JoVE: Science Education Introduction to Designing a Power Inductor --Manuscript Draft--

Manuscript Number:	10254
Full Title:	Introduction to Designing a Power Inductor
Article Type:	Manuscript
Section/Category:	Manuscript Submission
Corresponding Author:	Ali Bazzi
	UNITED STATES
Corresponding Author Secondary Information:	
Corresponding Author's Institution:	
Corresponding Author's Secondary Institution:	
First Author:	Ali Bazzi
First Author Secondary Information:	
Order of Authors:	Ali Bazzi
Order of Authors Secondary Information:	

PI: Ali Bazzi – University of Connecticut

Electrical Engineering Science Education Title: Introduction to Designing a Power Inductor

Essential Equations for a Core of Area (A_c) , Length (I), Permeability (μ_r) , and Nturns:

- Reluctance (R)= $l/(\mu_r\mu_o A_c)$
- Inductance $(L)=N^2/R$
- Flux $(\varphi) = \mu_r \mu_o A_c Ni/l$
- Flux density (B)= φ/A_c
- $\mu_o = 4\pi \times 10^{-7} \, \underline{\mathbf{V}} \cdot \underline{\mathbf{s}} / (\underline{\mathbf{A}} \cdot \mathbf{m})$
- Permeability of air is approximately μ_o .

Ampere's Law:

where H is the magnetic field intensity, C is a closed contour, and A is a surface area.

Faraday's Law:

Gauss's Law for Magnetism: