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Short Abstract: An automated midline shift estimation and intracranial pressure (ICP) pre-screening system based on Computed Tomography (CT) images for patients with traumatic brain injury (TBI) is proposed using image processing and machine learning techniques.
Long Abstract: It is estimated that every year, 1.4 million people in the United States sustain traumatic brain injuries (TBI)1. Over 50,000 of these patients will not survive and many others will be left permanently disabled. Severe TBI is known to be accompanied by an increase in intracranial pressure (ICP) as the presence of hematomas and swelling compresses brain tissue. This reduces cerebral perfusion pressure and thus cerebral blood flow, placing the injured brain and additional risk.  Severe ICP can be fatal, and as such it must be closely monitored for patients with brain injuries. This typically requires placement of indwelling catheters directly into the brain for monitoring of pressure, a risky procedure for patients that may can only be performed at specialized medical centers.  The procedure also involves risk such as infection. However, some signs of elevated ICP may be noticeable in medical imaging. In particular, midline shift is often associated with an increase in the ICP and can be captured from the brain Computed Tomography (CT) images. As such, these images provide an opportunity for non-invasive detection of elevated ICP which can be used as a pre-screening step before cranial trepanation. Among all these imaging modalities, since the speed and cost of diagnosis are vital, CT imaging is still the gold standard for initial TBI assessment2. More specifically, a CT examination is quick and relatively inexpensive, does not require strict patient immobility, and can reveal severe abnormalities such as bone fractures or hematomas. While CT is commonly used for detection of injuries in the brain, based on the current technology, midline shift is not automatically measured and therefore physicians must assess this important factor by visual inspection. Inaccurate or inconsistent CT interpretation is often associated with the nature of the human visual system and the complex structure of the brain. While small midline shifts are elusive, they are often invaluable for assessment of brain injury, in particular at early stages of injury before a patient’s condition becomes more severe. On the other side of the spectrum, large midline shift suggests highly elevated ICP and more severe TBI. However, it is a very challenging task for humans to visually inspect CT images and predict the level of ICP quantitatively. Due to advances in automated computational techniques, features extracted from CT images, such as midline shift, hematoma volume, and texture of brain CT images, can be measured accurately and automatically using advanced image processing methods. However, the relationship between ICP and midline shift as well as other features such as degree of bleeding, the texture from CT images has not been explored. In this paper, we propose a computational framework to measure the midline shift measurement as well as other physiological / anatomical features on brain CT images and predict the degree of ICP non-intrusively based on features extracted from CT images which can be used as a pre-screening step to recommend for or against invasive ICP monitoring.

