum of silica	RA for the same sample.
	membrane	
	Ethanol not added to	Add the ration ethanol before
	Buffer RW	use.

OD ₂₆₀ /OD ₂₈₀	Dissolute RNA by water,	Please dissolute RNA by TE
	which will make OD ₂₈₀	for spectrophotometry.
	higher because of lower ion	•
	intensity and PH.	
<1.6	Contaminated by proteins	Don't take middle and lower
	and phenol	phases in Step5 and ensure to
	-	do step8.
	Initial sample beyond the	Selecting appropriate amount
	coping range of Buffer	sample.
	MRL	
	Sample contains some	Avoid these substances.
Genomic DNA	chemical solvent (such as	
	ethanol, DMSO etc),	
contamination	intensive buffer or alkaline	
	solution.	
	May extract middle phases	Don't take middle phases in
	in Step5.	Step5.
	non-disposable glassware	Treat non-disposable glassware
	and plasticware not treated	and plasticware before use to
	before use.	ensure that it is RNase-free
	Samples were not properly	To halt RNA degradation
	prepared or stored. RNA	within samples, immediately
	may have been degraded	homogenize sample with
	during sample preparation.	Buffer MRL. Or freeze
RNA		samples immediately in liquid
degradation and		nitrogen and store at -70°C if
integrity not		they cannot be immediately
well		processed.
	RNA not stored under	Store under −60°C-70°C
	–60°C-70°C	
		It is essential to work quickly
	RNA degradation in	during sample preparation.
	process.	Maintain the sample lysate at
	1	4°C during preparation.
	Forget to do step11, or when	Ensuring to do step11, take the
	take the spin-column out,	spin-column out carefully, and
Down-stream	touching some flow-through	then put outside for a few
RT-PCR not	including ethanol carelessly.	minutes for ethanol
successful.	Finally ethanol inhibits	evaporation.
	RT-PCR	evaporation.
	K1-1 CK	

www.abigen.com

info@abigen.com