Protocol Text: 
1. Methodology Overview
The proposed framework processes the brain CT images of traumatic brain injury (TBI) patients to automatically calculate midline shift in pathological cases and use it as well as other extracted information to predict Intracranial Pressure (ICP). Figure 1 shows the schematic diagram of the entire framework. The automated midline shift measurement can be divided into three steps. First, the ideal midline of the brain, i.e., the midline before injury, is found via a hierarchical search based on skull symmetry and tissue features3. Secondly, the ventricular system is segmented for each brain CT image4. Thirdly, the actual midline is estimated from the segmented deformed ventricular system using a shape matching method5. The horizontal shift of the ventricular system is then estimated based on the estimation of the ideal midline and the actual midline. After the midline shift is successively estimated, features including midline shift, texture information of CT images, as well as other demographic information are used to predict ICP. Machine learning algorithms are used to model the relationship between the ICP and the extracted features6.
2. Ideal Midline Estimation
    2.1 This step detects the approximate ideal midline using symmetry of the skull. First the skull is segmented by grayscale thresholding. Then the algorithm searches exhaustively rotation angles around the mass center of the skull to find the line that maximizes the symmetry of the resulting halves of the skull. The approximate ideal midline is the line passing through the mass center point with the rotation angel maximizing the symmetry. 
    2.2 This step detects the posterior falx cerebri and anterior falx attachment to the margins of the sagittal sulcus to refine the approximate ideal midline. In order to detect these anatomical features quickly and accurately, two searching rectangles are defined based on the approximate ideal midline and its two intersection points with the calvarium. The size of the rectangle is chosen to include the anatomical features to be detected. The anterior falx attachment is detected as the peak point of the ridge on the calvarium and the falx cerebri is detected as the gray line in the posterior region3.
    2.3 This step uses those features detected above to refine the ideal midline position. Once the peak point of the anterior falx attachment and the furthest point in the posterior falx cerebri from the calvarum are specified, the refined ideal midline is the line connecting the two points.
3. Ventricle Segmentation
    3.1 First a low-level segmentation using Gaussian mixture model (GMM) is applied for each CT slice4,7. CT images can be divided into 4 types of tissue: bone/blood, cerebrospinal fluid (CSF), gray matter and white matter.  For the initialization of the Gaussian Mixture Model, the parameters are estimated based on an iterative K-means segmentation result of the CT image. Then the Expectation-Maximization (EM) method is used to optimize GMM iteratively to better represent the CT image. The hard segmentation result can be obtained by partitioning the CT image into regions based on the maximum probability of the membership that each pixel belongs to different region types.
    3.2 After the low-level segmentation of GMM, we put further constraints on the segmentation result to recognize ventricular regions. Only ventricular regions with size above a certain threshold are kept. We also put constraints on the location of ventricles using the brain bounding box and constraints on the location of ventricles using the ventricle templates. The ventricle templates are extracted from a standard brain MR images and are enlarged using morphological dilation to accommodate variations among different subjects and pathological cases.
4. Actual Midline Estimation
    4.1 Specify the feature points on the ventricle templates extracted from MR. 
    4.2 Do the Multiple Regions Shape Matching5,8 between segmented ventricles and the MR template.
    4.3 Based on the identified feature points on the ventricle shapes from shape matching, the actual midline can be estimated. A simple way is to use the average of left side mean and right side mean of the x-coordinates of those feature points to define the x-coordinate of the midline.
5. More Feature Extractions
     5.1 The measurement of intracranial hematoma/bleeding volume is based on the Gaussian Mixture Model (GMM) segmentation result of the CT images. The area may include a small part of venous sinus blood and falx cerebri but usually they are only a small portion comparing to hematoma. By counting the number of pixels classified as blood for each slice and summing them up, the feature quantifies the extravasated blood volume in the CT examination.
      5.2 Extract texture features.  First six windows are selected in each CT image which captures the brain gray and white matter but avoiding the blood and ventricle structures in the CT image, see Figure 6. Then corresponding texture features are extracted by using the following methods: Gray Level Run length9, Histogram analysis, Fourier analysis, Dual Tree Complex Wavelet analysis10. 
     5.3 Demographic information and injury score are also collected. 
     5.4 All extracted features of each CT image are aggregated to represent the entire CT examination. Specifically, min(f), max(f), median(f), mean(f), std(f) are calculated among all the selected features belonging to the particular CT examination, e.g., a feature f of the midline shift or a texture feature. For the intracranial hemorrhage amount feature, besides the 5 operators listed above, sum(f) is also added to record the total blood volume.
6. ICP Estimation
    6.1 Feature selection is performed in two stages. The Information Gain Ratio criterion is applied in the first stage to select the top 50 features. In the second stage, genetic search is used to further optimize the selection of feature subset.
    6.2 ICP classification and evaluation through machine learning is performed. RapidMiner is used for the implementation11. The top level diagram in RapidMiner can be seen in Figure 8. In the evaluation step, we put a 10 fold cross-validation as the outmost layer. For each training fold, first feature selection process described above is applied. Then with the selected feature set, SVM is applied with parameter selection inside a nested cross validation6.

Representative Results:   The testing CT datasets were provided by the Carolinas Healthcare System (CHS) under Institutional Review Board approval. All subjects were diagnosed with mild to severe TBI when first admitted to hospital. The datasets contain 40 patients. From this set, 391 axial CT scan images are selected that show ventricles or region that should have contained ventricles. Figure 2 shows the result of ideal midline detection. In figure 3, the ventricles are segmented. Figure 4 shows the estimated actual midline. Figure 5 shows the estimation of midline shift. Figure 7 shows the segmentation of blood using GMM. In most slices, the error between the ideal midline estimated by the framework and the manual annotation are around 2 pixels, which is about 1mm.  For the actual midline, above 80% has less than 2.25mm difference provided that the quality of the ventricular segmentation is relatively good (The segmentation result can be used for estimation of the actual midlines manually). The ICP prediction evaluation has about 70% accuracy using 10 fold cross validation.
Tables and Figures:  
Figure 1. The top level framework of the method.
Figure 2. The result of the ideal midline detection. 
Figure 3. The result of the ventricle segmentation.
Figure 4. The result of the actual midline estimation.
Figure 5. The result of the midline shift estimation.
Figure 6. The six selected windows for texture analysis.
Figure 7. The blood segmentation.
Figure 8. The top level cross validation in RapidMiner.

Discussion: In the proposed segmentation, the low level segmentation and high level recognition are separated and currently there is no feedback from the high level to the low level segmentation. This is different from human visual inspection, which has interactions between low level vision and high level recognition. One possible approach to combine these together is “model based low-level segmentation”. In this method, the low-level segmentation may be guided by high level atlas models of the target structure. Even though the result is promising in the dataset tested, a larger dataset of CT examinations will be helpful to further evaluate the proposed framework.
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